메뉴 건너뛰기




Volumn 54, Issue 2, 2022, Pages

Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy

Author keywords

architecture variants; computer vision; Generative adversarial networks; loss variants; stabilizing training

Indexed keywords

COMPUTER VISION; NETWORK ARCHITECTURE; TAXONOMIES;

EID: 85103870927     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/3439723     Document Type: Review
Times cited : (331)

References (155)
  • 2
    • 77249090732 scopus 로고    scopus 로고
    • 2010. The maximal data piling direction for discrimination
    • Jeongyoun Ahn and J. S. Marron. 2010. The maximal data piling direction for discrimination. Biometrika 97, 1 (2010), 254-259.
    • (2010) Biometrika , vol.97 , Issue.1 , pp. 254-259
    • Ahn, J.1    Marron, J.S.2
  • 5
    • 84966275544 scopus 로고
    • 1966. Minimization of functions having Lipschitz continuous first partial derivatives
    • Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16, 1 (1966), 1-3.
    • (1966) Pac. J. Math , vol.16 , Issue.1 , pp. 1-3
    • Armijo, L.1
  • 9
    • 70349655522 scopus 로고    scopus 로고
    • 2009. PatchMatch: A randomized correspondence algorithm for structural image editing
    • Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Goldman. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3 (2009), 24.
    • (2009) Acm Trans. Graph , vol.28 , Issue.3 , pp. 24
    • Barnes, C.1    Shechtman, E.2    Finkelstein, A.3    Goldman, D.B4
  • 12
    • 85059349532 scopus 로고    scopus 로고
    • 2019. Pros and cons of GAN evaluation measures
    • Ali Borji. 2019. Pros and cons of GAN evaluation measures. Comput. Vis. Image Understand. 179 (2019), 41-65.
    • Comput. Vis. Image Understand , vol.179 , Issue.2019 , pp. 41-65
    • Borji, A.1
  • 16
    • 0020737631 scopus 로고
    • 1983. The laplacian pyramid as a compact image code
    • Peter Burt and Edward Adelson. 1983. The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 4 (1983), 532-540.
    • (1983) Ieee Trans. Commun , vol.31 , Issue.4 , pp. 532-540
    • Burt, P.1    Adelson, E.2
  • 36
    • 0032027444 scopus 로고    scopus 로고
    • 1998. Stability and euler approximation of one-sided lipschitz differential inclusions
    • Tzanko Donchev and Elza Farkhi. 1998. Stability and euler approximation of one-sided lipschitz differential inclusions. SIAM J. Contr. Optim. 36, 2 (1998), 780-796.
    • (1998) Siam J. Contr. Optim , vol.36 , Issue.2 , pp. 780-796
    • Donchev, T.1    Farkhi, E.2
  • 42
    • 0011339337 scopus 로고
    • 1977. Optimization of Lipschitz continuous functions
    • A. A. Goldstein. 1977. Optimization of Lipschitz continuous functions. Math. Program. 13, 1 (1977), 14-22.
    • (1977) Math. Program , vol.13 , Issue.1 , pp. 14-22
    • Goldstein, A.A.1
  • 52
    • 85062420736 scopus 로고    scopus 로고
    • 2019. How generative adversarial networks and their variants work: An overview
    • Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. 2019. How generative adversarial networks and their variants work: An overview. ACM Comput. Surv. 52, 1 (2019), 10.
    • (2019) Acm Comput. Surv , vol.52 , Issue.1 , pp. 10
    • Hong, Y.1    Hwang, U.2    Yoo, J.3    Yoon, S.4
  • 54
    • 85087331747 scopus 로고    scopus 로고
    • 2014. Image completion using planar structure guidance
    • Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. 2014. Image completion using planar structure guidance. ACM Trans. Graph. 33, 4 (2014), 1-10.
    • (2014) Acm Trans. Graph , vol.33 , Issue.4 , pp. 1-10
    • Huang, J.1    Bing Kang, S.2    Ahuja, N.3    Kopf, J.4
  • 55
    • 85030751884 scopus 로고    scopus 로고
    • 2017. Globally and locally consistent image completion
    • Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and locally consistent image completion. ACM Trans. Graph. 36, 4 (2017), 107.
    • (2017) Acm Trans. Graph , vol.36 , Issue.4 , pp. 107
    • Iizuka, S.1    Simo-Serra, E.2    Ishikawa, H.3
  • 73
    • 0032203257 scopus 로고    scopus 로고
    • 1998. Gradient-based learning applied to document recognition
    • Yann LeCun, Leon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278-2324.
    • (1998) Proc Ieee , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 80
    • 85068985934 scopus 로고    scopus 로고
    • arXiv:1705 02894.
    • Jae Hyun Lim and Jong Chul Ye. 2017. Geometric GAN. arXiv:1705.02894. Retrieved from https://arxiv.org/abs/1705. 02894.
    • (2017) Geometric Gan
    • Hyun Lim, J.1    Chul Ye, J.2
  • 81
    • 84866013178 scopus 로고    scopus 로고
    • 2013. Online and offline handwritten chinese character recognition: Benchmarking on new databases
    • Cheng-Lin Liu, Fei Yin, Da-HanWang, and Qiu-FengWang. 2013. Online and offline handwritten chinese character recognition: Benchmarking on new databases. Pattern Recogn. 46, 1 (2013), 155-162.
    • (2013) Pattern Recogn , vol.46 , Issue.1 , pp. 155-162
