메뉴 건너뛰기




Volumn 6, Issue 7, 2007, Pages 981-993

Avoiding and resolving conflicts between DNA replication and transcription

Author keywords

CSA; CSB; DksA; DNA polymerase; GreA; GreB; Induced recombination; Mfd; RNA polymerase; Stalled replication forks; TFIIS

Indexed keywords

DNA POLYMERASE; RNA POLYMERASE;

EID: 34249941504     PISSN: 15687864     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dnarep.2007.02.017     Document Type: Article
Times cited : (70)

References (150)
  • 1
    • 33750002290 scopus 로고    scopus 로고
    • Checkpoints and restriction points in bacteria and eukaryotic cells
    • Cooper S. Checkpoints and restriction points in bacteria and eukaryotic cells. Bioessays 28 (2006) 1035-1039
    • (2006) Bioessays , vol.28 , pp. 1035-1039
    • Cooper, S.1
  • 2
    • 4544311213 scopus 로고    scopus 로고
    • How do prokaryotic cells cycle?
    • Margolin W., and Bernander R. How do prokaryotic cells cycle?. Curr. Biol. 14 (2004) R768-R770
    • (2004) Curr. Biol. , vol.14
    • Margolin, W.1    Bernander, R.2
  • 3
    • 0344845078 scopus 로고    scopus 로고
    • Enigmatic variations: divergent modes of regulating eukaryotic DNA replication
    • Kearsey S.E., and Cotterill S. Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol. Cell 12 (2003) 1067-1075
    • (2003) Mol. Cell , vol.12 , pp. 1067-1075
    • Kearsey, S.E.1    Cotterill, S.2
  • 4
    • 0035861507 scopus 로고    scopus 로고
    • DNA replication. Genomic views of genome duplication
    • Stillman B. DNA replication. Genomic views of genome duplication. Science 294 (2001) 2301-2304
    • (2001) Science , vol.294 , pp. 2301-2304
    • Stillman, B.1
  • 5
    • 0030849742 scopus 로고    scopus 로고
    • Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs
    • Tanaka T., Knapp D., and Nasmyth K. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90 (1997) 649-660
    • (1997) Cell , vol.90 , pp. 649-660
    • Tanaka, T.1    Knapp, D.2    Nasmyth, K.3
  • 6
    • 4544221279 scopus 로고    scopus 로고
    • Regulation of early events in chromosome replication
    • Diffley J. Regulation of early events in chromosome replication. Curr. Biol. 14 (2004) R778-R786
    • (2004) Curr. Biol. , vol.14
    • Diffley, J.1
  • 7
    • 22244478079 scopus 로고    scopus 로고
    • Cellular DNA replicases: components and dynamics at the replication fork
    • Johnson A., and O'Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74 (2005) 283-315
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 283-315
    • Johnson, A.1    O'Donnell, M.2
  • 9
    • 33749159533 scopus 로고    scopus 로고
    • Regulation of DNA synthesis in bacteria: analysis of the Bates/Kleckner licensing/initiation-mass model for cell cycle control
    • Cooper S. Regulation of DNA synthesis in bacteria: analysis of the Bates/Kleckner licensing/initiation-mass model for cell cycle control. Mol. Microbiol. 62 (2006) 303-307
    • (2006) Mol. Microbiol. , vol.62 , pp. 303-307
    • Cooper, S.1
  • 10
    • 0041853574 scopus 로고    scopus 로고
    • Bacterial chromosome dynamics
    • Sherratt D.J. Bacterial chromosome dynamics. Science 301 (2003) 780-785
    • (2003) Science , vol.301 , pp. 780-785
    • Sherratt, D.J.1
  • 11
    • 33745603713 scopus 로고    scopus 로고
    • The two Escherichia coli chromosome arms locate to separate cell halves
    • Wang X., Liu X., Possoz C., and Sherratt D.J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20 (2006) 1727-1731
    • (2006) Genes Dev. , vol.20 , pp. 1727-1731
    • Wang, X.1    Liu, X.2    Possoz, C.3    Sherratt, D.J.4
  • 12
    • 0029998531 scopus 로고    scopus 로고
    • Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins
    • Boye E., Stokke T., Kleckner N., and Skarstad K. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 12206-12211
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 12206-12211
    • Boye, E.1    Stokke, T.2    Kleckner, N.3    Skarstad, K.4
  • 13
    • 0029147297 scopus 로고
    • E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration
    • Slater S., Wold S., Lu M., Boye E., Skarstad K., and Kleckner N. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82 (1995) 927-936
    • (1995) Cell , vol.82 , pp. 927-936
    • Slater, S.1    Wold, S.2    Lu, M.3    Boye, E.4    Skarstad, K.5    Kleckner, N.6
  • 14
    • 33750312968 scopus 로고    scopus 로고
    • DnaA: controlling the initiation of bacterial DNA replication and more
    • Kaguni J. DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol. 60 (2006) 351-371
    • (2006) Annu. Rev. Microbiol. , vol.60 , pp. 351-371
    • Kaguni, J.1
  • 15
    • 33749177128 scopus 로고    scopus 로고
    • The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves
    • Nielsen H.J., Ottesen J.R., Youngren B., Austin S.J., and Hansen F.G. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 62 (2006) 331-338
