메뉴 건너뛰기




Volumn 74, Issue 1-3, 2010, Pages 239-255

Artificial neural networks in hardware: A survey of two decades of progress

Author keywords

Analog neural design; CNN implementation; Digital neural design; FPGA based ANN implementation; Hardware neural network; Hybrid neural design; Neurochip; Neuromorphic system; Optical neural network; Parallel neural architecture; RAM based implementation

Indexed keywords

CELLULAR NEURAL NETWORKS; ENERGY EFFICIENCY; INTEGRATED CIRCUIT DESIGN; NETWORK ARCHITECTURE; RANDOM ACCESS STORAGE; RECONFIGURABLE ARCHITECTURES; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; SURVEYS; SWITCHING;

EID: 78649481350     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.03.021     Document Type: Article
Times cited : (596)

References (278)
  • 1
    • 85203873517 scopus 로고
    • Review of hardware neural networks: a user's perspective, in: Proceedings of Third Workshop on Neural Networks: From Biology to High Energy Physics, Isola d'Elba, Italy,
    • C. Lindsey, T. Lindblad, Review of hardware neural networks: a user's perspective, in: Proceedings of Third Workshop on Neural Networks: From Biology to High Energy Physics, Isola d'Elba, Italy, 1994, pp. 195-202.
    • (1994) , pp. 195-202
    • Lindsey, C.1    Lindblad, T.2
  • 3
    • 34548235493 scopus 로고    scopus 로고
    • Fault tolerance mechanism in chip many-core processors
    • Zhang L., Han Y., Li H., Li X. Fault tolerance mechanism in chip many-core processors. Tsinghua Science & Technology 2007, 12(Suppl. 1):169-174.
    • (2007) Tsinghua Science & Technology , vol.12 , Issue.SUPPL.1 , pp. 169-174
    • Zhang, L.1    Han, Y.2    Li, H.3    Li, X.4
  • 4
    • 0004211060 scopus 로고
    • Prentice-Hall, Upper Saddle River, NJ, USA
    • Kung S.Y. Digital Neural Networks 1992, Prentice-Hall, Upper Saddle River, NJ, USA.
    • (1992) Digital Neural Networks
    • Kung, S.Y.1
  • 5
    • 0012982103 scopus 로고
    • Digital hardware architectures for neural networks
    • Ienne P. Digital hardware architectures for neural networks. Speedup Journal 1995, 9(1):18-25.
    • (1995) Speedup Journal , vol.9 , Issue.1 , pp. 18-25
    • Ienne, P.1
  • 6
    • 0242443335 scopus 로고    scopus 로고
    • A compact 3-D VLSI classifier using bagging threshold network ensembles
    • Bermak A., Martinez D. A compact 3-D VLSI classifier using bagging threshold network ensembles. IEEE Transactions on Neural Networks 2003, 14(5):1097-1109.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.5 , pp. 1097-1109
    • Bermak, A.1    Martinez, D.2
  • 11
    • 85203875727 scopus 로고    scopus 로고
    • Compact digital hardware implementations of spiking neural networks, in: J. Van Campenhout (Ed.), Sixth FirW Ph.D. Symposium, in CD.
    • B. Schrauwen, M. D'Haene, Compact digital hardware implementations of spiking neural networks, in: J. Van Campenhout (Ed.), Sixth FirW Ph.D. Symposium, 2005, in CD.
    • (2005)
    • Schrauwen, B.1    D'Haene, M.2
  • 12
    • 34547504761 scopus 로고    scopus 로고
    • Reconfigurable hardware for neural networks: binary versus stochastic
    • Nedjah N., de Macedo Mourelle L. Reconfigurable hardware for neural networks: binary versus stochastic. Neural Computing and Applications 2007, 16(3):249-255.
    • (2007) Neural Computing and Applications , vol.16 , Issue.3 , pp. 249-255
    • Nedjah, N.1    de Macedo Mourelle, L.2
  • 14
    • 1542440438 scopus 로고    scopus 로고
    • Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks
    • Moerland P.D., Fiesler E., Saxena I. Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks. Applied Optics 1996, 35:5301-5307.
    • (1996) Applied Optics , vol.35 , pp. 5301-5307
    • Moerland, P.D.1    Fiesler, E.2    Saxena, I.3
  • 15
    • 85203881829 scopus 로고    scopus 로고
    • Bacteriorhodopsin as an analog holographic memory for joint fourier implementation of CNN computers, Technical Report DNS-3-2000, Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary
    • S. Tokes, L. Orzò, G. Vr, T. Roska, Bacteriorhodopsin as an analog holographic memory for joint fourier implementation of CNN computers, Technical Report DNS-3-2000, Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, Hungary, 2000.
    • (2000)
    • Tokes, S.1    Orz, L.2    Vr, G.3    Roska, T.4
  • 16
    • 37249017647 scopus 로고    scopus 로고
    • Optoelectronic neural processor for smart vision applications
    • Lamela H., Ruiz-Llata M. Optoelectronic neural processor for smart vision applications. Imaging Science Journal 2007, 55(4):197-205.
    • (2007) Imaging Science Journal , vol.55 , Issue.4 , pp. 197-205
    • Lamela, H.1    Ruiz-Llata, M.2
  • 17
    • 0004700537 scopus 로고
    • The use of neural networks in high energy physics
    • Denby B. The use of neural networks in high energy physics. Neural Computation 1993, 5:505-549.
    • (1993) Neural Computation , vol.5 , pp. 505-549
    • Denby, B.1
  • 18
    • 85203868390 scopus 로고    scopus 로고
    • Developing hardware-based applications using PRESENCE-2, in: Perspectives in Pervasive Computing, Savoy Place, London
    • M. Weeks, M. Freeman, A. Moulds, J. Austin, Developing hardware-based applications using PRESENCE-2, in: Perspectives in Pervasive Computing, Savoy Place, London, 2005, pp. 469-474.
    • (2005) , pp. 469-474
    • Weeks, M.1    Freeman, M.2    Moulds, A.3    Austin, J.4
  • 19
    • 0021468626 scopus 로고
    • WISARD: a radical step forward in image recognition
    • Aleksander I., Thomas W.V., Bowden P.A. WISARD: a radical step forward in image recognition. Sensor Review 1984, 4(3):120-124.
    • (1984) Sensor Review , vol.4 , Issue.3 , pp. 120-124
    • Aleksander, I.1    Thomas, W.V.2    Bowden, P.A.3
  • 20
    • 85203876408 scopus 로고    scopus 로고
    • The cellular neural network associative processor (C-NNAP), in: Associative Processing and Processors,
    • J. Austin, S. Buckle, J. Kennedy, A. Moulds, R. Pack, A. Tumer, The cellular neural network associative processor (C-NNAP), in: Associative Processing and Processors, 1997, pp. 284-299.
    • (1997) , pp. 284-299
    • Austin, J.1    Buckle, S.2    Kennedy, J.3    Moulds, A.4    Pack, R.5    Tumer, A.6
  • 21
    • 48949091642 scopus 로고    scopus 로고
    • Image identification system based on an optical broadcast neural network and a pulse coupled neural network preprocessor stage
    • Ruiz-Llata M., Lamela-Rivera H. Image identification system based on an optical broadcast neural network and a pulse coupled neural network preprocessor stage. Applied Optics 2008, 47:10-47.
    • (2008) Applied Optics , vol.47 , pp. 10-47
    • Ruiz-Llata, M.1    Lamela-Rivera, H.2
  • 22
    • 0031570072 scopus 로고    scopus 로고
    • Image segmentation based on oscillatory correlation
    • Wang D., Terman D. Image segmentation based on oscillatory correlation. Neural Computation 1997, 9(4):805-836.
    • (1997) Neural Computation , vol.9 , Issue.4 , pp. 805-836
    • Wang, D.1    Terman, D.2
  • 24
    • 33847750776 scopus 로고    scopus 로고
    • Massively distributed digital implementation of an integrate-and-fire legion network for visual scene segmentation
    • Girau B., Torres-Huitzil C. Massively distributed digital implementation of an integrate-and-fire legion network for visual scene segmentation. Neurocomputing 2007, 70(7-9):1186-1197.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1186-1197
    • Girau, B.1    Torres-Huitzil, C.2
  • 26
    • 0026406220 scopus 로고
    • A CCD programmable image processor and its neural network applications
    • Chiang A.M., et al. A CCD programmable image processor and its neural network applications. IEEE Journal of Solid State Circuits 1991, 26:1894-1901.