    • Liu, C.1    Yin, F.2    Wang, D.3    Wang, Q.4
  • 91
    • 85056921498 scopus 로고    scopus 로고
    • 2019. Image super-resolution using progressive generative adversarial networks for medical image analysis
    • Dwarikanath Mahapatra, Behzad Bozorgtabar, and Rahil Garnavi. 2019. Image super-resolution using progressive generative adversarial networks for medical image analysis. Comput. Med. Imag. Graph. 71 (2019), 30-39.
    • Comput. Med. Imag. Graph , vol.71 , Issue.2019 , pp. 30-39
    • Mahapatra, D.1    Bozorgtabar, B.2    Garnavi, R.3
  • 96
    • 38349049321 scopus 로고    scopus 로고
    • 2007. Distance-weighted discrimination
    • James Stephen Marron, Michael J. Todd, and Jeongyoun Ahn. 2007. Distance-weighted discrimination. J. Am. Stat. Assoc. 102, 480 (2007), 1267-1271.
    • (2007) J. Am. Stat. Assoc , vol.102 , Issue.480 , pp. 1267-1271
    • Stephen Marron, J.1    Todd, M.J.2    Ahn, J.3
  • 97
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: The sequential learning problem
    • Elsevier
    • Michael McCloskey and Neal J. Cohen. 1989. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of Learning and Motivation. Vol. 24. Elsevier, 109-165.
    • (1989) Psychology of Learning and Motivation , vol.24 , pp. 109-165
    • McCloskey, M.1    Cohen, N.J2
  • 101
    • 0010487372 scopus 로고    scopus 로고
    • 1997. Integral probability metrics and their generating classes of functions
    • Alfred Muller. 1997. Integral probability metrics and their generating classes of functions. Adv. Appl. Probab. 29, 2 (1997), 429-443.
    • (1997) Adv. Appl. Probab , vol.29 , Issue.2 , pp. 429-443
    • Muller, A.1
  • 103
    • 84888265445 scopus 로고    scopus 로고
    • 2013. On the chi square and higher-order chi distances for approximating fdivergences
    • Frank Nielsen and Richard Nock. 2013. On the chi square and higher-order chi distances for approximating fdivergences. IEEE Sign. Process. Lett. 21, 1 (2013), 10-13.
    • (2013) Ieee Sign. Process. Lett , vol.21 , Issue.1 , pp. 10-13
    • Nielsen, F.1    Nock, R.2
  • 104
    • 85018914753 scopus 로고    scopus 로고
    • 2016. f-GAN: Training generative neural samplers using variational divergence minimization
    • Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems. 271-279.
    • Advances in Neural Information Processing Systems , pp. 271-279
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 115
    • 0034313871 scopus 로고    scopus 로고
    • 2000. The earth movers distance as a metric for image retrieval
    • Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth movers distance as a metric for image retrieval. Int. J. Comput. Vis. 40, 2 (2000), 99-121.
    • (2000) Int. J. Comput. Vis , vol.40 , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J3
  • 118
    • 85017457992 scopus 로고    scopus 로고
    • 2016.Weight normalization: A simple reparameterization to accelerate training of deep neural networks
    • Tim Salimans and Durk P. Kingma. 2016.Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In Advances in Neural Information Processing Systems. 901-909.
    • Advances in Neural Information Processing Systems , pp. 901-909
    • Salimans, T.1    Kingma, D.P2
  • 127
    • 79951782530 scopus 로고    scopus 로고
    • Computing machinery and intelligence
    • Springer
    • Alan M. Turing. 2009. Computing machinery and intelligence. In Parsing the Turing Test. Springer, 23-65.
    • (2009) Parsing the Turing Test , pp. 23-65
    • Alan, M.T.1
  • 131
    • 85029816456 scopus 로고    scopus 로고
    • 2017. Generative adversarial networks: Introduction and outlook
    • Kunfeng Wang, Chao Gou, Yanjie Duan, Yilun Lin, Xinhu Zheng, and Fei-Yue Wang. 2017. Generative adversarial networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 4, 4 (2017), 588-598.
    • (2017) IEEE/CAA J. Autom. Sin , vol.4 , Issue.4 , pp. 588-598
    • Wang, K.1    Gou, C.2    Duan, Y.3    Lin, Y.4    Zheng, X.5    Wang, F.6
  • 134
    • 85070320422 scopus 로고    scopus 로고
    • 2020. Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation
    • Zhengwei Wang, Graham Healy, Alan F. Smeaton, and Tomas E. Ward. 2020. Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cogn. Comput. 12, 1 (2020), 13-24.
    • (2020) Cogn. Comput , vol.12 , Issue.1 , pp. 13-24
    • Wang, Z.1    Healy, G.2    Smeaton, A.F.3    Ward, T.E4
  • 135
    • 85084960494 scopus 로고    scopus 로고
    • 2020. Synthetic-neuroscore: Using a neuro-Ai interface for evaluating generative adversarial networks
    • ZhengweiWang, Qi She, Alan F. Smeaton, Tomas E.Ward, and Graham Healy. 2020. Synthetic-neuroscore: Using a neuro-Ai interface for evaluating generative adversarial networks. Neurocomputing 405 (2020), 26-36.
    • Neurocomputing , vol.405 , Issue.2020 , pp. 26-36
    • Wang, Z.1    She, Q.2    Smeaton, A.F.3    Tomas, E.Ward4    Healy, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.