    • (2006) Mol. Microbiol. , vol.62 , pp. 331-338
    • Nielsen, H.J.1    Ottesen, J.R.2    Youngren, B.3    Austin, S.J.4    Hansen, F.G.5
  • 16
    • 0034574441 scopus 로고    scopus 로고
    • Limiting DNA replication to once and only once
    • Boye E., Lobner-Olesen A., and Skarstad K. Limiting DNA replication to once and only once. EMBO Rep. 1 (2000) 479-483
    • (2000) EMBO Rep. , vol.1 , pp. 479-483
    • Boye, E.1    Lobner-Olesen, A.2    Skarstad, K.3
  • 17
    • 0036843139 scopus 로고    scopus 로고
    • The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication
    • Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev. 26 (2002) 355-374
    • (2002) FEMS Microbiol. Rev. , vol.26 , pp. 355-374
    • Messer, W.1
  • 18
    • 0026777126 scopus 로고
    • Prokaryotic DNA replication
    • Marians K.J. Prokaryotic DNA replication. Annu. Rev. Biochem. 61 (1992) 673-719
    • (1992) Annu. Rev. Biochem. , vol.61 , pp. 673-719
    • Marians, K.J.1
  • 19
    • 0032489041 scopus 로고    scopus 로고
    • Polymerases and the replisome: machines within machines
    • Baker T.A., and Bell S.P. Polymerases and the replisome: machines within machines. Cell 92 (1998) 295-305
    • (1998) Cell , vol.92 , pp. 295-305
    • Baker, T.A.1    Bell, S.P.2
  • 20
    • 0033213720 scopus 로고    scopus 로고
    • Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin
    • Fang L., Davey M.J., and O'Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell 4 (1999) 541-553
    • (1999) Mol. Cell , vol.4 , pp. 541-553
    • Fang, L.1    Davey, M.J.2    O'Donnell, M.3
  • 23
    • 0030606152 scopus 로고    scopus 로고
    • The Croonian Lecture, 1996: endogenous damage to DNA
    • Lindahl T. The Croonian Lecture, 1996: endogenous damage to DNA. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 351 (1996) 1529-1538
    • (1996) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.351 , pp. 1529-1538
    • Lindahl, T.1
  • 24
    • 0034026997 scopus 로고    scopus 로고
    • Replication and recombination intersect
    • Marians K.J. Replication and recombination intersect. Curr. Opin. Genet. Dev. 10 (2000) 151-156
    • (2000) Curr. Opin. Genet. Dev. , vol.10 , pp. 151-156
    • Marians, K.J.1
  • 25
    • 0033609892 scopus 로고    scopus 로고
    • PriA-directed assembly of a primosome on D loop DNA
    • Liu J., and Marians K.J. PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem. 274 (1999) 25033-25041
    • (1999) J. Biol. Chem. , vol.274 , pp. 25033-25041
    • Liu, J.1    Marians, K.J.2
  • 26
    • 0036844340 scopus 로고    scopus 로고
    • Recombinational repair and restart of damaged replication forks
    • McGlynn P., and Lloyd R.G. Recombinational repair and restart of damaged replication forks. Nat. Rev. Mol. Cell Biol. 3 (2002) 859-870
    • (2002) Nat. Rev. Mol. Cell Biol. , vol.3 , pp. 859-870
    • McGlynn, P.1    Lloyd, R.G.2
  • 27
    • 0348047594 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes
    • Ivessa A.S., Lenzmeier B.A., Bessler J.B., Goudsouzian L.K., Schnakenberg S.L., and Zakian V.A. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12 (2003) 1525-1536
    • (2003) Mol. Cell , vol.12 , pp. 1525-1536
    • Ivessa, A.S.1    Lenzmeier, B.A.2    Bessler, J.B.3    Goudsouzian, L.K.4    Schnakenberg, S.L.5    Zakian, V.A.6
  • 28
    • 0034176967 scopus 로고    scopus 로고
    • Replication fork arrest and DNA recombination
    • Michel B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25 (2000) 173-178
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 173-178
    • Michel, B.1
  • 29
    • 1642443168 scopus 로고    scopus 로고
    • Mechanisms of replication fork restart in Escherichia coli
    • Marians K.J. Mechanisms of replication fork restart in Escherichia coli. Philos. Trans. R. Soc. Lond B: Biol. Sci. 359 (2004) 71-77
    • (2004) Philos. Trans. R. Soc. Lond B: Biol. Sci. , vol.359 , pp. 71-77
    • Marians, K.J.1
  • 31
    • 31844456472 scopus 로고    scopus 로고
    • Replication fork reactivation downstream of a blocked nascent leading strand
    • Heller R.C., and Marians K.J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439 (2006) 557-562
    • (2006) Nature , vol.439 , pp. 557-562
    • Heller, R.C.1    Marians, K.J.2
  • 32
    • 19444383801 scopus 로고    scopus 로고
    • Trading places: how do DNA polymerases switch during translesion DNA synthesis?
    • Friedberg E.C., Lehmann A.R., and Fuchs R.P. Trading places: how do DNA polymerases switch during translesion DNA synthesis?. Mol. Cell 18 (2005) 499-505
    • (2005) Mol. Cell , vol.18 , pp. 499-505
    • Friedberg, E.C.1    Lehmann, A.R.2    Fuchs, R.P.3
  • 33
    • 34249932274 scopus 로고    scopus 로고
    • A.N. Other, Other articles in this issue of DNA repair, DNA Rep., this issue (see other articles).
