-
1
-
-
0027983603
-
Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter
-
a
-
Akiyama Y., Ogura T., Ito K. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J. Biol. Chem. 269:1994;5218-5224. a.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 5218-5224
-
-
Akiyama, Y.1
Ogura, T.2
Ito, K.3
-
2
-
-
0028033333
-
Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions
-
b
-
Akiyama Y., Shirai Y., Ito K. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J. Biol. Chem. 269:1994;5225-5229. b.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 5225-5229
-
-
Akiyama, Y.1
Shirai, Y.2
Ito, K.3
-
3
-
-
0030577385
-
Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli
-
Akiyama Y., Kihara A., Ito K. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett. 399:1996;26-28.
-
(1996)
FEBS Lett.
, vol.399
, pp. 26-28
-
-
Akiyama, Y.1
Kihara, A.2
Ito, K.3
-
4
-
-
0033769733
-
PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone
-
Benaroudj N., Goldberg A.L. PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat. Cell Biol. 2:2000;833-839.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 833-839
-
-
Benaroudj, N.1
Goldberg, A.L.2
-
5
-
-
0028805520
-
Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase
-
Blaszczak A., Zylicz M., Georgopoulos C., Liberek K. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. EMBO J. 14:1995;5085-5093.
-
(1995)
EMBO J.
, vol.14
, pp. 5085-5093
-
-
Blaszczak, A.1
Zylicz, M.2
Georgopoulos, C.3
Liberek, K.4
-
6
-
-
0032920680
-
On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine
-
Blaszczak A., Georgopoulos C., Liberek K. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Mol. Microbiol. 31:1999;157-166.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 157-166
-
-
Blaszczak, A.1
Georgopoulos, C.2
Liberek, K.3
-
7
-
-
0035679694
-
Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease
-
Bohn C., Binet E., Bouloc P. Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease. Mol. Genet. Genomics. 266:2002;827-831.
-
(2002)
Mol. Genet. Genomics
, vol.266
, pp. 827-831
-
-
Bohn, C.1
Binet, E.2
Bouloc, P.3
-
8
-
-
0035875890
-
Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine
-
Burton R.E., Siddiqui S.M., Kim Y.I., Baker T.A., Sauer R.T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20:2001;3092-3100.
-
(2001)
EMBO J.
, vol.20
, pp. 3092-3100
-
-
Burton, R.E.1
Siddiqui, S.M.2
Kim, Y.I.3
Baker, T.A.4
Sauer, R.T.5
-
9
-
-
0032511186
-
Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease
-
Casari G., De Fusco M., Ciarmatori S., Zeviani M., Mora M., Fernandez P., De Michele G., Filla A., Cocozza S., Marconi R.et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell. 93:1998;973-983.
-
(1998)
Cell
, vol.93
, pp. 973-983
-
-
Casari, G.1
De Fusco, M.2
Ciarmatori, S.3
Zeviani, M.4
Mora, M.5
Fernandez, P.6
De Michele, G.7
Filla, A.8
Cocozza, S.9
Marconi, R.10
-
10
-
-
0034231476
-
Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis
-
Chiba S., Akiyama Y., Mori H., Matsuo E., Ito K. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1:2000;47-52.
-
(2000)
EMBO Rep.
, vol.1
, pp. 47-52
-
-
Chiba, S.1
Akiyama, Y.2
Mori, H.3
Matsuo, E.4
Ito, K.5
-
11
-
-
0036720126
-
Membrane protein degradation by FtsH can be initiated from either end
-
Chiba S., Akiyama Y., Ito K. Membrane protein degradation by FtsH can be initiated from either end. J. Bacteriol. 184:2002;4775-4782.
-
(2002)
J. Bacteriol.
, vol.184
, pp. 4775-4782
-
-
Chiba, S.1
Akiyama, Y.2
Ito, K.3
-
12
-
-
0037010120
-
AAA+ proteins and substrate recognition, it all depends on their partner in crime
-
Dougan D., Mogk A., Zeth K., Turgay K., Bukau B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529:2002;6-10.
-
(2002)
FEBS Lett.
, vol.529
, pp. 6-10
-
-
Dougan, D.1
Mogk, A.2
Zeth, K.3
Turgay, K.4
Bukau, B.5
-
13
-
-
0037154980
-
Protein folding and unfolding at atomic resolution
-
Fersht A.R., Daggett V. Protein folding and unfolding at atomic resolution. Cell. 108:2002;573-582.
-
(2002)
Cell
, vol.108
, pp. 573-582
-
-
Fersht, A.R.1
Daggett, V.2
-
14
-
-
0026696625
-
Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32
-
Gamer J., Bujard H., Bukau B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell. 69:1992;833-842.