    • (1991) IEEE Journal of Solid State Circuits , vol.26 , pp. 1894-1901
    • Chiang, A.M.1
  • 27
    • 78649459528 scopus 로고    scopus 로고
    • A low-power analog VLSI visual collision detector
    • MIT Press, Cambridge, MA
    • Harrison R.R. A low-power analog VLSI visual collision detector. Advances in Neural Information Processing Systems 2004, vol. 16. MIT Press, Cambridge, MA.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Harrison, R.R.1
  • 31
    • 0242695730 scopus 로고    scopus 로고
    • Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification
    • Yang F., Paindavoine M. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification. IEEE Transaction on Neural Networks 2003, 14(5):1162-1175.
    • (2003) IEEE Transaction on Neural Networks , vol.14 , Issue.5 , pp. 1162-1175
    • Yang, F.1    Paindavoine, M.2
  • 33
    • 21244469523 scopus 로고    scopus 로고
    • Bi-i: a standalone ultra high speed cellular vision system
    • Zarandy A., Rekeczky C. Bi-i: a standalone ultra high speed cellular vision system. IEEE Circuits and Systems Magazine 2005, 5(2):36-45.
    • (2005) IEEE Circuits and Systems Magazine , vol.5 , Issue.2 , pp. 36-45
    • Zarandy, A.1    Rekeczky, C.2
  • 34
    • 0242611592 scopus 로고    scopus 로고
    • Analog implementation of ANN with inherent quadratic nonlinearity of the synapses
    • Milev M., Hristov M. Analog implementation of ANN with inherent quadratic nonlinearity of the synapses. IEEE Transactions on Neural Networks 2003, 14(5):1187-1200.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.5 , pp. 1187-1200
    • Milev, M.1    Hristov, M.2
  • 35
    • 0036737353 scopus 로고    scopus 로고
    • A CMOS feed-forward neural network chip with on-chip parallel learning for oscillation cancellation
    • Liu J., Brooke M.A., Hirotsu K. A CMOS feed-forward neural network chip with on-chip parallel learning for oscillation cancellation. IEEE Transactions on Neural Networks 2002, 13:1178-1186.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 1178-1186
    • Liu, J.1    Brooke, M.A.2    Hirotsu, K.3
  • 41
    • 33947131603 scopus 로고    scopus 로고
    • A stochastic digital implementation of a neural network controller for small wind turbine systems
    • Li H., Zhang D., Foo S. A stochastic digital implementation of a neural network controller for small wind turbine systems. IEEE Transactions on Power Electronics 2006, 21(5):1502-1507.
    • (2006) IEEE Transactions on Power Electronics , vol.21 , Issue.5 , pp. 1502-1507
    • Li, H.1    Zhang, D.2    Foo, S.3
  • 43
    • 40649110925 scopus 로고    scopus 로고
    • Hardware implementation of dynamic synapse neural networks for acoustic sound recognition, in: Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada,
    • A.A. Dibazar, A. Bangalore, H.O. Park, S.T. George, W.M. Yamada, T.W. Berger, Hardware implementation of dynamic synapse neural networks for acoustic sound recognition, in: Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2006, pp. 2015-2022.
    • (2006) , pp. 2015-2022
    • Dibazar, A.A.1    Bangalore, A.2    Park, H.O.3    George, S.T.4    Yamada, W.M.5    Berger, T.W.6
  • 44
    • 0029322291 scopus 로고
    • Cintia: a neuro-fuzzy real-time controller for low-power embedded systems
    • Chiaberge M., Reyneri L.M. Cintia: a neuro-fuzzy real-time controller for low-power embedded systems. IEEE Micro 1995, 15(3):40-47.
    • (1995) IEEE Micro , vol.15 , Issue.3 , pp. 40-47
    • Chiaberge, M.1    Reyneri, L.M.2
  • 45
    • 85203871555 scopus 로고    scopus 로고
    • Camalie, Box 2-an analog audio synthesizer: architecture and procedures guide, 1994. URL: 〈〉.
    • Camalie, Box 2-an analog audio synthesizer: architecture and procedures guide, 1994. URL: 〈〉. http://www.camalie.com/MusicBox2/guide.doc.
  • 46
    • 0037379814 scopus 로고    scopus 로고
    • Digital hardware realization of a recurrent neural network for solving the assignment problem
    • Hung D.L., Wang J. Digital hardware realization of a recurrent neural network for solving the assignment problem. Neurocomputing 2003, 51:447-461.
    • (2003) Neurocomputing , vol.51 , pp. 447-461
    • Hung, D.L.1    Wang, J.2
  • 47
    • 0026865862 scopus 로고
    • An analog neural network for solving the assignment problem
    • Wang J. An analog neural network for solving the assignment problem. Electronic Letters 1992, 28(11):1047-1050.
    • (1992) Electronic Letters , vol.28 , Issue.11 , pp. 1047-1050
    • Wang, J.1
  • 50
    • 0026371332 scopus 로고
    • Extensible linear floating point SIMD neurocomputer array processor, in: Proceedings of International Joint Conference on Neural Networks, Seattle, Washington
    • R.W. Means, L. Lisenbee, Extensible linear floating point SIMD neurocomputer array processor, in: Proceedings of International Joint Conference on Neural Networks, vol. I, Seattle, Washington, 1991, pp. 587-592.
    • (1991) , vol.1 , pp. 587-592
    • Means, R.W.1    Lisenbee, L.2
  • 52
    • 85203872995 scopus 로고
    • Overview of neural hardware, in: Neurocomputers for Brain-Style Processing, Design, Implementation and Application,
    • J. Heemskerk, Overview of neural hardware, in: Neurocomputers for Brain-Style Processing, Design, Implementation and Application, 1995.
    • (1995)
    • Heemskerk, J.1
  • 53
    • 0030213156 scopus 로고    scopus 로고
    • Special-purpose digital hardware for neural networks: an architectural survey
    • Ienne P., Cornu T., Kuhn G. Special-purpose digital hardware for neural networks: an architectural survey. Journal of VLSI Signal Processing Systems 1996, 13(1):5-25.
    • (1996) Journal of VLSI Signal Processing Systems , vol.13 , Issue.1 , pp. 5-25
    • Ienne, P.1    Cornu, T.2    Kuhn, G.3
  • 54
  • 55
    • 0004259250 scopus 로고    scopus 로고
    • Neural network adaptations to hardware implementations
    • Institute of Physics Publishing and Oxford University Publishing, New York, NY, USA, pp. E1.2:1-E1.2:13, E. Fiesler, R. Beale (Eds.)
    • Moerland P.D., Fiesler E. Neural network adaptations to hardware implementations. Handbook of Neural Computation 1997, Institute of Physics Publishing and Oxford University Publishing, New York, NY, USA, pp. E1.2:1-E1.2:13. E. Fiesler, R. Beale (Eds.).
    • (1997) Handbook of Neural Computation
    • Moerland, P.D.1    Fiesler, E.2
  • 57
    • 0010578403 scopus 로고
    • Digital neurochip design
    • Prentice-Hall, Upper Saddle River, NJ, USA, K.W. Przytula, V.K. Prasanna (Eds.)
    • Burr J.B. Digital neurochip design. Parallel Digital Implementations of Neural Networks 1992, 223-281. Prentice-Hall, Upper Saddle River, NJ, USA. K.W. Przytula, V.K. Prasanna (Eds.).
    • (1992) Parallel Digital Implementations of Neural Networks , pp. 223-281
    • Burr, J.B.1
  • 58
    • 85203865735 scopus 로고
    • Energy, capacity, and technology scaling in digital VLSI neural networks, NIPS'91 VLSI Workshop, May
    • J.B. Burr, Energy, capacity, and technology scaling in digital VLSI neural networks, NIPS'91 VLSI Workshop, May 1991.
    • (1991)
    • Burr, J.B.1
  • 59
    • 85203878927 scopus 로고    scopus 로고
    • Digital VLSI for neural networks, in: The Handbook of Brain Theory and Neural Networks,
    • D. Hammerstrom, Digital VLSI for neural networks, in: The Handbook of Brain Theory and Neural Networks, 2003, pp. 304-309.
    • (2003) , pp. 304-309
    • Hammerstrom, D.1
  • 61
    • 33746892995 scopus 로고    scopus 로고
    • FPGA implementations of neural networks-a survey of a decade of progress
    • Zhu J., Sutton P. FPGA implementations of neural networks-a survey of a decade of progress. Field-Programmable Logic and Applications 2003, vol. 2778:1062-1066.
    • (2003) Field-Programmable Logic and Applications , vol.2778 , pp. 1062-1066
    • Zhu, J.1    Sutton, P.2
  • 62
    • 0037279354 scopus 로고    scopus 로고
    • Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign
    • Reyneri L. Implementation issues of neuro-fuzzy hardware: going toward HW/SW codesign. IEEE Transactions on Neural Networks 2003, 14(1):176-194.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.1 , pp. 176-194
    • Reyneri, L.1
  • 65
    • 34548821852 scopus 로고    scopus 로고
    • Synaptic dynamics in analog VLSI
    • Bartolozzi C., Indiveri G. Synaptic dynamics in analog VLSI. Neural Computation 2007, 19(10):2581-2603.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2581-2603
    • Bartolozzi, C.1    Indiveri, G.2
  • 66
    • 85203866856 scopus 로고    scopus 로고
    • Implementing neural models in silicon, in: Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies,
    • L. Smith, Implementing neural models in silicon, in: Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, 2006, p. 433.