  • 34
    • 0034123356 scopus 로고    scopus 로고
    • Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12
    • Sandler S.J. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155 (2000) 487-497
    • (2000) Genetics , vol.155 , pp. 487-497
    • Sandler, S.J.1
  • 35
    • 26644472197 scopus 로고    scopus 로고
    • Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks
    • Heller R.C., and Marians K.J. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J. Biol. Chem. 280 (2005) 34143-34151
    • (2005) J. Biol. Chem. , vol.280 , pp. 34143-34151
    • Heller, R.C.1    Marians, K.J.2
  • 36
    • 14644415982 scopus 로고    scopus 로고
    • The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart
    • Heller R.C., and Marians K.J. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol. Cell 17 (2005) 733-743
    • (2005) Mol. Cell , vol.17 , pp. 733-743
    • Heller, R.C.1    Marians, K.J.2
  • 37
    • 13444270604 scopus 로고    scopus 로고
    • Partial depletion of histone H4 increases homologous recombination-mediated genetic instability
    • Prado F., and Aguilera A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol. Cell. Biol. 25 (2005) 1526-1536
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 1526-1536
    • Prado, F.1    Aguilera, A.2
  • 38
    • 24044476230 scopus 로고    scopus 로고
    • Transcription arrest at DNA damage sites
    • Tornaletti S. Transcription arrest at DNA damage sites. Mutat. Res. 577 (2005) 131-145
    • (2005) Mutat. Res. , vol.577 , pp. 131-145
    • Tornaletti, S.1
  • 39
    • 0031008221 scopus 로고    scopus 로고
    • Basic mechanisms of transcript elongation and its regulation
    • Uptain S.M., Kane C.M., and Chamberlin M.J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66 (1997) 117-172
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 117-172
    • Uptain, S.M.1    Kane, C.M.2    Chamberlin, M.J.3
  • 40
    • 0030804783 scopus 로고    scopus 로고
    • RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair
    • Selby C.P., Drapkin R., Reinberg D., and Sancar A. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 25 (1997) 787-793
    • (1997) Nucleic Acids Res. , vol.25 , pp. 787-793
    • Selby, C.P.1    Drapkin, R.2    Reinberg, D.3    Sancar, A.4
  • 41
    • 0032738023 scopus 로고    scopus 로고
    • Effect of DNA lesions on transcription elongation
    • Tornaletti S., and Hanawalt P.C. Effect of DNA lesions on transcription elongation. Biochimie 81 (1999) 139-146
    • (1999) Biochimie , vol.81 , pp. 139-146
    • Tornaletti, S.1    Hanawalt, P.C.2
  • 42
    • 0032516880 scopus 로고    scopus 로고
    • Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance
    • Viswanathan A., and Doetsch P.W. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J. Biol. Chem. 273 (1998) 21276-21281
    • (1998) J. Biol. Chem. , vol.273 , pp. 21276-21281
    • Viswanathan, A.1    Doetsch, P.W.2
  • 43
    • 17544380504 scopus 로고    scopus 로고
    • Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II
    • Donahue B.A., Fuchs R.P., Reines D., and Hanawalt P.C. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J. Biol. Chem. 271 (1996) 10588-10594
    • (1996) J. Biol. Chem. , vol.271 , pp. 10588-10594
    • Donahue, B.A.1    Fuchs, R.P.2    Reines, D.3    Hanawalt, P.C.4
  • 44
    • 0028106162 scopus 로고
    • Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template
    • Donahue B.A., Yin S., Taylor J.S., Reines D., and Hanawalt P.C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl. Acad. Sci. U.S.A. 91 (1994) 8502-8506
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 8502-8506
    • Donahue, B.A.1    Yin, S.2    Taylor, J.S.3    Reines, D.4    Hanawalt, P.C.5
  • 45
    • 22544464455 scopus 로고    scopus 로고
    • RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription
    • Trautinger B.W., Jaktaji R.P., Rusakova E., and Lloyd R.G. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol. Cell 19 (2005) 247-258
    • (2005) Mol. Cell , vol.19 , pp. 247-258
    • Trautinger, B.W.1    Jaktaji, R.P.2    Rusakova, E.3    Lloyd, R.G.4
  • 46
    • 0021891874 scopus 로고
    • Mechanism and control of transcription initiation in prokaryotes
    • McClure W.R. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54 (1985) 171-204
    • (1985) Annu. Rev. Biochem. , vol.54 , pp. 171-204
    • McClure, W.R.1
  • 47
    • 0031801743 scopus 로고    scopus 로고
    • Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation
    • Mooney R.A., Artsimovitch I., and Landick R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J. Bacteriol. 180 (1998) 3265-3275
    • (1998) J. Bacteriol. , vol.180 , pp. 3265-3275
    • Mooney, R.A.1    Artsimovitch, I.2    Landick, R.3
  • 49
    • 0037073062 scopus 로고    scopus 로고
    • The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription
    • Erie D.A. The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. Biochem. Biophys. Acta 1577 (2002) 224-239
    • (2002) Biochem. Biophys. Acta , vol.1577 , pp. 224-239
    • Erie, D.A.1
  • 50
    • 0027106595 scopus 로고
    • New models for the mechanism of transcription elongation and its regulation
    • Chamberlin M.J. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 88 (1992) 1-21
    • (1992) Harvey Lect. , vol.88 , pp. 1-21
    • Chamberlin, M.J.1
  • 51
    • 0026766857 scopus 로고
    • Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes
    • Krummel B., and Chamberlin M.J. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J. Mol. Biol. 225 (1992) 239-250
    • (1992) J. Mol. Biol. , vol.225 , pp. 239-250
    • Krummel, B.1    Chamberlin, M.J.2
  • 52
    • 0031059249 scopus 로고    scopus 로고
    • Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded
    • Komissarova N., and Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 1755-1760
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 1755-1760
    • Komissarova, N.1    Kashlev, M.2
  • 53
    • 0029790806 scopus 로고    scopus 로고
    • Translocation and transcriptional arrest during transcript elongation by RNA polymerase II
