메뉴 건너뛰기




Volumn 54, Issue 3, 2004, Pages 557-562

Prediction of Protein Relative Solvent Accessibility with Support Vector Machines and Long-Range Interaction 3D Local Descriptor

Author keywords

Directed acyclic graph scheme; Long range interaction; Protein structure prediction; PSSM; Solvent accessibility; Support vector machines

Indexed keywords

AMINO ACID; PROTEIN; SOLVENT;

EID: 1042268067     PISSN: 08873585     EISSN: None     Source Type: Journal    
DOI: 10.1002/prot.10602     Document Type: Article
Times cited : (107)

References (50)
  • 1
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • Baker D, Sali A. Protein structure prediction and structural genomics. Science 2001;294:93-96.
    • (2001) Science , vol.294 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 2
    • 0027291015 scopus 로고
    • Prediction of secondary structure at better than 70% accuracy
    • Rost B, Sander C. Prediction of secondary structure at better than 70% accuracy. J Mol Biol 1993;232:584-599.
    • (1993) J Mol Biol , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 3
    • 0029804192 scopus 로고    scopus 로고
    • Identification and application of the concepts important for accurate and reliable protein secondary structure prediction
    • King RD, Sternberg MJE. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 1996;5:2298-2310.
    • (1996) Protein Sci , vol.5 , pp. 2298-2310
    • King, R.D.1    Sternberg, M.J.E.2
  • 4
    • 0030931336 scopus 로고    scopus 로고
    • Seventy-five percent accuracy in protein secondary structure prediction
    • Frishman D, Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins 1997;27:329-335.
    • (1997) Proteins , vol.27 , pp. 329-335
    • Frishman, D.1    Argos, P.2
  • 5
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292:195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 6
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000;40:502-511.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 7
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua SJ, Sun ZR. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 2001;308:397-407.
    • (2001) J Mol Biol , vol.308 , pp. 397-407
    • Hua, S.J.1    Sun, Z.R.2
  • 8
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • Kim H, Park H. Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng. 2003;16:553-560.
    • (2003) Protein Eng , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 9
    • 0025039476 scopus 로고
    • Predicting surface exposure of amino acids from protein sequence
    • Holbrook SR, Muskal SM, Kim SH. Predicting surface exposure of amino acids from protein sequence. Protein Eng 1990;3(8):659-665.
    • (1990) Protein Eng , vol.3 , Issue.8 , pp. 659-665
    • Holbrook, S.R.1    Muskal, S.M.2    Kim, S.H.3
  • 10
    • 0028109886 scopus 로고
    • Conservation and prediction of solvent accessibility in protein families
    • Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins 1994;20:216-226.
    • (1994) Proteins , vol.20 , pp. 216-226
    • Rost, B.1    Sander, C.2
  • 11
    • 0032147008 scopus 로고    scopus 로고
    • Easy method to predict solvent accessibility from multiple protein sequence alignments
    • Pascarella S, Persio RD, Bossa F, Argos P. Easy method to predict solvent accessibility from multiple protein sequence alignments. Proteins 1999;32:190-199.
    • (1999) Proteins , vol.32 , pp. 190-199
    • Pascarella, S.1    Persio, R.D.2    Bossa, F.3    Argos, P.4
  • 12
    • 0035189668 scopus 로고    scopus 로고
    • New method for accurate prediction of solvent accessibility from protein sequence
    • Li X, Pan XM. New method for accurate prediction of solvent accessibility from protein sequence. Proteins 2001;42:1-5.
    • (2001) Proteins , vol.42 , pp. 1-5
    • Li, X.1    Pan, X.M.2
  • 13
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002;47:142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 14
    • 0029885547 scopus 로고    scopus 로고
    • Predicting solvent accessibility: Higher accuracy using Bayesian statistics and optimized residue substitution classes
    • Thompson MJ, Goldstein RA. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes. Proteins 1996;25:38-47.
    • (1996) Proteins , vol.25 , pp. 38-47
    • Thompson, M.J.1    Goldstein, R.A.2
  • 15
    • 0035283141 scopus 로고    scopus 로고
    • Predicting of protein surface accessibility with information theory
    • Naderi-Manesh H, Sadeghi M, Arab S, Movahedi AAM. Predicting of protein surface accessibility with information theory. Proteins 2001;42:452-459.
    • (2001) Proteins , vol.42 , pp. 452-459
    • Naderi-Manesh, H.1    Sadeghi, M.2    Arab, S.3    Movahedi, A.A.M.4
  • 17
    • 0020997912 scopus 로고
    • A dictionary of protein secondary structure
    • Kabsch W, Sander C. A dictionary of protein secondary structure. Biopolymers 1983;22:2577-2637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 18
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 1988; 202:865-884.
    • (1988) J Mol Biol , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 19
    • 0034039497 scopus 로고    scopus 로고
    • Predicting the oxidation state of cysteins by multiple sequence alignment
    • Fiser A, Simon I. Predicting the oxidation state of cysteins by multiple sequence alignment. Bioinformatics 2000;3:251-256.