    • (2006) , pp. 433
    • Smith, L.1
  • 68
    • 77957775251 scopus 로고    scopus 로고
    • Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition
    • Indiveri G., Chicca E., Douglas R. Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition. Cognitive Computation 2009, 1(2):119-127.
    • (2009) Cognitive Computation , vol.1 , Issue.2 , pp. 119-127
    • Indiveri, G.1    Chicca, E.2    Douglas, R.3
  • 69
    • 85203865308 scopus 로고    scopus 로고
    • RAM-Based Neural Networks, World Scientific, Singapore,
    • J. Austin (Ed.), RAM-Based Neural Networks, World Scientific, Singapore, 1998.
    • (1998)
    • Austin, J.1
  • 70
    • 85203877720 scopus 로고    scopus 로고
    • FPGA Implementations of Neural Networks, Springer-Verlag, Dordrecht, Germany
    • A.R. Ormondi, J.C. Rajapakse (Eds.), FPGA Implementations of Neural Networks, Springer-Verlag, Dordrecht, Germany, 2006.
    • (2006)
    • Ormondi, A.R.1    Rajapakse, J.C.2
  • 72
    • 0345023260 scopus 로고
    • Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks
    • Jabri M., Flower B. Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks. Neural Computation 1991, 3(4):546-565.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 546-565
    • Jabri, M.1    Flower, B.2
  • 73
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: trading generalization for learning efficiency?
    • Smieja F.J. Neural network constructive algorithms: trading generalization for learning efficiency?. Circuits, Systems, and Signal Processing 1993, 12:331-374.
    • (1993) Circuits, Systems, and Signal Processing , vol.12 , pp. 331-374
    • Smieja, F.J.1
  • 74
    • 0029511861 scopus 로고
    • Cascade error projection: an efficient hardware learning algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia
    • T.A. Duong, Cascade error projection: an efficient hardware learning algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, Perth, Australia, 1995, pp. 175-178.
    • (1995) , vol.1 , pp. 175-178
    • Duong, T.A.1
  • 75
    • 0034207603 scopus 로고    scopus 로고
    • Convergence analysis of cascade error projection: an efficient hardware learning algorithm
    • Duong T.A., Stubberud A.R. Convergence analysis of cascade error projection: an efficient hardware learning algorithm. International Journal of Neural System 2000, 10(3):199-210.
    • (2000) International Journal of Neural System , vol.10 , Issue.3 , pp. 199-210
    • Duong, T.A.1    Stubberud, A.R.2
  • 78
    • 0028517629 scopus 로고
    • A scalable parallel formulation of the back-propagation algorithm for hypercubes and related architectures
    • Kumar V., Shekhar S., Amin M.B. A scalable parallel formulation of the back-propagation algorithm for hypercubes and related architectures. IEEE Transactions on Parallel and Distributed Systems 1994, 5(10):1073-1090.
    • (1994) IEEE Transactions on Parallel and Distributed Systems , vol.5 , Issue.10 , pp. 1073-1090
    • Kumar, V.1    Shekhar, S.2    Amin, M.B.3
  • 79
    • 0034060403 scopus 로고    scopus 로고
    • Back-propagation learning algorithm and parallel computers: the CLEPSYDRA mapping scheme
    • d'Acierno A. Back-propagation learning algorithm and parallel computers: the CLEPSYDRA mapping scheme. Neurocomputing 2000, 31:67-85.
    • (2000) Neurocomputing , vol.31 , pp. 67-85
    • d'Acierno, A.1
  • 80
    • 0028449623 scopus 로고
    • An analog processor architecture for a neural network classifier
    • Verleysen M., luc Voz L., Madrenas J. An analog processor architecture for a neural network classifier. IEEE Micro 1994, 14:16-28.
    • (1994) IEEE Micro , vol.14 , pp. 16-28
    • Verleysen, M.1    luc Voz, L.2    Madrenas, J.3
  • 82
    • 0035659601 scopus 로고    scopus 로고
    • Parallel implementation of neocognitron on star topology: theoretical and experimental evaluation
    • Patnaik L.M., Rao R.N. Parallel implementation of neocognitron on star topology: theoretical and experimental evaluation. Neurocomputing 2001, 41:109-124.
    • (2001) Neurocomputing , vol.41 , pp. 109-124
    • Patnaik, L.M.1    Rao, R.N.2
  • 83
    • 84947945556 scopus 로고    scopus 로고
    • A new concept for parallel neurocomputer architectures, in: Proceedings of EuroPar'96, Lyon, France,
    • A. Strey, N. Avellana, A new concept for parallel neurocomputer architectures, in: Proceedings of EuroPar'96, Lyon, France, 1996, pp. 470-477.
    • (1996) , pp. 470-477
    • Strey, A.1    Avellana, N.2
  • 86
    • 0025532312 scopus 로고
    • A VLSI architecture for high-performance, low-cost, on-chip learning, in: Proceedings of the International Joint Conference on Neural Networks, San Diego, CA,
    • D. Hammerstrom, A VLSI architecture for high-performance, low-cost, on-chip learning, in: Proceedings of the International Joint Conference on Neural Networks, San Diego, CA, 1990, pp. 537-544.
    • (1990) , pp. 537-544
    • Hammerstrom, D.1
  • 89
    • 0027557033 scopus 로고
    • Finite precision error analysis of neural network hardware implementations
    • Holt J., Hwang J.-N. Finite precision error analysis of neural network hardware implementations. IEEE Transactions on Computers 1993, 42(3):281-290.
    • (1993) IEEE Transactions on Computers , vol.42 , Issue.3 , pp. 281-290
    • Holt, J.1    Hwang, J.-N.2
  • 90
    • 85203871789 scopus 로고    scopus 로고
    • How to build VLSI-efficient neural chips, in: E. Alpaydin (Ed.), Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems, Tenerife, Spain,
    • V. Beiu, How to build VLSI-efficient neural chips, in: E. Alpaydin (Ed.), Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems, Tenerife, Spain, 1998, pp. 66-75.
    • (1998) , pp. 66-75
    • Beiu1
  • 91
    • 0025475707 scopus 로고
    • An implementation of back-propagation learning on GF11, a large SIMD parallel computer
    • Witbrock M., Zagha M. An implementation of back-propagation learning on GF11, a large SIMD parallel computer. Parallel Computing 1990, 14:329-346.
    • (1990) Parallel Computing , vol.14 , pp. 329-346
    • Witbrock, M.1    Zagha, M.2
  • 95
    • 0242526877 scopus 로고    scopus 로고
    • A new wide range Euclidean distance circuit for neural network hardware implementations
    • Gopalan A., Titus A.H. A new wide range Euclidean distance circuit for neural network hardware implementations. IEEE Transactions on Neural Networks 2003, 14:1176-1186.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 1176-1186
    • Gopalan, A.1    Titus, A.H.2
  • 96
    • 0043217816 scopus 로고
    • Dynamic optical interconnections using holographic Lenslet arrays for adaptive neural networks
    • Jang J.S., Shin S.G., Yuk S.W., Shin S.Y., Lee S.Y. Dynamic optical interconnections using holographic Lenslet arrays for adaptive neural networks. Optical Engineering 1993, 32:80-87.
    • (1993) Optical Engineering , vol.32 , pp. 80-87
    • Jang, J.S.1    Shin, S.G.2    Yuk, S.W.3    Shin, S.Y.4    Lee, S.Y.5
  • 97
    • 0029350979 scopus 로고
    • Adaptive multilayer optical neural network with optical thresholding
    • Saxena I., Fiesler E. Adaptive multilayer optical neural network with optical thresholding. Optical Engineering 1995, 34:2435-2440.
    • (1995) Optical Engineering , vol.34 , pp. 2435-2440
    • Saxena, I.1    Fiesler, E.2
  • 99
    • 0034760630 scopus 로고    scopus 로고
    • Building blocks for electronic spiking neural networks
    • Schaik A. Building blocks for electronic spiking neural networks. Neural Networks 2001, 14:617-628.
    • (2001) Neural Networks , vol.14 , pp. 617-628
    • Schaik, A.1
  • 101
    • 0037844839 scopus 로고    scopus 로고
    • FPGA implementation of a pulse density neural network with learning ability using simultaneous perturbation
    • Maeda Y., Tada T. FPGA implementation of a pulse density neural network with learning ability using simultaneous perturbation. IEEE Transaction on Neural Networks 2003, 14(3):688-695.