    • Samkurashvili I., and Luse D.S. Translocation and transcriptional arrest during transcript elongation by RNA polymerase II. J. Biol. Chem. 271 (1996) 23495-23505
    • (1996) J. Biol. Chem. , vol.271 , pp. 23495-23505
    • Samkurashvili, I.1    Luse, D.S.2
  • 54
    • 0037077154 scopus 로고    scopus 로고
    • E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation
    • Park J.S., Marr M.T., and Roberts J.W. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109 (2002) 757-767
    • (2002) Cell , vol.109 , pp. 757-767
    • Park, J.S.1    Marr, M.T.2    Roberts, J.W.3
  • 55
    • 14844329013 scopus 로고    scopus 로고
    • Bacterial transcription elongation factors: new insights into molecular mechanism of action
    • Borukhov S., Lee J., and Laptenko O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol. Microbiol. 55 (2005) 1315-1324
    • (2005) Mol. Microbiol. , vol.55 , pp. 1315-1324
    • Borukhov, S.1    Lee, J.2    Laptenko, O.3
  • 56
    • 0043244877 scopus 로고    scopus 로고
    • Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase
    • Opalka N., Chlenov M., Chacon P., Rice W.J., Wriggers W., and Darst S.A. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114 (2003) 335-345
    • (2003) Cell , vol.114 , pp. 335-345
    • Opalka, N.1    Chlenov, M.2    Chacon, P.3    Rice, W.J.4    Wriggers, W.5    Darst, S.A.6
  • 57
    • 0042090589 scopus 로고    scopus 로고
    • TFIIS and GreB: two like-minded transcription elongation factors with sticky fingers
    • Conaway R.C., Kong S.E., and Conaway J.W. TFIIS and GreB: two like-minded transcription elongation factors with sticky fingers. Cell 114 (2003) 224-272
    • (2003) Cell , vol.114 , pp. 224-272
    • Conaway, R.C.1    Kong, S.E.2    Conaway, J.W.3
  • 58
    • 0034671841 scopus 로고    scopus 로고
    • GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming
    • Toulme F., Mosrin-Huaman C., Sparkowski J., Das A., Leng M., and Rachid Rahmouni A. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19 (2000) 6853-6859
    • (2000) EMBO J. , vol.19 , pp. 6853-6859
    • Toulme, F.1    Mosrin-Huaman, C.2    Sparkowski, J.3    Das, A.4    Leng, M.5    Rachid Rahmouni, A.6
  • 59
    • 0034507953 scopus 로고    scopus 로고
    • Function of transcription cleavage factors GreA and GreB at a regulatory pause site
    • Marr M.T., and Roberts J.W. Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol. Cell 6 (2000) 1275-1285
    • (2000) Mol. Cell , vol.6 , pp. 1275-1285
    • Marr, M.T.1    Roberts, J.W.2
  • 60
    • 0043244876 scopus 로고    scopus 로고
    • Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage
    • Kettenberger H., Armache K.J., and Cramer P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114 (2003) 347-357
    • (2003) Cell , vol.114 , pp. 347-357
    • Kettenberger, H.1    Armache, K.J.2    Cramer, P.3
  • 62
    • 0003174053 scopus 로고    scopus 로고
    • The stringent response
    • Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., and Umbarger H.E. (Eds), ASM Press, Washington, DC
    • Cashel M., Gentry D.R., Hernandez V.J., and Vinella D. The stringent response. In: Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., and Umbarger H.E. (Eds). Escherichia coli and Salmonella Cellular and Molecular Biology. 2nd ed. (1996), ASM Press, Washington, DC 1458-1496
    • (1996) Escherichia coli and Salmonella Cellular and Molecular Biology. 2nd ed. , pp. 1458-1496
    • Cashel, M.1    Gentry, D.R.2    Hernandez, V.J.3    Vinella, D.4
  • 65
    • 4043069926 scopus 로고    scopus 로고
    • DksA; a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP
    • Paul B.J., Barker M.M., Ross W., Schneider D.A., Webb C., Foster J.W., and Gourse R.L. DksA; a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118 (2004) 311-322
    • (2004) Cell , vol.118 , pp. 311-322
    • Paul, B.J.1    Barker, M.M.2    Ross, W.3    Schneider, D.A.4    Webb, C.5    Foster, J.W.6    Gourse, R.L.7
  • 66
    • 0027905034 scopus 로고
    • Molecular mechanism of transcription-repair coupling
    • Selby C.P., and Sancar A. Molecular mechanism of transcription-repair coupling. Science 260 (1993) 53-58
    • (1993) Science , vol.260 , pp. 53-58
    • Selby, C.P.1    Sancar, A.2
  • 68
    • 13844317928 scopus 로고    scopus 로고
    • RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair
    • Smith A.J., and Savery N.J. RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair. Nucleic Acids Res. 33 (2005) 755-764
    • (2005) Nucleic Acids Res. , vol.33 , pp. 755-764
    • Smith, A.J.1    Savery, N.J.2
  • 69
    • 0345531143 scopus 로고    scopus 로고
    • A DNA translocation motif in the bacterial transcription-repair coupling factor, Mfd
    • Chambers A.L., Smith A.J., and Savery N.J. A DNA translocation motif in the bacterial transcription-repair coupling factor, Mfd. Nucleic Acids Res. 31 (2003) 6409-6418
    • (2003) Nucleic Acids Res. , vol.31 , pp. 6409-6418
    • Chambers, A.L.1    Smith, A.J.2    Savery, N.J.3
  • 70
    • 0036294524 scopus 로고    scopus 로고
    • Transcription repair coupling factor: a very pushy enzyme
    • Svejstrup J.Q. Transcription repair coupling factor: a very pushy enzyme. Mol. Cell 9 (2002) 1151-1152
    • (2002) Mol. Cell , vol.9 , pp. 1151-1152
    • Svejstrup, J.Q.1
  • 72
    • 0037326318 scopus 로고    scopus 로고
    • Rescue of arrested RNA polymerase II complexes
    • Svejstrup J.Q. Rescue of arrested RNA polymerase II complexes. J. Cell Sci. 116 (2003) 447-451
    • (2003) J. Cell Sci. , vol.116 , pp. 447-451
    • Svejstrup, J.Q.1
  • 73
    • 4644262945 scopus 로고    scopus 로고
    • Recent advances in ideas on the molecular pathology and clinical aspects of Von Hippel-Lindau disease
    • Shuin T., Yamazaki I., Tamura K., Kamada M., and Ashida S. Recent advances in ideas on the molecular pathology and clinical aspects of Von Hippel-Lindau disease. Int. J. Clin. Oncol. 9 (2004) 283-287
    • (2004) Int. J. Clin. Oncol. , vol.9 , pp. 283-287