-
(1992)
Cell
, vol.69
, pp. 833-842
-
-
Gamer, J.1
Bujard, H.2
Bukau, B.3
-
15
-
-
0030936847
-
Protein quality control: Triage by chaperones and proteases
-
Gottesman S., Wickner S., Maurizi M.R. Protein quality control. triage by chaperones and proteases Genes Dev. 11:1997;815-823.
-
(1997)
Genes Dev.
, vol.11
, pp. 815-823
-
-
Gottesman, S.1
Wickner, S.2
Maurizi, M.R.3
-
16
-
-
0032079329
-
The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system
-
Gottesman S., Roche E., Zhou Y., Sauer R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12:1998;1338-1347.
-
(1998)
Genes Dev.
, vol.12
, pp. 1338-1347
-
-
Gottesman, S.1
Roche, E.2
Zhou, Y.3
Sauer, R.T.4
-
17
-
-
0028985616
-
Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
-
Herman C., Thevenet D., D'Ari R., Bouloc P. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA. 92:1995;3516-3520.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 3516-3520
-
-
Herman, C.1
Thevenet, D.2
D'Ari, R.3
Bouloc, P.4
-
18
-
-
2642666491
-
Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH)
-
Herman C., Thevenet D., Bouloc P., Walker G.C., D'Ari R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12:1998;1348-1355.
-
(1998)
Genes Dev.
, vol.12
, pp. 1348-1355
-
-
Herman, C.1
Thevenet, D.2
Bouloc, P.3
Walker, G.C.4
D'Ari, R.5
-
20
-
-
0034255124
-
Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP
-
Hoskins J.R., Singh S.K., Maurizi M.R., Wickner S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl. Acad. Sci. USA. 97:2000;8892-8897.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 8892-8897
-
-
Hoskins, J.R.1
Singh, S.K.2
Maurizi, M.R.3
Wickner, S.4
-
21
-
-
0033923044
-
Systematic circular permutation of an entire protein reveals essential folding elements
-
Iwakura M., Nakamura T., Yamane C., Maki K. Systematic circular permutation of an entire protein reveals essential folding elements. Nat. Struct. Biol. 7:2000;580-585.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 580-585
-
-
Iwakura, M.1
Nakamura, T.2
Yamane, C.3
Maki, K.4
-
22
-
-
13344281021
-
Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes
-
Kamath-Loeb A.S., Lu C.Z., Suh W.C., Lonetto M.A., Gross C.A. Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J. Biol. Chem. 270:1995;30051-30059.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 30051-30059
-
-
Kamath-Loeb, A.S.1
Lu, C.Z.2
Suh, W.C.3
Lonetto, M.A.4
Gross, C.A.5
-
23
-
-
0035116848
-
Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis
-
Karata K., Verma C.S., Wilkinson A.J., Ogura T. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Mol. Microbiol. 39:2001;890-903.
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 890-903
-
-
Karata, K.1
Verma, C.S.2
Wilkinson, A.J.3
Ogura, T.4
-
24
-
-
0034046020
-
The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue
-
Karzai A.W., Roche E.D., Sauer R.T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7:2000;449-455.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 449-455
-
-
Karzai, A.W.1
Roche, E.D.2
Sauer, R.T.3
-
25
-
-
0029017127
-
FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit
-
Kihara A., Akiyama Y., Ito K. FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit. Proc. Natl. Acad. Sci. USA. 92:1995;4532-4536.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 4532-4536
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
26
-
-
0033153237
-
Dislocation of membrane proteins in FtsH-mediated proteolysis
-
Kihara A., Akiyama Y., Ito K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18:1999;2970-2981.
-
(1999)
EMBO J.
, vol.18
, pp. 2970-2981
-
-
Kihara, A.1
Akiyama, Y.2
Ito, K.3
-
27
-
-
0033638255
-
Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
-
Kim Y.I., Burton R.E., Burton B.M., Sauer R.T., Baker T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell. 5:2000;639-648.
-
(2000)
Mol. Cell
, vol.5
, pp. 639-648
-
-
Kim, Y.I.1
Burton, R.E.2
Burton, B.M.3
Sauer, R.T.4
Baker, T.A.5
-
28
-
-
0037069332
-
The phage λCII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis
-
Kobiler O., Koby S., Teff D., Court D., Oppenheim A.B. The phage λCII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis. Proc. Natl. Acad. Sci. USA. 99:2002;14964-14969.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 14964-14969
-
-
Kobiler, O.1
Koby, S.2
Teff, D.3
Court, D.4
Oppenheim, A.B.5
-
29
-
-
0036054289
-
The Crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution
-
Krzywda S., Brzozowski A., Verma C., Karata K., Ogura T., Wilkinson A. The Crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 Å resolution. Structure. 10:2002;1073-1083.