    • (2003) IEEE Transaction on Neural Networks , vol.14 , Issue.3 , pp. 688-695
    • Maeda, Y.1    Tada, T.2
  • 102
    • 0032683139 scopus 로고    scopus 로고
    • Implementation of pulse-coupled neural networks in a CNAPS environment
    • Kinser J.M., Lindblad T. Implementation of pulse-coupled neural networks in a CNAPS environment. IEEE Neural Networks 1999, 10(3):584-597.
    • (1999) IEEE Neural Networks , vol.10 , Issue.3 , pp. 584-597
    • Kinser, J.M.1    Lindblad, T.2
  • 103
    • 0242657916 scopus 로고    scopus 로고
    • A digital hardware pulse-mode neuron with piecewise linear activation function
    • Hikawa H. A digital hardware pulse-mode neuron with piecewise linear activation function. IEEE Transactions on Neural Networks 2003, 14(5):1028-1037.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.5 , pp. 1028-1037
    • Hikawa, H.1
  • 105
    • 0026866737 scopus 로고
    • An analog implementation of discrete-time cellular neural networks
    • Harrer H., Nossek J., Stelzl R. An analog implementation of discrete-time cellular neural networks. IEEE Transactions on Neural Networks 1992, 3(3):466-476.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.3 , pp. 466-476
    • Harrer, H.1    Nossek, J.2    Stelzl, R.3
  • 107
    • 0029267772 scopus 로고
    • A programmable analog cellular neural network CMOS chip for high-speed image processing
    • Kinget P., Steyaert M. A programmable analog cellular neural network CMOS chip for high-speed image processing. IEEE Journal of Solid State Circuits 1995, 30(3):235-243.
    • (1995) IEEE Journal of Solid State Circuits , vol.30 , Issue.3 , pp. 235-243
    • Kinget, P.1    Steyaert, M.2
  • 112
    • 84975562518 scopus 로고
    • Optical association: a simple model for optical associative memory
    • Ishikawa M., Mukouzaka N., Toyoda H., Suzuki Y. Optical association: a simple model for optical associative memory. Applied Optics 1989, 28:291-301.
    • (1989) Applied Optics , vol.28 , pp. 291-301
    • Ishikawa, M.1    Mukouzaka, N.2    Toyoda, H.3    Suzuki, Y.4
  • 113
    • 84975576392 scopus 로고
    • Optical neural network with pocket sized liquid crystal televisions
    • Yu F.T.S., Lu T., Yang X., Gregory D.A. Optical neural network with pocket sized liquid crystal televisions. Optics Letters 1990, 15:863-865.
    • (1990) Optics Letters , vol.15 , pp. 863-865
    • Yu, F.T.S.1    Lu, T.2    Yang, X.3    Gregory, D.A.4
  • 114
    • 84873871151 scopus 로고
    • A stochastic neural architecture that exploits dynamically reconfigurable FPGAs
    • IEEE Computer Society Press, Los Alamitos, CA, D.A. Buell, K.L. Pocek (Eds.)
    • Daalen M.V., Jeavons P., Shawe-Taylor J. A stochastic neural architecture that exploits dynamically reconfigurable FPGAs. IEEE Workshop on FPGAs for Custom Computing Machines 1993, 202-211. IEEE Computer Society Press, Los Alamitos, CA. D.A. Buell, K.L. Pocek (Eds.).
    • (1993) IEEE Workshop on FPGAs for Custom Computing Machines , pp. 202-211
    • Daalen, M.V.1    Jeavons, P.2    Shawe-Taylor, J.3
  • 115
    • 0028757429 scopus 로고
    • FPGA-based stochastic neural networks-implementation, in: Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines Workshop, Napa, CA,
    • S.L. Bade, B.L. Hutchings, FPGA-based stochastic neural networks-implementation, in: Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines Workshop, Napa, CA, 1994, pp. 189-198.
    • (1994) , pp. 189-198
    • Bade, S.L.1    Hutchings, B.L.2
  • 118
  • 119
    • 0028378619 scopus 로고
    • Emergent activation functions from a stochastic bit stream neuron
    • Daalen M., Kosel T., Jeavons P., Shawe-Taylor J. Emergent activation functions from a stochastic bit stream neuron. Electronic Letters 1994, 30(4):331-333.
    • (1994) Electronic Letters , vol.30 , Issue.4 , pp. 331-333
    • Daalen, M.1    Kosel, T.2    Jeavons, P.3    Shawe-Taylor, J.4
  • 120
    • 0033280020 scopus 로고    scopus 로고
    • Fast neural network implementation
    • Skrbek M. Fast neural network implementation. Neural Network World 1999, 5:375-391.
    • (1999) Neural Network World , vol.5 , pp. 375-391
    • Skrbek, M.1
  • 121
    • 0000477587 scopus 로고
    • VLSI implementation of a neural network memory with several hundreds of neurons, in: AIP Conference Proceedings 151 on Neural Networks for Computing, American Institute of Physics Inc., Woodbury, NY, USA,
    • H.P. Graf, L.D. Jackel, R.E. Howard, B. Straughn, J.S. Denker, W. Hubbard, D.M. Tennant, D. Schwartz, VLSI implementation of a neural network memory with several hundreds of neurons, in: AIP Conference Proceedings 151 on Neural Networks for Computing, American Institute of Physics Inc., Woodbury, NY, USA, 1987, pp. 182-187.
    • (1987) , pp. 182-187
    • Graf, H.P.1    Jackel, L.D.2    Howard, R.E.3    Straughn, B.4    Denker, J.S.5    Hubbard, W.6    Tennant, D.M.7    Schwartz, D.8
  • 124
    • 85203876280 scopus 로고
    • An electrically trainable artificial neural network (ETANN) with 10240 "floating gate" synapses, in: IEEE Computer Society Neural Networks Technology Series,
    • M. Holler, S. Tam, H. Castro, R. Benson, An electrically trainable artificial neural network (ETANN) with 10240 "floating gate" synapses, in: IEEE Computer Society Neural Networks Technology Series, 1990, pp. 50-55.
    • (1990) , pp. 50-55
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 126
    • 1842725979 scopus 로고
    • Analog implementation of neural networks
    • Zurada J. Analog implementation of neural networks. IEEE Circuits and Devices Magazine 1992, 8(5):36-41.
    • (1992) IEEE Circuits and Devices Magazine , vol.8 , Issue.5 , pp. 36-41
    • Zurada, J.1
  • 127
    • 0030110107 scopus 로고    scopus 로고
    • Digitally programmable analog building blocks for the implementation of artificial neural networks
    • Almeida A.P., Franca J.E. Digitally programmable analog building blocks for the implementation of artificial neural networks. IEEE Transactions on Neural Networks 1996, 7(2):506-514.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 506-514
    • Almeida, A.P.1    Franca, J.E.2
  • 133
    • 0029634686 scopus 로고
    • Analogue VLSI 'integrate-and-fire' neuron with frequency adaptation
    • Schultz S., Jabri M. Analogue VLSI 'integrate-and-fire' neuron with frequency adaptation. Electronics Letters 1995, 31(16):1357-1358.
    • (1995) Electronics Letters , vol.31 , Issue.16 , pp. 1357-1358
    • Schultz, S.1    Jabri, M.2
  • 136
    • 63249097213 scopus 로고    scopus 로고
    • A generalized linear integrate-and-fire neural model produces diverse spiking behaviors
    • Mihalas S., Niebur E. A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural Computation 2009, 21(3):704-718.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 704-718
    • Mihalas, S.1    Niebur, E.2
  • 137
    • 40849083456 scopus 로고    scopus 로고
    • Compact silicon neuron circuit with spiking and bursting behaviour
    • Wijekoon J., Dudek P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks 2008, 21(2-3):524-534.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 524-534
    • Wijekoon, J.1    Dudek, P.2
  • 139
    • 0034293117 scopus 로고    scopus 로고
    • Spike-driven synaptic plasticity: theory, simulation, VLSI implementation
    • Fusi S., Annunziato M., Badoni D., Salamon A., Amit D.J. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation. Neural Computation 2000, 12:2227-2258.
    • (2000) Neural Computation , vol.12 , pp. 2227-2258
    • Fusi, S.1    Annunziato, M.2    Badoni, D.3    Salamon, A.4    Amit, D.J.5
  • 140
    • 85203868087 scopus 로고
    • Low-power silicon neurons, axons and synapses, in: Silicon Implementation of Pulse Coded Neural Networks,
    • J. Lazzaro, J. Wawrzynek, Low-power silicon neurons, axons and synapses, in: Silicon Implementation of Pulse Coded Neural Networks, 1994, pp. 153-164.