    • Shuin, T.1    Yamazaki, I.2    Tamura, K.3    Kamada, M.4    Ashida, S.5
  • 76
    • 4544259868 scopus 로고    scopus 로고
    • Transcription-guarding the genome by sensing DNA damage
    • Ljungman M., and Lane D.P. Transcription-guarding the genome by sensing DNA damage. Nat. Rev. Cancer 4 (2004) 727-737
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 727-737
    • Ljungman, M.1    Lane, D.P.2
  • 77
    • 33746666589 scopus 로고    scopus 로고
    • When transcription and repair meet: a complex system
    • Laine J.P., and Egly J.M. When transcription and repair meet: a complex system. Trends Genet. 22 (2006) 430-436
    • (2006) Trends Genet. , vol.22 , pp. 430-436
    • Laine, J.P.1    Egly, J.M.2
  • 78
    • 0026354699 scopus 로고
    • Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor
    • Selby C.P., Witkin E.M., and Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc. Natl. Acad. Sci. U.S.A. 88 (1991) 11574-11578
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 11574-11578
    • Selby, C.P.1    Witkin, E.M.2    Sancar, A.3
  • 79
    • 0032561475 scopus 로고    scopus 로고
    • RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62
    • Tantin D. RNA polymerase II elongation complexes containing the Cockayne syndrome group B protein interact with a molecular complex containing the transcription factor IIH components xeroderma pigmentosum B and p62. J. Biol. Chem. 273 (1998) 27794-27799
    • (1998) J. Biol. Chem. , vol.273 , pp. 27794-27799
    • Tantin, D.1
  • 80
    • 0037121936 scopus 로고    scopus 로고
    • Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase
    • Trautinger B.W., and Lloyd R.G. Modulation of DNA repair by mutations flanking the DNA channel through RNA polymerase. EMBO J. 21 (2002) 6944-6953
    • (2002) EMBO J. , vol.21 , pp. 6944-6953
    • Trautinger, B.W.1    Lloyd, R.G.2
  • 81
    • 33746629428 scopus 로고    scopus 로고
    • Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair
    • Mahdi A.A., Buckman C., Harris L., and Lloyd R.G. Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. Genes Dev. 20 (2006) 2135-2147
    • (2006) Genes Dev. , vol.20 , pp. 2135-2147
    • Mahdi, A.A.1    Buckman, C.2    Harris, L.3    Lloyd, R.G.4
  • 82
    • 0034737294 scopus 로고    scopus 로고
    • Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression
    • McGlynn P., and Lloyd R.G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101 (2000) 35-45
    • (2000) Cell , vol.101 , pp. 35-45
    • McGlynn, P.1    Lloyd, R.G.2
  • 83
    • 0035089793 scopus 로고    scopus 로고
    • A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair
    • Wong J.M., and Ingles C.J. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair. Mol. Gen. Genet. 264 (2001) 842-851
    • (2001) Mol. Gen. Genet. , vol.264 , pp. 842-851
    • Wong, J.M.1    Ingles, C.J.2
  • 84
    • 0024276903 scopus 로고
    • When polymerases collide: replication and the transcriptional organization of the E. coli chromosome
    • Brewer B.J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53 (1988) 679-686
    • (1988) Cell , vol.53 , pp. 679-686
    • Brewer, B.J.1
  • 85
    • 0026733965 scopus 로고
    • Consequences of replication fork movement through transcription units in vivo
    • French S. Consequences of replication fork movement through transcription units in vivo. Science 258 (1992) 1362-1365
    • (1992) Science , vol.258 , pp. 1362-1365
    • French, S.1
  • 86
    • 12844265439 scopus 로고    scopus 로고
    • Mechanisms of transcription-replication collisions in bacteria
    • Mirkin E.V., and Mirkin S.M. Mechanisms of transcription-replication collisions in bacteria. Mol. Cell. Biol. 25 (2005) 888-895
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 888-895
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 88
    • 0032417093 scopus 로고    scopus 로고
    • Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes
    • McLean M.J., Wolfe K.H., and Devine K.M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47 (1998) 691-696
    • (1998) J. Mol. Evol. , vol.47 , pp. 691-696
    • McLean, M.J.1    Wolfe, K.H.2    Devine, K.M.3
  • 89
    • 0042237296 scopus 로고
    • Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome
    • Rebollo J.E., Francois V., and Louarn J.M. Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U.S.A. 85 (1988) 9391-9395
    • (1988) Proc. Natl. Acad. Sci. U.S.A. , vol.85 , pp. 9391-9395
    • Rebollo, J.E.1    Francois, V.2    Louarn, J.M.3
  • 90
    • 0023099783 scopus 로고
    • Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min
    • de Massy B., Bejar S., Louarn J., Louarn J.M., and Bouche J.P. Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 1759-1763
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 1759-1763
    • de Massy, B.1    Bejar, S.2    Louarn, J.3    Louarn, J.M.4    Bouche, J.P.5
  • 91
    • 0033974047 scopus 로고    scopus 로고
    • Mechanisms and consequences of replication fork arrest
    • Hyrien O. Mechanisms and consequences of replication fork arrest. Biochimie 82 (2000) 5-17
    • (2000) Biochimie , vol.82 , pp. 5-17
    • Hyrien, O.1
  • 92
    • 0022555870 scopus 로고
    • Eukaryotic DNA replication
    • Campbell J.L. Eukaryotic DNA replication. Annu. Rev. Biochem. 55 (1986) 733-771
    • (1986) Annu. Rev. Biochem. , vol.55 , pp. 733-771
    • Campbell, J.L.1
  • 93
    • 0023806623 scopus 로고
    • Organization of replication of ribosomal DNA in Saccharomyces cerevisiae
    • Linskens M.H., and Huberman J.A. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8 (1988) 4927-4935
    • (1988) Mol. Cell. Biol. , vol.8 , pp. 4927-4935
    • Linskens, M.H.1    Huberman, J.A.2
  • 94
    • 0036792653 scopus 로고    scopus 로고
    • To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA
    • Ivessa A.S., and Zakian V.A. To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA. Genes Dev. 16 (2002) 2459-2464
    • (2002) Genes Dev. , vol.16 , pp. 2459-2464
    • Ivessa, A.S.1    Zakian, V.A.2
  • 95