-
(2002)
Structure
, vol.10
, pp. 1073-1083
-
-
Krzywda, S.1
Brzozowski, A.2
Verma, C.3
Karata, K.4
Ogura, T.5
Wilkinson, A.6
-
30
-
-
0034194179
-
AAA proteases: Cellular machines for degrading membrane proteins
-
Langer T. AAA proteases. cellular machines for degrading membrane proteins Trends Biochem. Sci. 25:2000;247-251.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 247-251
-
-
Langer, T.1
-
31
-
-
0031010621
-
A method for assessing the stability of a membrane protein
-
Lau F.W., Bowie J.U. A method for assessing the stability of a membrane protein. Biochemistry. 36:1997;5884-5892.
-
(1997)
Biochemistry
, vol.36
, pp. 5884-5892
-
-
Lau, F.W.1
Bowie, J.U.2
-
32
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C., Schwartz M.P., Prakash S., Iwakura M., Matouschek A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell. 7:2001;627-637.
-
(2001)
Mol. Cell
, vol.7
, pp. 627-637
-
-
Lee, C.1
Schwartz, M.P.2
Prakash, S.3
Iwakura, M.4
Matouschek, A.5
-
33
-
-
0033639076
-
Membrane protein degradation by AAA proteases in mitochondria: Extraction of substrates from either membrane surface
-
Leonhard K., Guiard B., Pellecchia G., Tzagoloff A., Neupert W., Langer T. Membrane protein degradation by AAA proteases in mitochondria. extraction of substrates from either membrane surface Mol. Cell. 5:2000;629-638.
-
(2000)
Mol. Cell
, vol.5
, pp. 629-638
-
-
Leonhard, K.1
Guiard, B.2
Pellecchia, G.3
Tzagoloff, A.4
Neupert, W.5
Langer, T.6
-
34
-
-
0034730496
-
A specificity-enhancing factor for the ClpXP degradation machine
-
Levchenko I., Seidel M., Sauer R.T., Baker T.A. A specificity-enhancing factor for the ClpXP degradation machine. Science. 289:2000;2354-2356.
-
(2000)
Science
, vol.289
, pp. 2354-2356
-
-
Levchenko, I.1
Seidel, M.2
Sauer, R.T.3
Baker, T.A.4
-
35
-
-
0030781431
-
Active unfolding of precursor proteins during mitochondrial protein import
-
Matouschek A., Azem A., Ratliff K., Glick B.S., Schmid K., Schatz G. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16:1997;6727-6736.
-
(1997)
EMBO J.
, vol.16
, pp. 6727-6736
-
-
Matouschek, A.1
Azem, A.2
Ratliff, K.3
Glick, B.S.4
Schmid, K.5
Schatz, G.6
-
36
-
-
0028359550
-
A new component of bacteriophage Mu replicative transposition machinery: The Escherichia coli ClpX protein
-
Mhammedi-Alaoui A., Pato M., Gama M.J., Toussaint A. A new component of bacteriophage Mu replicative transposition machinery. the Escherichia coli ClpX protein Mol. Microbiol. 11:1994;1109-1116.
-
(1994)
Mol. Microbiol.
, vol.11
, pp. 1109-1116
-
-
Mhammedi-Alaoui, A.1
Pato, M.2
Gama, M.J.3
Toussaint, A.4
-
37
-
-
0036773132
-
Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8
-
Niwa H., Tsuchiya D., Makyio H., Yoshida M., Morikawa K. Hexameric ring structure of the ATPase domain of the membrane-integrated metalloprotease FtsH from Thermus thermophilus HB8. Structure. 10:2002;1415-1423.
-
(2002)
Structure
, vol.10
, pp. 1415-1423
-
-
Niwa, H.1
Tsuchiya, D.2
Makyio, H.3
Yoshida, M.4
Morikawa, K.5
-
38
-
-
0034885052
-
AAA+ superfamily ATPases: Common structure-diverse function
-
Ogura T., Wilkinson A.J. AAA+ superfamily ATPases. common structure-diverse function Genes Cells. 6:2001;575-597.