    • (1994) , pp. 153-164
    • Lazzaro, J.1    Wawrzynek, J.2
  • 142
    • 0034576069 scopus 로고    scopus 로고
    • Modeling selective attention using a neuromorphic analog VLSI device
    • Indiveri G. Modeling selective attention using a neuromorphic analog VLSI device. Neural Computation 2000, 12(12):2857-2880.
    • (2000) Neural Computation , vol.12 , Issue.12 , pp. 2857-2880
    • Indiveri, G.1
  • 143
    • 85203881245 scopus 로고    scopus 로고
    • A recurrent model of orientation maps with simple and complex cells, in:Advances in Neural Information Processing Systems,
    • P. Merolla, K. Boahen, A recurrent model of orientation maps with simple and complex cells, in:Advances in Neural Information Processing Systems, 2004, pp. 995-1002.
    • (2004) , pp. 995-1002
    • Merolla, P.1    Boahen, K.2
  • 144
    • 85203873955 scopus 로고    scopus 로고
    • Kinetic models of synaptic transmission, in: Methods in Neuronal Modeling
    • A. Destexhe, Z. Mainen, T. Sejnowski, Kinetic models of synaptic transmission, in: Methods in Neuronal Modeling, 1998, pp. 1-25.
    • (1998) , pp. 1-25
    • Destexhe, A.1    Mainen, Z.2    Sejnowski, T.3
  • 147
    • 85203873992 scopus 로고
    • MD1220 neural bit slice, data sheet, lake Mary, March
    • M.D. Corp., MD1220 neural bit slice, data sheet, lake Mary, March 1990.
    • (1990)
    • Corp, M.D.1
  • 148
  • 149
    • 85203869848 scopus 로고
    • Neurologix, NLX420 data sheet, Neurologix, Inc., 800 Charcot Av., Suite 112, San Jose, CA, USA,
    • Neurologix, NLX420 data sheet, Neurologix, Inc., 800 Charcot Av., Suite 112, San Jose, CA, USA, 1992.
    • (1992)
  • 151
    • 85203866064 scopus 로고
    • MA16-programmable VLSI array processor for neuronal networks and matrix-based signal processing, user description, Technical Report 1.3, Siemens AG, Corporate Research and Development Division, Munich, Germany, October
    • N. Bruels, MA16-programmable VLSI array processor for neuronal networks and matrix-based signal processing, user description, Technical Report 1.3, Siemens AG, Corporate Research and Development Division, Munich, Germany, October 1993.
    • (1993)
    • Bruels, N.1
  • 152
    • 0026869653 scopus 로고
    • A systolic array exploiting the inherent parallelisms of artificial neural networks
    • Chung J.H., Yoon H., Maeng S.R. A systolic array exploiting the inherent parallelisms of artificial neural networks. Microprogramming and Microprocessors 1992, 33(3):145-159.
    • (1992) Microprogramming and Microprocessors , vol.33 , Issue.3 , pp. 145-159
    • Chung, J.H.1    Yoon, H.2    Maeng, S.R.3
  • 154
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 156
    • 0027906338 scopus 로고
    • Programmable analogue VLSI for radial basis function networks
    • Churcher S., Murray A.F., Reekie H.M. Programmable analogue VLSI for radial basis function networks. Electronic Letters 1993, 29:1603-1605.
    • (1993) Electronic Letters , vol.29 , pp. 1603-1605
    • Churcher, S.1    Murray, A.F.2    Reekie, H.M.3
  • 159
    • 85203882642 scopus 로고    scopus 로고
    • A high-speed analog neural processor, IEEE Micro (1994) 40-50.
    • P. Masa, K. Hoen, H. Wallinga, A high-speed analog neural processor, IEEE Micro (1994) 40-50.
    • Masa, P.1    Hoen, K.2    Wallinga, H.3
  • 160
    • 0025818252 scopus 로고
    • A functional microcircuit for cat visual cortex
    • Douglas R., Martin K. A functional microcircuit for cat visual cortex. Physiology 1991, 440:735-769.
    • (1991) Physiology , vol.440 , pp. 735-769
    • Douglas, R.1    Martin, K.2
  • 163
    • 0029048472 scopus 로고
    • A learning rule of neural networks via simultaneous perturbation and its hardware implementation
    • Maeda Y., Hirano H., Kanata Y. A learning rule of neural networks via simultaneous perturbation and its hardware implementation. Neural Networks 1995, 8(2):251-259.
    • (1995) Neural Networks , vol.8 , Issue.2 , pp. 251-259
    • Maeda, Y.1    Hirano, H.2    Kanata, Y.3
  • 165
    • 58149210859 scopus 로고
    • Global competition and local cooperation in a network of neural oscillators
    • Terman D., Wang D. Global competition and local cooperation in a network of neural oscillators. Physica D 1995, 81(1-2):148-176.
    • (1995) Physica D , vol.81 , Issue.1-2 , pp. 148-176
    • Terman, D.1    Wang, D.2
  • 166
    • 85203870367 scopus 로고    scopus 로고
    • Xilinx, Virtex-ii pro and virtex-ii pro x platform fpgas: complete data sheet, URL: 〈〉.
    • Xilinx, Virtex-ii pro and virtex-ii pro x platform fpgas: complete data sheet, 2007. URL: 〈〉. http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf.
    • (2007)
  • 167
    • 85203869932 scopus 로고    scopus 로고
    • Stratix, Stratix III FPGA device family overview, URL: 〈〉.
    • Stratix, Stratix III FPGA device family overview, 2007, URL: 〈〉. http://www.altera.com/products/devices/stratix3/overview/st3-overview.html#notes.
    • (2007)
  • 168
    • 34248645728 scopus 로고    scopus 로고
    • Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization
    • Himavathi S., Anitha D., Muthuramalingam A. Feedforward neural network implementation in FPGA using layer multiplexing for effective resource utilization. IEEE Transactions on Neural Networks 2007, 18(3):880-888.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 880-888
    • Himavathi, S.1    Anitha, D.2    Muthuramalingam, A.3
  • 170
    • 57849093682 scopus 로고    scopus 로고
    • Scaling analysis of a neocortex inspired cognitive model on the Cray XD1
    • Rice K., Taha T., Vutsinas C. Scaling analysis of a neocortex inspired cognitive model on the Cray XD1. The Journal of Supercomputing 2009, 47(1):21-43.
    • (2009) The Journal of Supercomputing , vol.47 , Issue.1 , pp. 21-43
    • Rice, K.1    Taha, T.2    Vutsinas, C.3
  • 172
    • 85203865701 scopus 로고    scopus 로고
    • Comparative investigation into classical and spiking neuron implementations on FPGAs, in: ICANN (1),
    • S. Johnston, G. Prasad, L.P. Maguire, T.M. McGinnity, Comparative investigation into classical and spiking neuron implementations on FPGAs, in: ICANN (1), 2005, pp. 269-274.
    • (2005) , pp. 269-274
    • Johnston, S.1    Prasad, G.2    Maguire, L.P.3    McGinnity, T.M.4
  • 175
    • 85203878621 scopus 로고    scopus 로고
    • Neural associative memories, in: Associative Processing and Processors,
    • G. Palm, F. Kurfess, F. Schwenker, A. Strey, Neural associative memories, in: Associative Processing and Processors, 1997, pp. 284-306.
    • (1997) , pp. 284-306
    • Palm, G.1    Kurfess, F.2    Schwenker, F.3    Strey, A.4
  • 177
    • 85203865599 scopus 로고
    • Associative Neural Memories, Oxford University Press, Inc., New York, NY, USA,
    • M.H. Hassoun (Ed.), Associative Neural Memories, Oxford University Press, Inc., New York, NY, USA, 1993.
    • (1993)
    • Hassoun, M.H.1
  • 178
    • 85060781156 scopus 로고
    • Pattern recognition and reading by machine, in: Proceedings of Eastern Joint Computer Conference, Boston,
    • W. Bledsoe, I. Browning, Pattern recognition and reading by machine, in: Proceedings of Eastern Joint Computer Conference, vol. II, Boston, 1959, pp. 225-232.
    • (1959) , vol.2 , pp. 225-232
    • Bledsoe, W.1    Browning, I.2
  • 192
    • 28344444385 scopus 로고    scopus 로고
    • ACE16k based stand-alone system for real-time pre-processing tasks, in: Proceedings of SPIE,
    • L. Carranza, F. Jimenez-Garrido, G. Linan-Cembrano, E. Roca, S. Meana, A. Rodriguez-Vazquez, ACE16k based stand-alone system for real-time pre-processing tasks, in: Proceedings of SPIE, vol. 5837, 2005, p. 872.
