메뉴 건너뛰기




Volumn 35, Issue 26, 1996, Pages 5301-5307

Incorporation of liquid-crystal light valve nonlinearities in optical multilayer neural networks

Author keywords

Activation function; Artificial neural network; Curve fit; Gain; Hardware implementation; Liquid crystal light valve (LCLV); Optical multilayer neural network

Indexed keywords


EID: 1542440438     PISSN: 1559128X     EISSN: 21553165     Source Type: Journal    
DOI: 10.1364/AO.35.005301     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 84975576392 scopus 로고
    • Optical neural network with pocket-sized liquid-crystal televisions
    • F. Yu, T. Lu, X. Yang, and D. Gregory, “Optical neural network with pocket-sized liquid-crystal televisions, ” Opt. Lett. 15, 863-865 (1990).
    • (1990) Opt. Lett. , vol.15 , pp. 863-865
    • Yu, F.1    Lu, T.2    Yang, X.3    Gregory, D.4
  • 2
    • 0043217816 scopus 로고
    • Dynamic optical interconnections using holographic lenslet arrays for adaptive neural networks
    • J.-S. Jang, S.-G. Shin, S.-W. Yuk, S.-Y. Shin, and S.-Y. Lee, “Dynamic optical interconnections using holographic lenslet arrays for adaptive neural networks, ” Opt. Eng. 32, 80-87 (1993).
    • (1993) Opt. Eng. , vol.32 , pp. 80-87
    • Jang, J.-S.1    Shin, S.-G.2    Yuk, S.-W.3    Shin, S.-Y.4    Lee, S.-Y.5
  • 3
    • 84975568493 scopus 로고
    • All-optical neural network with inhibitory neurons
    • I. Shariv and A. A. Friesem, “All-optical neural network with inhibitory neurons, ” Opt. Lett. 13, 485-487 (1989).
    • (1989) Opt. Lett. , vol.13 , pp. 485-487
    • Shariv, I.1    Friesem, A.A.2
  • 4
    • 0010033269 scopus 로고
    • Adaptive multilayer optical networks
    • E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands) Vol., Chap. 4
    • D. Psaltis and Y. Qiao, “Adaptive multilayer optical networks, ” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, The Netherlands, 1990), Vol. 31, Chap. 4, pp. 227-261
    • (1990) Progress in Optics , vol.31 , pp. 227-261
    • Psaltis, D.1    Qiao, Y.2
  • 5
    • 5944262477 scopus 로고
    • Optical neural networks
    • D. Psaltis and Y. Qiao, “Optical neural networks, ” Opt. Photon. News 1 (12), 17-21 (1990).
    • (1990) Opt. Photon. News , vol.1 , Issue.12 , pp. 17-21
    • Psaltis, D.1    Qiao, Y.2
  • 7
    • 84975595275 scopus 로고
    • Noise analysis of polarization-based optoelectronic connectionist machines
    • M. G. Robinson and K. M. Johnson, “Noise analysis of polarization-based optoelectronic connectionist machines, ” Appl. Opt. 31, 263-272 (1992).
    • (1992) Appl. Opt. , vol.31 , pp. 263-272
    • Robinson, M.G.1    Johnson, K.M.2
  • 9
    • 0029350979 scopus 로고
    • Adaptive multilayer optical neural network with optical thresholding
    • (in specialissue on Optics in Switzerland, P. Rastogi, ed.)
    • I. Saxena and E. Fiesler, “Adaptive multilayer optical neural network with optical thresholding, ” (in specialissue on Optics in Switzerland, P. Rastogi, ed.) Opt. Eng. 34, 2435-2440 (1995).
    • (1995) Opt. Eng. , vol.34 , pp. 2435-2440
    • Saxena, I.1    Fiesler, E.2
  • 10
    • 0028464007 scopus 로고
    • Neural network classification and formalization
    • special issue on neural network standards, J. Fulcher, ed., (Elsevier, Amsterdam, The Netherlands)
    • E. Fiesler, “Neural network classification and formalization, ” in Computer Standards & Interfaces, specialissue on neural network standards, J. Fulcher, ed., (Elsevier, Amsterdam, The Netherlands, 1994), Vol. 16, pp. 231-239.
    • (1994) Computer Standards & Interfaces , vol.16 , pp. 231-239
    • Fiesler, E.1
  • 11
    • 0028442316 scopus 로고
    • Liquid-crystal light valves as thresholding elements in neural networks: Basic device requirements
    • N. Collings and W. Xue, “Liquid-crystal light valves as thresholding elements in neural networks: basic device requirements, ” Appl. Opt. 33, 2829-2833 (1994).
    • (1994) Appl. Opt. , vol.33 , pp. 2829-2833
    • Collings, N.1    Xue, W.2
  • 12
    • 85010103763 scopus 로고    scopus 로고
    • Light valve obtained from Micro-Optics Technologies, 8608 University Green #5, Middleton, Wisc. 53562, U.S.A
    • Light valve obtained from Micro-Optics Technologies, 8608 University Green #5, Middleton, Wisc. 53562, U.S.A.
  • 13