-
(2001)
Genes Cells
, vol.6
, pp. 575-597
-
-
Ogura, T.1
Wilkinson, A.J.2
-
39
-
-
0345523771
-
Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli
-
Ogura T., Inoue K., Tatsuta T., Suzaki T., Karata K., Young K., Su L.H., Fierke C.A., Jackman J.E., Raetz C.R.et al. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31:1999;833-844.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 833-844
-
-
Ogura, T.1
Inoue, K.2
Tatsuta, T.3
Suzaki, T.4
Karata, K.5
Young, K.6
Su, L.H.7
Fierke, C.A.8
Jackman, J.E.9
Raetz, C.R.10
-
40
-
-
0029896059
-
The tolZ gene of Escherichia coli is identified as the ftsH gene
-
Qu J.N., Makino S.I., Adachi H., Koyama Y., Akiyama Y., Ito K., Tomoyasu T., Ogura T., Matsuzawa H. The tolZ gene of Escherichia coli is identified as the ftsH gene. J. Bacteriol. 178:1996;3457-3461.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 3457-3461
-
-
Qu, J.N.1
Makino, S.I.2
Adachi, H.3
Koyama, Y.4
Akiyama, Y.5
Ito, K.6
Tomoyasu, T.7
Ogura, T.8
Matsuzawa, H.9
-
41
-
-
0026553768
-
The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability
-
Serrano L., Kellis J.T. Jr., Cann P., Matouschek A., Fersht A.R. The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J. Mol. Biol. 224:1992;783-804.
-
(1992)
J. Mol. Biol.
, vol.224
, pp. 783-804
-
-
Serrano, L.1
Kellis J.T., Jr.2
Cann, P.3
Matouschek, A.4
Fersht, A.R.5
-
42
-
-
0030025784
-
Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones
-
Shirai Y., Akiyama Y., Ito K. Suppression of ftsH mutant phenotypes by overproduction of molecular chaperones. J. Bacteriol. 178:1996;1141-1145.
-
(1996)
J. Bacteriol.
, vol.178
, pp. 1141-1145
-
-
Shirai, Y.1
Akiyama, Y.2
Ito, K.3
-
43
-
-
8544283778
-
Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli
-
Shotland Y., Koby S., Teff D., Mansur N., Oren D.A., Tatematsu K., Tomoyasu T., Kessel M., Bukau B., Ogura T.et al. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol. Microbiol. 24:1997;1303-1310.
-
(1997)
Mol. Microbiol.
, vol.24
, pp. 1303-1310
-
-
Shotland, Y.1
Koby, S.2
Teff, D.3
Mansur, N.4
Oren, D.A.5
Tatematsu, K.6
Tomoyasu, T.7
Kessel, M.8
Bukau, B.9
Ogura, T.10
-
44
-
-
0034254908
-
Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP
-
Singh S.K., Grimaud R., Hoskins J.R., Wickner S., Maurizi M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA. 97:2000;8898-8903.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 8898-8903
-
-
Singh, S.K.1
Grimaud, R.2
Hoskins, J.R.3
Wickner, S.4
Maurizi, M.R.5
-
45
-
-
0023240043
-
The heat shock response of E. coli is regulated by changes in the concentration of sigma 32
-
Straus D.B., Walter W.A., Gross C.A. The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature. 329:1987;348-351.
-
(1987)
Nature
, vol.329
, pp. 348-351
-
-
Straus, D.B.1
Walter, W.A.2
Gross, C.A.3
-
46
-
-
0025632973
-
DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32
-
Straus D., Walter W., Gross C.A. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4:1990;2202-2209.
-
(1990)
Genes Dev.
, vol.4
, pp. 2202-2209
-
-
Straus, D.1
Walter, W.2
Gross, C.A.3
-
47
-
-
0024584414
-
Modulation of stability of the Escherichia coli heat shock regulatory factor sigma
-
Tilly K., Spence J., Georgopoulos C. Modulation of stability of the Escherichia coli heat shock regulatory factor sigma. J. Bacteriol. 171:1989;1585-1589.
-
(1989)
J. Bacteriol.
, vol.171
, pp. 1585-1589
-
-
Tilly, K.1
Spence, J.2
Georgopoulos, C.3
-
48
-
-
0029060112
-
Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32
-
Tomoyasu T., Gamer J., Bukau B., Kanemori M., Mori H., Rutman A.J., Oppenheim A.B., Yura T., Yamanaka K., Niki H.et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14:1995;2551-2560.
-
(1995)
EMBO J.
, vol.14
, pp. 2551-2560
-
-
Tomoyasu, T.1
Gamer, J.2
Bukau, B.3
Kanemori, M.4
Mori, H.5
Rutman, A.J.6
Oppenheim, A.B.7
Yura, T.8
Yamanaka, K.9
Niki, H.10
-
49
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature. 401:1999;90-93.
-
(1999)
Nature
, vol.401
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
50
-
-
0029919178
-
2+ at an early post-targeting stage of translocation
-
2+ at an early post-targeting stage of translocation. J. Biol. Chem. 271:1996;9429-9436.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 9429-9436
-
-
Yoshihisa, T.1
Ito, K.2
-
51
-
-
0034629489
-
Building a thermostable membrane protein
-
Zhou Y., Bowie J.U. Building a thermostable membrane protein. J. Biol. Chem. 275:2000;6975-6979.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 6975-6979
-
-
Zhou, Y.1
Bowie, J.U.2
|