    • (2005) , vol.5837 , pp. 872
    • Carranza, L.1    Jimenez-Garrido, F.2    Linan-Cembrano, G.3    Roca, E.4    Meana, S.5    Rodriguez-Vazquez, A.6
  • 193
    • 67649132935 scopus 로고    scopus 로고
    • Various implementations of topographic, sensory, cellular wave computers, in: IEEE International Symposium on Circuits and Systems-ISCAS (6), IEEE Computer Society, Piscataway, NJ, USA,
    • Á. Zarándy, P. Földesy, P. Szolgay, S. Tõkés, C. Rekeczky, T. Roska, Various implementations of topographic, sensory, cellular wave computers, in: IEEE International Symposium on Circuits and Systems-ISCAS (6), IEEE Computer Society, Piscataway, NJ, USA, 2005, pp. 5802-5805.
    • (2005) , pp. 5802-5805
    • Á Zarándy, P.1    Földesy, P.2    Szolgay S. Tkés, C.3    Rekeczky, T.4    Roska5
  • 194
    • 47749123863 scopus 로고    scopus 로고
    • Implementation of embedded emulated-digital CNN-UM global analogic programming unit on FPGA and its application
    • Voroshazi Z., Kiss A., Nagy Z., Szolgay P. Implementation of embedded emulated-digital CNN-UM global analogic programming unit on FPGA and its application. International Journal of Circuit Theory and Applications 2008, 36(5-6):589-603.
    • (2008) International Journal of Circuit Theory and Applications , vol.36 , Issue.5-6 , pp. 589-603
    • Voroshazi, Z.1    Kiss, A.2    Nagy, Z.3    Szolgay, P.4
  • 196
    • 42749094942 scopus 로고    scopus 로고
    • Parallelization of cellular neural networks on GPU
    • Ho T., Lam P., Leung C. Parallelization of cellular neural networks on GPU. Pattern Recognition 2008, 41(8):2684-2692.
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2684-2692
    • Ho, T.1    Lam, P.2    Leung, C.3
  • 198
    • 85203875062 scopus 로고    scopus 로고
    • Synaptics, Synaptic touch pad, last accessed at November 22, URL: 〈〉.
    • Synaptics, Synaptic touch pad, last accessed at November 22, 2009, URL: 〈〉. http://www.synaptics.com/products/touchpad.cfm.
    • (2009)
  • 200
    • 0028429267 scopus 로고
    • A communication architecture tailored for analog VLSI artificial neural networks: intrinsic performance and limitations
    • Mortara A., Vittoz E.A. A communication architecture tailored for analog VLSI artificial neural networks: intrinsic performance and limitations. IEEE Transactions on Neural Networks 1994, 5:459-466.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 459-466
    • Mortara, A.1    Vittoz, E.A.2
  • 201
    • 4043137376 scopus 로고    scopus 로고
    • A burst-mode word-serial address-event channel-i: transmitter design
    • Boahen K. A burst-mode word-serial address-event channel-i: transmitter design. IEEE Transactions on Circuits and Systems I 2004, 51(7):1269-1280.
    • (2004) IEEE Transactions on Circuits and Systems I , vol.51 , Issue.7 , pp. 1269-1280
    • Boahen, K.1
  • 204
    • 0035505588 scopus 로고    scopus 로고
    • A neuromorphic VLSI device for implementing 2-D selective attention systems
    • Indiveri G. A neuromorphic VLSI device for implementing 2-D selective attention systems. IEEE Transactions on Neural Networks 2003, 12(6):1455-1463.
    • (2003) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1455-1463
    • Indiveri, G.1
  • 205
    • 33845777722 scopus 로고    scopus 로고
    • Linares-Barranco, An arbitrary kernel convolution AER-transceiver chip for real-time image filtering, in: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Kos, Greece
    • A. Serrano-Gotarredona, T. Serrano-Gotarredona, A.J. Acosta-Jiménez, B. Linares-Barranco, An arbitrary kernel convolution AER-transceiver chip for real-time image filtering, in: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Kos, Greece, 2006, pp. 3145-3148.
    • (2006) , pp. 3145-3148
    • Serrano-Gotarredona, A.1    Serrano-Gotarredona, T.2    Acosta-Jiménez, A.J.3
  • 207
    • 0036286954 scopus 로고    scopus 로고
    • An on/off transient imager with event-driven, asynchronous read-out, in: IEEE International Symposium on Circuits and Systems, Phoenix, AZ, USA,
    • J. Kramer, An on/off transient imager with event-driven, asynchronous read-out, in: IEEE International Symposium on Circuits and Systems, vol. II, Phoenix, AZ, USA, 2002, pp. 165-168.
    • (2002) , vol.2 , pp. 165-168
    • Kramer, J.1
  • 209
    • 1642308838 scopus 로고    scopus 로고
    • Optic nerve signals in a neuromorphic chip I: outer and inner retina models
    • Zaghloul K., Boahen K. Optic nerve signals in a neuromorphic chip I: outer and inner retina models. IEEE Transactions on Biomedical Engineering 2004, 51(4):657-666.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.4 , pp. 657-666
    • Zaghloul, K.1    Boahen, K.2
  • 210
    • 1642333215 scopus 로고    scopus 로고
    • Optic nerve signals in a neuromorphic chip II: testing and results
    • Zaghloul K., Boahen K. Optic nerve signals in a neuromorphic chip II: testing and results. IEEE Transactions on Biomedical Engineering 2004, 51(4):667-675.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.4 , pp. 667-675
    • Zaghloul, K.1    Boahen, K.2
  • 211
    • 33846042599 scopus 로고    scopus 로고
    • A silicon retina that reproduces signals in the optic nerve
    • Zaghloul K., Boahen K. A silicon retina that reproduces signals in the optic nerve. Journal of Neural Engineering 2006, 3(4):257-267.
    • (2006) Journal of Neural Engineering , vol.3 , Issue.4 , pp. 257-267
    • Zaghloul, K.1    Boahen, K.2
  • 212
    • 78649492169 scopus 로고    scopus 로고
    • Neuromorphic microchips
    • Boahen K. Neuromorphic microchips. Special Editions 2006, 16(3):20-27.
    • (2006) Special Editions , vol.16 , Issue.3 , pp. 20-27
    • Boahen, K.1
  • 214
    • 0002739946 scopus 로고
    • A silicon model of auditory localization
    • Lazzaro J., Mead C. A silicon model of auditory localization. Neural Computation 1989, 1:41-70.
    • (1989) Neural Computation , vol.1 , pp. 41-70
    • Lazzaro, J.1    Mead, C.2
  • 216
    • 33847616026 scopus 로고    scopus 로고
    • AER EAR: a matched silicon cochlea pair with address event representation interface
    • Chan V., Liu S., van Schaik A. AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Transactions on Circuits and Systems I 2007, 54(1):48-59.
    • (2007) IEEE Transactions on Circuits and Systems I , vol.54 , Issue.1 , pp. 48-59
    • Chan, V.1    Liu, S.2    van Schaik, A.3
  • 217
    • 85203870344 scopus 로고    scopus 로고
    • Neuromorphic Systems Engineering: Neural Networks in Silicon, Kluwer Academic Publishers, Norwell, MA, USA.
    • T.S. Lande (Ed.), Neuromorphic Systems Engineering: Neural Networks in Silicon, Kluwer Academic Publishers, Norwell, MA, USA.
    • Lande, T.S.1
  • 218
    • 84898929097 scopus 로고    scopus 로고
    • Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons
    • The MIT Press, Cambridge, MA, USA
    • Maass W. Noisy spiking neurons with temporal coding have more computational power than sigmoidal neurons. Advances in Neural Information Processing Systems 1997, vol. 9:211-217. The MIT Press, Cambridge, MA, USA.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 211-217
    • Maass, W.1
  • 221
    • 33748666223 scopus 로고    scopus 로고
    • Real-time simulations of networks of Hodgkin-Huxley neurons using analog circuits
    • Zou Q., Bornat Y., Tomas J., Renaud S., Destexhe A. Real-time simulations of networks of Hodgkin-Huxley neurons using analog circuits. Neurocomputing 2006, 69(10-12):1137-1140.
    • (2006) Neurocomputing , vol.69 , Issue.10-12 , pp. 1137-1140
    • Zou, Q.1    Bornat, Y.2    Tomas, J.3    Renaud, S.4    Destexhe, A.5
  • 223
    • 0031930592 scopus 로고    scopus 로고
    • Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells
    • Zhang K., Ginzburg I., McNaughton B., Sejnowski T. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. Journal of Neurophysiology 1998, 79(2):1017.
    • (1998) Journal of Neurophysiology , vol.79 , Issue.2 , pp. 1017
    • Zhang, K.1    Ginzburg, I.2    McNaughton, B.3    Sejnowski, T.4
  • 224
    • 69249213506 scopus 로고    scopus 로고
    • A programmable spike-timing based circuit block for reconfigurable neuromorphic computing
    • Koickal T., Gouveia L., Hamilton A. A programmable spike-timing based circuit block for reconfigurable neuromorphic computing. Neurocomputing 2009, 72(16-18):3609-3616.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3609-3616
    • Koickal, T.1    Gouveia, L.2    Hamilton, A.3
  • 225
    • 38049162134 scopus 로고    scopus 로고
    • A programmable time event circuit block for reconfigurable neuromorphic computing, in: Lecture Notes in Computer Science,
    • T. Koickal, L. Gouveia, A. Hamilton, A programmable time event circuit block for reconfigurable neuromorphic computing, in: Lecture Notes in Computer Science, vol. 4507, 2007, pp. 430-437.