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3′ end of yeast ribosomal RNA genes
    • Brewer B.J., and Fangman W.L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55 (1988) 637-643
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 96
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande A.M., and Newlon C.S. DNA replication fork pause sites dependent on transcription. Science 272 (1996) 1030-1033
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 97
    • 0026645804 scopus 로고
    • The arrest of replication forks in the rDNA of yeast occurs independently of transcription
    • Brewer B.J., Lockshon D., and Fangman W.L. The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71 (1992) 267-276
    • (1992) Cell , vol.71 , pp. 267-276
    • Brewer, B.J.1    Lockshon, D.2    Fangman, W.L.3
  • 98
    • 0027443441 scopus 로고
    • The DNA replication fork can pass RNA polymerase without displacing the nascent transcript
    • Liu B., Wong M.L., Tinker R.L., Geiduschek E.P., and Alberts B.M. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature 366 (1993) 33-39
    • (1993) Nature , vol.366 , pp. 33-39
    • Liu, B.1    Wong, M.L.2    Tinker, R.L.3    Geiduschek, E.P.4    Alberts, B.M.5
  • 99
    • 1842377482 scopus 로고    scopus 로고
    • Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery
    • Elias-Arnanz M., and Salas M. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J. 16 (1997) 5775-5783
    • (1997) EMBO J. , vol.16 , pp. 5775-5783
    • Elias-Arnanz, M.1    Salas, M.2
  • 100
  • 101
    • 0028908039 scopus 로고
    • Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex
    • Liu B., and Alberts B.M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267 (1995) 1131-1137
    • (1995) Science , vol.267 , pp. 1131-1137
    • Liu, B.1    Alberts, B.M.2
  • 102
    • 0023433855 scopus 로고
    • Supercoiling of the DNA template during transcription
    • Liu L.F., and Wang J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 7024-7027
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 7024-7027
    • Liu, L.F.1    Wang, J.C.2
  • 103
    • 0038046165 scopus 로고    scopus 로고
    • Transcription-dependent recombination and the role of fork collision in yeast rDNA
    • Takeuchi Y., Horiuchi T., and Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev. 17 (2003) 1497-1506
    • (2003) Genes Dev. , vol.17 , pp. 1497-1506
    • Takeuchi, Y.1    Horiuchi, T.2    Kobayashi, T.3
  • 104
    • 0027270476 scopus 로고
    • Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae
    • Dammann R., Lucchini R., Koller T., and Sogo J.M. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21 (1993) 2331-2338
    • (1993) Nucleic Acids Res. , vol.21 , pp. 2331-2338
    • Dammann, R.1    Lucchini, R.2    Koller, T.3    Sogo, J.M.4
  • 105
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P., Bensimon A., and Schwob E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16 (2002) 2479-2484
    • (2002) Genes Dev. , vol.16 , pp. 2479-2484
    • Pasero, P.1    Bensimon, A.2    Schwob, E.3
  • 106
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo J.M., Lopes M., and Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297 (2002) 599-602
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 107
    • 0038011248 scopus 로고    scopus 로고
    • Replication restart in gyrB Escherichia coli mutants
    • Grompone G., Ehrlich S.D., and Michel B. Replication restart in gyrB Escherichia coli mutants. Mol. Microbiol. 48 (2003) 845-854
    • (2003) Mol. Microbiol. , vol.48 , pp. 845-854
    • Grompone, G.1    Ehrlich, S.D.2    Michel, B.3
  • 108
    • 0037099681 scopus 로고    scopus 로고
    • Replication fork collapse at replication terminator sequences
    • Bidnenko V., Ehrlich S.D., and Michel B. Replication fork collapse at replication terminator sequences. EMBO J. 21 (2002) 3898-3907
    • (2002) EMBO J. , vol.21 , pp. 3898-3907
    • Bidnenko, V.1    Ehrlich, S.D.2    Michel, B.3
  • 109
    • 33749173326 scopus 로고    scopus 로고
    • The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites
    • Bidnenko V., Lestini R., and Michel B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol. Microbiol. 62 (2006) 382-396
    • (2006) Mol. Microbiol. , vol.62 , pp. 382-396
    • Bidnenko, V.1    Lestini, R.2    Michel, B.3
  • 110
    • 24944550999 scopus 로고    scopus 로고
    • Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex
    • Neylon C., Kralicek A.V., Hill T.M., and Dixon N.E. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol. Mol. Biol. Rev. 69 (2005) 501-526
    • (2005) Microbiol. Mol. Biol. Rev. , vol.69 , pp. 501-526
    • Neylon, C.1    Kralicek, A.V.2    Hill, T.M.3    Dixon, N.E.4
  • 111
    • 33745260902 scopus 로고    scopus 로고
    • A molecular mousetrap determines polarity of termination of DNA replication in E. coli
    • Mulcair M., Schaeffer P., Oakley A., Cross H., Neylon C., Hill T., and Dixon N. A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 125 (2006) 1309-1319
    • (2006) Cell , vol.125 , pp. 1309-1319
    • Mulcair, M.1    Schaeffer, P.2    Oakley, A.3    Cross, H.4    Neylon, C.5    Hill, T.6    Dixon, N.7
  • 112
    • 0026686379 scopus 로고
    • Differential inhibition of the DNA translocation and DNA unwinding activities of DNA helicases by the Escherichia coli Tus protein
    • Hiasa H., and Marians K.J. Differential inhibition of the DNA translocation and DNA unwinding activities of DNA helicases by the Escherichia coli Tus protein. J. Biol. Chem. 267 (1992) 11379-11385
    • (1992) J. Biol. Chem. , vol.267 , pp. 11379-11385
    • Hiasa, H.1    Marians, K.J.2
  • 113
    • 0344629438 scopus 로고    scopus 로고
    • The replication fork barrier site forms a unique structure with Fob1 p and inhibits the replication fork
    • Kobayashi T. The replication fork barrier site forms a unique structure with Fob1 p and inhibits the replication fork. Mol. Cell. Biol. 23 (2003) 9178-9188
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 9178-9188
    • Kobayashi, T.1