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • of Massachusetts Institute of Technology Foundations Series, (MIT Press, Cambridge, Mass
    • D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations by error propagation, ” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1 of Massachusetts Institute of Technology Foundations Series, (MIT Press, Cambridge, Mass., 1986), pp. 318-362.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 318-362
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 14
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained to classify sonar targets, ” Neural Networks 1, 75-89 (1988).
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 15
    • 85010103772 scopus 로고    scopus 로고
    • Data made available in 1994 by librarians P. M. Murphy and D. W. Aha from the UCI Repository of Machine Learning Databases, a machine-readable data repository accessible by means of the anonymous ftp, Internet
    • Data made available in 1994 by librarians P. M. Murphy and D. W. Aha from the UCI Repository of Machine Learning Databases, a machine-readable data repository accessible by means of the anonymous ftp, Internet: ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
  • 16
    • 5944244329 scopus 로고    scopus 로고
    • Weight initialization in higher order and multi-layer perceptrons
    • (to be published)
    • G. Thimm and E. Fiesler, “Weight initialization in higher order and multi-layer perceptrons, ” IEEE Trans. Neural Net. (to be published)
    • IEEE Trans. Neural Net
    • Thimm, G.1    Fiesler, E.2
  • 17
    • 5944248384 scopus 로고
    • Weight initialization in higher order and multi-layer perceptrons
    • M. Aguilar, ed. (Institute of Informatics, University of Fribourg, Fribourg, Switzerland
    • G. Thimm and E. Fiesler, “Weight initialization in higher order and multi-layer perceptrons, ” in Proceedings of the’94 SIPAR-Workshop on Parallel and Distributed Computing, M. Aguilar, ed. (Institute of Informatics, University of Fribourg, Fribourg, Switzerland, 1994), pp. 8790.
    • (1994) Proceedings of the’94 Sipar-Workshop on Parallel and Distributed Computing , pp. 8790
    • Thimm, G.1    Fiesler, E.2
  • 18
    • 85010104795 scopus 로고
    • paper presented at the First International Conference on Electronics, Circuits, and Systems (ICECS’94), 19-22 December, Cairo, Egypt
    • J. M. C. Oosse, H. C. A. M. Withagen, and J. A. Hegt, “Analog VLSI implementation of a feed-forward neural network, ” paper presented at the First International Conference on Electronics, Circuits, and Systems (ICECS’94), 19-22 December 1994, Cairo, Egypt.
    • (1994) Analog VLSI Implementation of a Feed-Forward Neural Network
    • Oosse, J.M.C.1    Withagen, H.C.A.M.2    Hegt, J.A.3
  • 19
    • 0030584163 scopus 로고    scopus 로고
    • The interchangeability of learning rate and gain in backpropagation neural networks
    • G. Thimm, P. Moerland, and E. Fiesler, “The interchangeability of learning rate and gain in backpropagation neural networks, ” Neural Computation 8, 451-460 (1996).
    • (1996) Neural Computation , vol.8 , pp. 451-460
    • Thimm, G.1    Moerland, P.2    Fiesler, E.3
  • 20
    • 0003578240 scopus 로고
    • Tech. rep. CMU-CS-88-162 (School of Computer Science, Carnegie-Mellon University, Pittsburgh, Penna
    • S. E. Fahlman, “An empirical study of learning speed in backpropagation networks, ” Tech. rep. CMU-CS-88-162 (School of Computer Science, Carnegie-Mellon University, Pittsburgh, Penna., 1988).
    • (1988) An Empirical Study of Learning Speed in Backpropagation Networks
    • Fahlman, S.E.1
  • 21
    • 33749787394 scopus 로고
    • Threshold non-linearity effects on weight-decay tolerance in analog neural networks
    • (The Institute of Electrical and Electronics Engineers, Piscataway, N.J
    • D. B. Mundie and L. W. Massengill, “Threshold non-linearity effects on weight-decay tolerance in analog neural networks, ” in Proceedings of the International Joint Conference on Neural Networks (IJCNN’92), (The Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1992), Vol. 2, pp. 583-587.
    • (1992) Proceedings of the International Joint Conference on Neural Networks (IJCNN’92) , vol.2 , pp. 583-587
    • Mundie, D.B.1    Massengill, L.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.