    • (2007) , vol.4507 , pp. 430-437
    • Koickal, T.1    Gouveia, L.2    Hamilton, A.3
  • 227
    • 0038496851 scopus 로고    scopus 로고
    • An adaptive silicon synapse, in: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),_ Bangkok,
    • E. Chicca, G. Indiveri, R. Douglas, An adaptive silicon synapse, in: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), vol. V, Bangkok, 2003, pp. 81-84.
    • (2003) , vol.59 , pp. 81-84
    • Chicca, E.1    Indiveri, G.2    Douglas, R.3
  • 228
    • 33244465845 scopus 로고    scopus 로고
    • A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity
    • Indiveri G., Chicca E., Douglas R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks 2006, 17:211-221.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 211-221
    • Indiveri, G.1    Chicca, E.2    Douglas, R.3
  • 229
    • 34047217409 scopus 로고    scopus 로고
    • Adaptive WTA with an analog VLSI neuromorphic learning chip
    • Häfliger P. Adaptive WTA with an analog VLSI neuromorphic learning chip. IEEE Transactions on Neural Networks 2007, 18(2):551-572.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.2 , pp. 551-572
    • Häfliger, P.1
  • 230
    • 40649108598 scopus 로고    scopus 로고
    • On the design of a low power compact spiking neuron cell based on charge coupled synapses, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada,
    • Y. Chen, S. Hall, L. McDaid, O. Buiu, P. Kelly, On the design of a low power compact spiking neuron cell based on charge coupled synapses, in: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada, 2006, pp. 1511-1517.
    • (2006) , pp. 1511-1517
    • Chen, Y.1    Hall, S.2    McDaid, L.3    Buiu, O.4    Kelly, P.5
  • 231
    • 33745910538 scopus 로고    scopus 로고
    • A silicon synapse based on a charge transfer device for spiking neural network applications, in: Proceedings of the Third International Symposium on Neural Networks (ISNN), Chengdu, China,
    • Y. Chen, S. Hall, L. McDaid, O. Buiu, P. Kelly, A silicon synapse based on a charge transfer device for spiking neural network applications, in: Proceedings of the Third International Symposium on Neural Networks (ISNN), Chengdu, China, 2006, pp. 1366-1373.
    • (2006) , pp. 1366-1373
    • Chen, Y.1    Hall, S.2    McDaid, L.3    Buiu, O.4    Kelly, P.5
  • 232
    • 85203879068 scopus 로고    scopus 로고
    • Area efficient architecture for large scale implementation of biologically plausible spiking neural networks on reconfigurable hardware, in: Proceedings of the International Conference on Field Programmable Logic and Applications, Madrid, Spain,
    • A. Ghani, T.M. McGinnity, L. Maguire, Area efficient architecture for large scale implementation of biologically plausible spiking neural networks on reconfigurable hardware, in: Proceedings of the International Conference on Field Programmable Logic and Applications, Madrid, Spain, 2006, pp. 1-2.
    • (2006) , pp. 1-2
    • Ghani, A.1    McGinnity, T.M.2    Maguire, L.3
  • 233
    • 78649485171 scopus 로고    scopus 로고
    • Optical computing
    • CRC Press, New York, NY, USA, R.G. Driggers (Ed.)
    • Caulfield H.J. Optical computing. Encyclopedia of Optical Engineering 1:1 2003, 1613-1620. CRC Press, New York, NY, USA. R.G. Driggers (Ed.).
    • (2003) Encyclopedia of Optical Engineering 1:1 , pp. 1613-1620
    • Caulfield, H.J.1
  • 234
    • 0023520126 scopus 로고
    • Optical implementations of associative networks with versatile adaptive learning capabilities
    • Fisher A.D., Lippincott W.L., Lee J.N. Optical implementations of associative networks with versatile adaptive learning capabilities. Applied Optics 1987, 26:5039-5052.
    • (1987) Applied Optics , vol.26 , pp. 5039-5052
    • Fisher, A.D.1    Lippincott, W.L.2    Lee, J.N.3
  • 235
    • 0001191188 scopus 로고
    • Optoelectronic analogs of self-programming neural nets: architectures and methodologies for implementing fast stochastic learning by simulated annealing
    • Farhat N.H. Optoelectronic analogs of self-programming neural nets: architectures and methodologies for implementing fast stochastic learning by simulated annealing. Applied Optics 1987, 26:5093-5103.
    • (1987) Applied Optics , vol.26 , pp. 5093-5103
    • Farhat, N.H.1
  • 236
    • 78649460976 scopus 로고    scopus 로고
    • Optoelectronic neural networks
    • CRC Press, New York, NY, USA, R.G. Driggers (Ed.)
    • Silveira P.E.X. Optoelectronic neural networks. Encyclopedia of Optical Engineering 1:1 2003, 1887-1902. CRC Press, New York, NY, USA. R.G. Driggers (Ed.).
    • (2003) Encyclopedia of Optical Engineering 1:1 , pp. 1887-1902
    • Silveira, P.E.X.1
  • 240
    • 0028400212 scopus 로고
    • New algorithms for training feedforward neural networks
    • Kak S. New algorithms for training feedforward neural networks. Pattern Recognition Letters 1994, 15(3):295-298.
    • (1994) Pattern Recognition Letters , vol.15 , Issue.3 , pp. 295-298
    • Kak, S.1
  • 241
    • 0031639727 scopus 로고    scopus 로고
    • A new corner classification approach to neural network training
    • Tang K.W., Kak S. A new corner classification approach to neural network training. Circuits, Systems, and Signal Processing 1998, 17(4):459-469.
    • (1998) Circuits, Systems, and Signal Processing , vol.17 , Issue.4 , pp. 459-469
    • Tang, K.W.1    Kak, S.2
  • 242
    • 39849108226 scopus 로고    scopus 로고
    • Optical realization of bio-inspired spiking neurons in the electron trapping material thin film
    • Pashaie R., Farhat N.H. Optical realization of bio-inspired spiking neurons in the electron trapping material thin film. Applied Optics 2007, 46(35):8411-8418.
    • (2007) Applied Optics , vol.46 , Issue.35 , pp. 8411-8418
    • Pashaie, R.1    Farhat, N.H.2
  • 243
    • 0142123078 scopus 로고    scopus 로고
    • Optical broadcast interconnection neural network
    • Lamela H., Ruiz-Llata M., Warde C. Optical broadcast interconnection neural network. Optical Engineering 2003, 42:2487-2488.
    • (2003) Optical Engineering , vol.42 , pp. 2487-2488
    • Lamela, H.1    Ruiz-Llata, M.2    Warde, C.3
  • 244
    • 17644364400 scopus 로고    scopus 로고
    • Image identification system based on an optical broadcast neural network processor
    • Ruiz-Llata M., Lamela-Rivera H. Image identification system based on an optical broadcast neural network processor. Applied Optics 2005, 44(12):2366-2376.
    • (2005) Applied Optics , vol.44 , Issue.12 , pp. 2366-2376
    • Ruiz-Llata, M.1    Lamela-Rivera, H.2
  • 245
    • 78549259303 scopus 로고    scopus 로고
    • Optical neural networks
    • CRC Press, New York, NY, USA, R.G. Driggers (Ed.)
    • Yu F.T.S., Uang C.M. Optical neural networks. Encyclopedia of Optical Engineering 1:1 2003, 1763-1777. CRC Press, New York, NY, USA. R.G. Driggers (Ed.).
    • (2003) Encyclopedia of Optical Engineering 1:1 , pp. 1763-1777
    • Yu, F.T.S.1    Uang, C.M.2
  • 246
    • 85203875229 scopus 로고    scopus 로고
    • Evolution of the programmable optical array computer (POAC), in: Proceedings of IEEE International Workshop on Cellular Neural Networks and their Applications, Budapest, Hungary,
    • A. Ayoub, S. Tõkés, L. Orzó, Evolution of the programmable optical array computer (POAC), in: Proceedings of IEEE International Workshop on Cellular Neural Networks and their Applications, Budapest, Hungary, 2004, pp. 64-69.