  • 114
    • 0030133624 scopus 로고    scopus 로고
    • A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities
    • Kobayashi T., and Horiuchi T. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1 (1996) 465-474
    • (1996) Genes Cells , vol.1 , pp. 465-474
    • Kobayashi, T.1    Horiuchi, T.2
  • 115
    • 0033925785 scopus 로고    scopus 로고
    • Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes
    • Gruber M., Wellinger R.E., and Sogo J.M. Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes. Mol. Cell. Biol. 20 (2000) 5777-5787
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5777-5787
    • Gruber, M.1    Wellinger, R.E.2    Sogo, J.M.3
  • 116
    • 23944507608 scopus 로고    scopus 로고
    • Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork
    • Calzada A., Hodgson B., Kanemaki M., Bueno A., and Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19 (2005) 1905-1919
    • (2005) Genes Dev. , vol.19 , pp. 1905-1919
    • Calzada, A.1    Hodgson, B.2    Kanemaki, M.3    Bueno, A.4    Labib, K.5
  • 117
    • 0025272784 scopus 로고
    • Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro
    • Hill T.M., and Marians K.J. Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro. Proc. Natl. Acad. Sci. U.S.A. 87 (1990) 2481-2485
    • (1990) Proc. Natl. Acad. Sci. U.S.A. , vol.87 , pp. 2481-2485
    • Hill, T.M.1    Marians, K.J.2
  • 118
    • 1642309305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
    • Torres J.Z., Schnakenberg S.L., and Zakian V.A. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24 (2004) 3198-3212
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3198-3212
    • Torres, J.Z.1    Schnakenberg, S.L.2    Zakian, V.A.3
  • 119
    • 0034681257 scopus 로고    scopus 로고
    • The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
    • Ivessa A.S., Zhou J.Q., and Zakian V.A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100 (2000) 479-489
    • (2000) Cell , vol.100 , pp. 479-489
    • Ivessa, A.S.1    Zhou, J.Q.2    Zakian, V.A.3
  • 120
    • 33745743449 scopus 로고    scopus 로고
    • Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo
    • Possoz C., Filipe S.R., Grainge I., and Sherratt D.J. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J. 25 (2006) 2596-2604
    • (2006) EMBO J. , vol.25 , pp. 2596-2604
    • Possoz, C.1    Filipe, S.R.2    Grainge, I.3    Sherratt, D.J.4
  • 122
    • 0033954246 scopus 로고    scopus 로고
    • Replication fork pausing and recombination, or "gimme a break"
    • Rothstein R., Michel B., and Gangloff S. Replication fork pausing and recombination, or "gimme a break". Genes Dev. 14 (2000) 1-10
    • (2000) Genes Dev. , vol.14 , pp. 1-10
    • Rothstein, R.1    Michel, B.2    Gangloff, S.3
  • 124
    • 0027957144 scopus 로고
    • The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA
    • Horiuchi T., Fujimura Y., Nishitani H., Kobayashi T., and Hidaka M. The DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J. Bacteriol. 176 (1994) 4656-4663
    • (1994) J. Bacteriol. , vol.176 , pp. 4656-4663
    • Horiuchi, T.1    Fujimura, Y.2    Nishitani, H.3    Kobayashi, T.4    Hidaka, M.5
  • 125
    • 0017109724 scopus 로고
    • Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms
    • Fujiwara Y., and Tatsumi M. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat. Res. 37 (1976) 91-110
    • (1976) Mutat. Res. , vol.37 , pp. 91-110
    • Fujiwara, Y.1    Tatsumi, M.2
  • 126
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins N.P., Kato K., and Strauss B. A model for replication repair in mammalian cells. J. Mol. Biol. 101 (1976) 417-425
    • (1976) J. Mol. Biol. , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 127
  • 128
    • 0035902591 scopus 로고    scopus 로고
    • Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation
    • McGlynn P., and Lloyd R.G. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc. Nat. Acad. Sci. U.S.A. 98 (2001) 8227-8234
    • (2001) Proc. Nat. Acad. Sci. U.S.A. , vol.98 , pp. 8227-8234
    • McGlynn, P.1    Lloyd, R.G.2
  • 130
    • 0021750302 scopus 로고
    • Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae
    • Keil R.L., and Roeder G.S. Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae. Cell 39 (1984) 377-386
    • (1984) Cell , vol.39 , pp. 377-386
    • Keil, R.L.1    Roeder, G.S.2
  • 131
    • 0030959070 scopus 로고    scopus 로고
    • Recombination between DNA repeats in yeast hpr1Δ cells is linked to transcription elongation
    • Prado F., Piruat J.I., and Aguilera A. Recombination between DNA repeats in yeast hpr1Δ cells is linked to transcription elongation. EMBO J. 16 (1997) 2826-2835
    • (1997) EMBO J. , vol.16 , pp. 2826-2835
    • Prado, F.1    Piruat, J.I.2    Aguilera, A.3
  • 132
    • 0028856363 scopus 로고
    • Requirements for activity of the yeast mitotic recombination hotspot HOT1: RNA polymerase I and multiple cis-acting sequences
    • Huang G.S., and Keil R.L. Requirements for activity of the yeast mitotic recombination hotspot HOT1: RNA polymerase I and multiple cis-acting sequences. Genetics 141 (1995) 845-855
    • (1995) Genetics , vol.141 , pp. 845-855
    • Huang, G.S.1    Keil, R.L.2
  • 133
    • 0032535478 scopus 로고    scopus 로고
    • Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I
    • Kobayashi T., Heck D.J., Nomura M., and Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev. 12 (1998) 3821-3830
    • (1998) Genes Dev. , vol.12 , pp. 3821-3830
    • Kobayashi, T.1    Heck, D.J.2    Nomura, M.3    Horiuchi, T.4
  • 134
    • 1942424051 scopus 로고    scopus 로고
    • Transcription-mediated hyper-recombination in HOT1
    • Serizawa N., Horiuchi T., and Kobayashi T. Transcription-mediated hyper-recombination in HOT1. Genes Cells 9 (2004) 305-315
    • (2004) Genes Cells , vol.9 , pp. 305-315
    • Serizawa, N.1    Horiuchi, T.2    Kobayashi, T.3
  • 135
    • 0034085624 scopus 로고    scopus 로고
    • Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities
    • Ward T.R., Hoang M.L., Prusty R., Lau C.K., Keil R.L., Fangman W.L., and Brewer B.J. Ribosomal DNA replication fork barrier and HOT1 recombination hot spot: shared sequences but independent activities. Mol. Cell. Biol. 20 (2000) 4948-4957
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4948-4957
    • Ward, T.R.1    Hoang, M.L.2    Prusty, R.3    Lau, C.K.4    Keil, R.L.5    Fangman, W.L.6    Brewer, B.J.7
  • 136
    • 0036469913 scopus 로고    scopus 로고
    • The connection between transcription and genomic instability
    • Aguilera A. The connection between transcription and genomic instability. EMBO J. 21 (2002) 195-201
    • (2002) EMBO J. , vol.21 , pp. 195-201
    • Aguilera, A.1
  • 137
    • 0034934715 scopus 로고    scopus 로고
    • Yeast RNA polymerase I enhancer is dispensable for transcription of the chromosomal rRNA gene and cell growth, and its apparent transcription enhancement from ectopic promoters requires Fob1 protein
    • Wai H., Johzuka K., Vu L., Eliason K., Kobayashi T., Horiuchi T., and Nomura M. Yeast RNA polymerase I enhancer is dispensable for transcription of the chromosomal rRNA gene and cell growth, and its apparent transcription enhancement from ectopic promoters requires Fob1 protein. Mol. Cell. Biol. 21 (2001) 5541-5553
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5541-5553
    • Wai, H.1    Johzuka, K.2    Vu, L.3    Eliason, K.4    Kobayashi, T.5    Horiuchi, T.6    Nomura, M.7
  • 138
    • 0033966516 scopus 로고    scopus 로고
    • Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae
    • Morey N.J., Greene C.N., and Jinks-Robertson S. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics 154 (2000) 109-120
    • (2000) Genetics , vol.154 , pp. 109-120
    • Morey, N.J.1    Greene, C.N.2    Jinks-Robertson, S.3
  • 139
    • 4544226463 scopus 로고    scopus 로고
    • Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae
    • Freedman J.A., and Jinks-Robertson S. Effects of mismatch repair and Hpr1 on transcription-stimulated mitotic recombination in the yeast Saccharomyces cerevisiae. DNA Rep. (Amst.) 3 (2004) 1437-1446
    • (2004) DNA Rep. (Amst.) , vol.3 , pp. 1437-1446
    • Freedman, J.A.1    Jinks-Robertson, S.2
  • 140
    • 0036743426 scopus 로고    scopus 로고
    • Genetic requirements for spontaneous and transcription-stimulated mitotic recombination in Saccharomyces cerevisiae
    • Freedman J.A., and Jinks-Robertson S. Genetic requirements for spontaneous and transcription-stimulated mitotic recombination in Saccharomyces cerevisiae. Genetics 162 (2002) 15-27
    • (2002) Genetics , vol.162 , pp. 15-27
    • Freedman, J.A.1    Jinks-Robertson, S.2
  • 141
    • 17144426028 scopus 로고    scopus 로고
    • Impairment of replication fork progression mediates RNApol II transcription-associated recombination
    • Prado F., and Aguilera A. Impairment of replication fork progression mediates RNApol II transcription-associated recombination. EMBO J. 24 (2005) 1267-1276
    • (2005) EMBO J. , vol.24 , pp. 1267-1276
    • Prado, F.1    Aguilera, A.2
  • 142
    • 0034329461 scopus 로고    scopus 로고
    • A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae
    • Chavez S., Beilharz T., Rondon A.G., Erdjument-Bromage H., Tempst P., Svejstrup J.Q., Lithgow T., and Aguilera A. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19 (2000) 5824-5834
    • (2000) EMBO J. , vol.19 , pp. 5824-5834
    • Chavez, S.1    Beilharz, T.2    Rondon, A.G.3    Erdjument-Bromage, H.4    Tempst, P.5    Svejstrup, J.Q.6    Lithgow, T.7    Aguilera, A.8
  • 143
    • 0010173139 scopus 로고    scopus 로고
    • A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination
    • Piruat J.I., and Aguilera A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 17 (1998) 4859-4872
    • (1998) EMBO J. , vol.17 , pp. 4859-4872
    • Piruat, J.I.1    Aguilera, A.2
  • 145
    • 20444366920 scopus 로고    scopus 로고
    • Interdependence between transcription and mRNP processing and export, and its impact on genetic stability
    • Luna R., Jimeno S., Marin M., Huertas P., Garcia-Rubio M., and Aguilera A. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol. Cell 18 (2005) 711-722
    • (2005) Mol. Cell , vol.18 , pp. 711-722
    • Luna, R.1    Jimeno, S.2    Marin, M.3    Huertas, P.4    Garcia-Rubio, M.5    Aguilera, A.6
  • 146
    • 0031439267 scopus 로고    scopus 로고
    • The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability
    • Chavez S., and Aguilera A. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11 (1997) 3459-3470
    • (1997) Genes Dev. , vol.11 , pp. 3459-3470
    • Chavez, S.1    Aguilera, A.2
  • 147
    • 33645823661 scopus 로고    scopus 로고
    • Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex
    • Wellinger R.E., Prado F., and Aguilera A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell. Biol. 26 (2006) 3327-3334
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 3327-3334
    • Wellinger, R.E.1    Prado, F.2    Aguilera, A.3
  • 148
    • 0348047324 scopus 로고    scopus 로고
    • RecA-dependent recovery of arrested DNA replication forks
    • Courcelle J., and Hanawalt P.C. RecA-dependent recovery of arrested DNA replication forks. Annu. Rev. Genet. 37 (2003) 611-646
    • (2003) Annu. Rev. Genet. , vol.37 , pp. 611-646
    • Courcelle, J.1    Hanawalt, P.C.2
  • 149
    • 1942535774 scopus 로고    scopus 로고
    • Links between DNA replication and recombination in prokaryotes
    • McGlynn P. Links between DNA replication and recombination in prokaryotes. Curr. Opin. Genet. Dev. 14 (2004) 107-112
    • (2004) Curr. Opin. Genet. Dev. , vol.14 , pp. 107-112
    • McGlynn, P.1
  • 150
    • 2942538589 scopus 로고    scopus 로고
    • Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity
    • Bernhardt T.G., and de Boer P.A. Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol. Microbiol. 52 (2004) 1255-1269
    • (2004) Mol. Microbiol. , vol.52 , pp. 1255-1269
    • Bernhardt, T.G.1    de Boer, P.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.