    • (2000) Bioinformatics , vol.3 , pp. 251-256
    • Fiser, A.1    Simon, I.2
  • 20
    • 0031551577 scopus 로고    scopus 로고
    • Stabilization centers in proteins: Identification, characterization and predictions
    • Dosztányi Z, Fiser A, Simon I. Stabilization centers in proteins: identification, characterization and predictions. J Mol Biol 1997; 272:597-612.
    • (1997) J Mol Biol , vol.272 , pp. 597-612
    • Dosztányi, Z.1    Fiser, A.2    Simon, I.3
  • 23
    • 0033957834 scopus 로고    scopus 로고
    • The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    • Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000;28:45-48.
    • (2000) Nucleic Acids Res , vol.28 , pp. 45-48
    • Bairoch, A.1    Apweiler, R.2
  • 24
    • 0028211273 scopus 로고
    • A model recognition approach to the prediction of all-helical membrane protein structure and topology
    • Jones DT, Taylor WR, Thornton JM. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 1994;33:3038-3049.
    • (1994) Biochemistry , vol.33 , pp. 3038-3049
    • Jones, D.T.1    Taylor, W.R.2    Thornton, J.M.3
  • 26
    • 0036303121 scopus 로고    scopus 로고
    • NETASA: Neural network based prediction of solvent accessibility
    • Ahmad S, Gromiha MM. NETASA: neural network based prediction of solvent accessibility. Bioinformatics 2002;18:819-824.
    • (2002) Bioinformatics , vol.18 , pp. 819-824
    • Ahmad, S.1    Gromiha, M.M.2
  • 27
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector learning machines
    • Mozer M, Jordan M, Petsche T, editors. Cambridge, MA: MIT Press
    • Burges CJC, Schölkopf B. Improving the accuracy and speed of support vector learning machines In: Mozer M, Jordan M, Petsche T, editors. Advances in neural information processing systems. Cambridge, MA: MIT Press; 1997. p 375-381.
    • (1997) Advances in Neural Information Processing Systems , pp. 375-381
    • Burges, C.J.C.1    Schölkopf, B.2
  • 28
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 1998;2:121-167.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 30
    • 0003425662 scopus 로고    scopus 로고
    • Support vector machines: Training and applications
    • Cambridge, MA: MIT AI Laboratory
    • Osuna E, Freund R, Girosi F. Support vector machines: training and applications. Tech. Rep. AI Memo Now 1602. Cambridge, MA: MIT AI Laboratory; 1997.
    • (1997) Tech Rep AI Memo Now 1602
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 33
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization preduction
    • Hua SJ, Sun ZR. Support vector machine approach for protein subcellular localization preduction. Bioinformatics 2001;17:721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.J.1    Sun, Z.R.2
  • 34
    • 2942601555 scopus 로고    scopus 로고
    • Support vector machines for predicting protein structural class
    • Cai YD, Liu XJ, Xu XB, Zhou GP. Support vector machines for predicting protein structural class. BMC Bioinformatics 2001; 2(3).
    • (2001) BMC Bioinformatics , vol.2 , Issue.3
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Zhou, G.P.4
  • 35
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding CHQ, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001;17:349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 39
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Hauessler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000;16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Hauessler, D.6
  • 40
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46: 389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 41
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock JR, Gough DA. Predicting protein-protein interactions from primary structure. Bioinformatics 2001;17:455-460.
    • (2001) Bioinformatics , vol.17 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 44
    • 0032095724 scopus 로고    scopus 로고
    • Support vector machines for 3D object recognition
    • Pontil M, Verri A. Support vector machines for 3D object recognition. IEEE Trans Pattern Anal 1998;20:637-646.
    • (1998) IEEE Trans Pattern Anal , vol.20 , pp. 637-646
    • Pontil, M.1    Verri, A.2
  • 45
    • 1042289791 scopus 로고    scopus 로고
    • Identifying speakers with support vector networks
    • Sydney, Australia
    • Schmidt M. Identifying speakers with support vector networks. In: Proceedings of Interface 96, Sydney, Australia, 1996.
    • (1996) Proceedings of Interface 96
    • Schmidt, M.1
  • 47
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin: Springer
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Proceedings of the European Conference on Machine Learning. Berlin: Springer; 1998. p 137-142.
    • (1998) Proceedings of the European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 49
    • 1042278179 scopus 로고    scopus 로고
    • Dimension reduction in text classification using support vector machines
    • Forthcoming
    • Kim H, Howland P, Park H. Dimension reduction in text classification using support vector machines. J of Mach Learn Res 2003. Forthcoming.
    • (2003) J of Mach Learn Res
    • Kim, H.1    Howland, P.2    Park, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.