    • (2004) , pp. 64-69
    • Ayoub, A.1    Tkés, S.2    Orzó, L.3
  • 247
    • 34548069115 scopus 로고    scopus 로고
    • Reconfigurable hardware evolution platform for a spiking neural network robotics controller
    • Springer, Berlin, Heidelberg, Germany
    • Rocke P., McGinley B., Morgan F., Maher J. Reconfigurable hardware evolution platform for a spiking neural network robotics controller. ARC of Lecture Notes in Computer Science 2007, vol. 4419:373-378. Springer, Berlin, Heidelberg, Germany.
    • (2007) ARC of Lecture Notes in Computer Science , vol.4419 , pp. 373-378
    • Rocke, P.1    McGinley, B.2    Morgan, F.3    Maher, J.4
  • 248
    • 85203877453 scopus 로고    scopus 로고
    • Annon, The intelligent flight control: advanced concept program final report, Technical Report, The Boeing Company,
    • Annon, The intelligent flight control: advanced concept program final report, Technical Report, The Boeing Company, 1999.
    • (1999)
  • 249
    • 84896266464 scopus 로고    scopus 로고
    • Development of an embedded intelligent flight control system for the autonomously flying unmanned helicopter sky-explorer
    • Springer, Netherlands
    • Geng W., Huanye S., Tiansheng L. Development of an embedded intelligent flight control system for the autonomously flying unmanned helicopter sky-explorer. Embedded Systems-Modeling Technology and Applications 2006, 121-130. Springer, Netherlands.
    • (2006) Embedded Systems-Modeling Technology and Applications , pp. 121-130
    • Geng, W.1    Huanye, S.2    Tiansheng, L.3
  • 250
    • 34047158225 scopus 로고    scopus 로고
    • Neurogrid: emulating a million neurons in the cortex
    • Boahen K. Neurogrid: emulating a million neurons in the cortex. Grand Challenges in Neural Computation 2006, 6702.
    • (2006) Grand Challenges in Neural Computation , pp. 6702
    • Boahen, K.1
  • 251
    • 33845642736 scopus 로고    scopus 로고
    • Towards cortex sized artificial neural systems
    • Johansson C., Lansner A. Towards cortex sized artificial neural systems. Neural Networks 2007, 20(1):48-61.
    • (2007) Neural Networks , vol.20 , Issue.1 , pp. 48-61
    • Johansson, C.1    Lansner, A.2
  • 252
    • 85203866163 scopus 로고    scopus 로고
    • Special Issue on Micro-Electronic Hardware Implementation of Soft Computing: Neural and Fuzzy Networks with Learning,
    • F.M. Salam, T. Yamakawa (Eds.), Special Issue on Micro-Electronic Hardware Implementation of Soft Computing: Neural and Fuzzy Networks with Learning, vol. 25, 1999.
    • (1999) , vol.25
    • Salam, F.M.1    Yamakawa, T.2
  • 253
    • 85203877704 scopus 로고    scopus 로고
    • Special issue on eural networks hardware implementation, IEEE Transactions on Neural Networks 14 (5)
    • B. Linares-Barranco, A.G. Andreou, G. Indiveri, T. Shibata, Special issue on neural networks hardware implementation, IEEE Transactions on Neural Networks 14 (5) (2003).
    • (2003)
    • Linares-Barranco, B.1    Andreou, A.G.2    Indiveri, G.3    Shibata, T.4
  • 254
    • 85203879734 scopus 로고    scopus 로고
    • Special issue on hardware implementations of soft computing techniques, Applied Soft Computing 4 (3)
    • D. Anguita, I. Baturone, J. Miller (Eds.), Special issue on hardware implementations of soft computing techniques, Applied Soft Computing 4 (3) (2004).
    • (2004)
    • Anguita, D.1    Baturone, I.2    Miller, J.3
  • 255
    • 85203874409 scopus 로고    scopus 로고
    • Implementing neural hardware with on chip training on field programmable gate arrays, Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia,
    • D. Braendler, Implementing neural hardware with on chip training on field programmable gate arrays, Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia, 2002.
    • (2002)
    • Braendler, D.1
  • 256
    • 85203872925 scopus 로고    scopus 로고
    • Devices and circuits for nanoelectronic implementation of artificial neural networks, Ph.D. Thesis, Stony Brook University, NY,
    • O. Turel, Devices and circuits for nanoelectronic implementation of artificial neural networks, Ph.D. Thesis, Stony Brook University, NY, 2007.
    • (2007)
    • Turel, O.1
  • 257
    • 85203879176 scopus 로고    scopus 로고
    • Networks of spiking neurons and plastic synapses: implementation and control, Ph.D. Thesis, Universit degli Studi di Roma 'La Sapienza', Italy,
    • M. Giulioni, Networks of spiking neurons and plastic synapses: implementation and control, Ph.D. Thesis, Universit degli Studi di Roma 'La Sapienza', Italy, 2008.
    • (2008)
    • Giulioni, M.1
  • 258
    • 85203881704 scopus 로고    scopus 로고
    • Activity report-neuromimetic intelligence, Technical Report, INRIA, Project Team CORTEX, URL: 〈〉.
    • B. Girau, Activity report-neuromimetic intelligence, Technical Report, INRIA, Project Team CORTEX, 2006, URL: 〈〉. http://www.inria.fr/rapportsactivite/RA2006/cortex/cortex.pdf.
    • (2006)
    • Girau, B.1
  • 259
    • 85203870776 scopus 로고    scopus 로고
    • Digital neurohardware: principles and perspectives, in: Proceedings of Neuronal Networks in Applications, Magdeburg, Germany,
    • T. Schoenauer, A. Jahnke, U. Roth, H. Klar, Digital neurohardware: principles and perspectives, in: Proceedings of Neuronal Networks in Applications, Magdeburg, Germany, 1998, pp. 101-106.
    • (1998) , pp. 101-106
    • Schoenauer, T.1    Jahnke, A.2    Roth, U.3    Klar, H.4
  • 261
    • 85203873320 scopus 로고    scopus 로고
    • DARPA, Systems of neuromorphic adaptive plastic scalable electronics (SyNAPSE), 〈〉, Last accessed on January 20,
    • DARPA, Systems of neuromorphic adaptive plastic scalable electronics (SyNAPSE), 〈〉, Last accessed on January 20, 2010. http://www.darpa.mil/dso/solicitations/BAA08-28.pdf.
    • (2010)
  • 265
    • 85203874301 scopus 로고    scopus 로고
    • IBM, IBM cell broadband engine technology, URL: 〈〉.
    • IBM, IBM cell broadband engine technology, 2008, URL: 〈〉. http://www-03.ibm.com/technology/cell/.
    • (2008)
  • 268
    • 38549125158 scopus 로고    scopus 로고
    • CMOL: second life for silicon?
    • Likharev K.K. CMOL: second life for silicon?. Journal of Microelectronics 2008, 39(2):177-183.
    • (2008) Journal of Microelectronics , vol.39 , Issue.2 , pp. 177-183
    • Likharev, K.K.1
  • 269
    • 15844407659 scopus 로고    scopus 로고
    • Architectures for nanoelectronic implementation of artificial neural networks: new results
    • Türel Ö., Lee J., Ma X., Likharev K. Architectures for nanoelectronic implementation of artificial neural networks: new results. Neurocomputing 2005, 64:271-283.
    • (2005) Neurocomputing , vol.64 , pp. 271-283
    • Türel, Ö.1    Lee, J.2    Ma, X.3    Likharev, K.4
  • 272
    • 84864059278 scopus 로고    scopus 로고
    • CMOL crossnets: possible neuromorphic nanoelectronic circuits
    • MIT Press, Cambridge, MA
    • Lee J.H., Ma X., Likharev K. CMOL crossnets: possible neuromorphic nanoelectronic circuits. Advances in Neural Information Processing Systems 2006, Vol. 18:755-762. MIT Press, Cambridge, MA.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 755-762
    • Lee, J.H.1    Ma, X.2    Likharev, K.3
  • 273
    • 85203873873 scopus 로고    scopus 로고
    • CMOL crossnets ad defect-tolerant classifiers, Ph.D. Thesis, Stony Brook University, NY,
    • J.H. Lee, CMOL crossnets ad defect-tolerant classifiers, Ph.D. Thesis, Stony Brook University, NY, 2007.
    • (2007)
    • Lee, J.H.1
  • 274
    • 0022792621 scopus 로고
    • The lure of molecular computing
    • Conrad M. The lure of molecular computing. IEEE Spectrum 1988, 23:55-60.
    • (1988) IEEE Spectrum , vol.23 , pp. 55-60
    • Conrad, M.1
  • 276
    • 85203865486 scopus 로고    scopus 로고
    • Elements of a unique bacteriorhodopsin neural network architecture
    • Haronian D., Lewis A. Elements of a unique bacteriorhodopsin neural network architecture. International Journal of Neural Systems 2000, 10(3):191-197.
    • (2000) International Journal of Neural Systems , vol.10 , Issue.3 , pp. 191-197
    • Haronian, D.1    Lewis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.