-
2
-
-
85047016172
-
Wasserstein generative adversarial networks
-
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML, 2017.
-
(2017)
ICML
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
3
-
-
85047010071
-
-
arXiv preprint arXiv:1705.10743
-
M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and R. Munos. The cramer distance as a solution to biased wasserstein gradients. arXiv preprint arXiv: 1705.10743, 2017.
-
(2017)
The Cramer Distance As A Solution to Biased Wasserstein Gradients
-
-
Bellemare, M.G.1
Danihelka, I.2
Dabney, W.3
Mohamed, S.4
Lakshminarayanan, B.5
Hoyer, S.6
Munos, R.7
-
5
-
-
85059854610
-
Cartoongan: Generative adversarial networks for photo cartoonization
-
Y. Chen, Y.-K. Lai, and Y.-J. Liu. Cartoongan: Generative adversarial networks for photo cartoonization. In CVPR, 2018.
-
(2018)
CVPR
-
-
Chen, Y.1
Lai, Y.-K.2
Liu, Y.-J.3
-
6
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Coates, A.1
Ng, A.2
Lee, H.3
-
7
-
-
85062835130
-
Segan: Segmenting and generating the invisible
-
K. Ehsani, R. Mottaghi, and A. Farhadi. Segan: Segmenting and generating the invisible. In CVPR, 2018.
-
(2018)
CVPR
-
-
Ehsani, K.1
Mottaghi, R.2
Farhadi, A.3
-
8
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
85047004943
-
Improved training of wasserstein gans
-
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein GANs. In NIPS, 2017.
-
(2017)
NIPS
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
10
-
-
85060430951
-
Optiongan: Learning joint rewardpolicy options using generative adversarial inverse reinforcement learning
-
P. Henderson, W.-D. Chang, P.-L. Bacon, D. Meger, J. Pineau, and D. Precup. Optiongan: Learning joint rewardpolicy options using generative adversarial inverse reinforcement learning. In AAAI, 2018.
-
(2018)
AAAI
-
-
Henderson, P.1
Chang, W.-D.2
Bacon, P.-L.3
Meger, D.4
Pineau, J.5
Precup, D.6
-
11
-
-
85041020882
-
Gans trained by a two time-scale update rule converge to a local nash equilibrium
-
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.
-
(2017)
NIPS
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Hochreiter, S.5
-
12
-
-
85030759098
-
Image-To-image translation with conditional adversarial nets
-
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-To-image translation with conditional adversarial nets. In CVPR, 2017.
-
(2017)
CVPR
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
14
-
-
85035231525
-
Photo-realistic single image super-resolution using a generative adversarial network
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR, 2017.
-
(2017)
CVPR
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.P.7
Tejani, A.8
Totz, J.9
Wang, Z.10
Shi, W.11
-
16
-
-
85046994653
-
Mmd gan: Towards deeper understanding of moment matching network
-
C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Poczos. Mmd gan: Towards deeper understanding of moment matching network. In NIPS, 2017.
-
(2017)
NIPS
-
-
Li, C.-L.1
Chang, W.-C.2
Cheng, Y.3
Yang, Y.4
Poczos, B.5
-
17
-
-
85061803802
-
Conditional image-To-image translation
-
J. Lin, Y. Xia, T. Qin, Z. Chen, and T.-Y. Liu. Conditional image-To-image translation. In CVPR, 2018.
-
(2018)
CVPR
-
-
Lin, J.1
Xia, Y.2
Qin, T.3
Chen, Z.4
Liu, T.-Y.5
-
18
-
-
85039149742
-
-
arXiv preprint arXiv:1611.04076
-
X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial networks. arXiv preprint arXiv: 1611.04076, 2017.
-
(2017)
Least Squares Generative Adversarial Networks
-
-
Mao, X.1
Li, Q.2
Xie, H.3
Lau, R.Y.4
Wang, Z.5
Smolley, S.P.6
-
19
-
-
85083952137
-
Deep multi-scale video prediction beyond mean square error
-
M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
-
(2016)
ICLR
-
-
Mathieu, M.1
Couprie, C.2
LeCun, Y.3
-
20
-
-
85083950959
-
Spectral normalization for generative adversarial networks
-
T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial networks. In ICLR, 2018.
-
(2018)
ICLR
-
-
Miyato, T.1
Kataoka, T.2
Koyama, M.3
Yoshida, Y.4
-
21
-
-
85083950628
-
Sobolev gan
-
Y. Mroueh, C.-L. Li, T. Sercu, A. Raj, and Y. Cheng. Sobolev GAN. In ICLR, 2018.
-
(2018)
ICLR
-
-
Mroueh, Y.1
Li, C.-L.2
Sercu, T.3
Raj, A.4
Cheng, Y.5
-
23
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2): 429-443, 1997.
-
(1997)
Advances in Applied Probability
, vol.29
, Issue.2
, pp. 429-443
-
-
Müller, A.1
-
26
-
-
84998636515
-
Generative adversarial text to image synthesis
-
S. Reed, Z. Akata, L. X. Yan, B. Logeswaran, Schiele, and H. Lee. Generative adversarial text to image synthesis. In ICML, 2016.
-
(2016)
ICML
-
-
Reed, S.1
Akata, Z.2
Yan, L.X.3
Logeswaran Schiele, B.4
Lee, H.5
-
27
-
-
85018875486
-
Improved techniques for training gans
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. In NIPS, 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
28
-
-
85061700721
-
Vital: Visual tracking via adversarial learning
-
Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. Lau, and M.-H. Yang. Vital: Visual tracking via adversarial learning. In CVPR, 2018.
-
(2018)
CVPR
-
-
Song, Y.1
Ma, C.2
Wu, X.3
Gong, L.4
Bao, L.5
Zuo, W.6
Shen, C.7
Lau, R.8
Yang, M.-H.9
-
29
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016.
-
(2016)
CVPR
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
31
-
-
85057281837
-
Chisquare generative adversarial network
-
C. Tao, L. Chen, R. Henao, J. Feng, and L. C. Duke. Chisquare generative adversarial network. In ICML, 2018.
-
(2018)
ICML
-
-
Tao, C.1
Chen, L.2
Henao, R.3
Feng, J.4
Duke, L.C.5
-
32
-
-
85169797242
-
Coulomb gans: Provably optimal nash equilibria via potential fields
-
T. Unterthiner, B. Nessler, C. Seward, G. Klambauer, M. Heusel, H. Ramsauer, and S. Hochreiter. Coulomb GANs: Provably optimal nash equilibria via potential fields. In ICLR, 2018.
-
(2018)
ICLR
-
-
Unterthiner, T.1
Nessler, B.2
Seward, C.3
Klambauer, G.4
Heusel, M.5
Ramsauer, H.6
Hochreiter, S.7
-
34
-
-
85019264996
-
Generative image modeling using style and structure adversarial networks
-
X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Wang, X.1
Gupta, A.2
-
35
-
-
85041931708
-
A-fast-rcnn: Hard positive generation via adversary for object detection
-
X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard positive generation via adversary for object detection. In CVPR, 2017.
-
(2017)
CVPR
-
-
Wang, X.1
Shrivastava, A.2
Gupta, A.3
-
36
-
-
85048385339
-
Improving generative adversarial networks with denoising feature matching
-
D. Warde-Farley and Y. Bengio. Improving generative adversarial networks with denoising feature matching. In ICLR, 2017.
-
(2017)
ICLR
-
-
Warde-Farley, D.1
Bengio, Y.2
-
37
-
-
85055104337
-
Improving the improved training of wasserstein gans
-
X. Wei, Z. Liu, L. Wang, and B. Gong. Improving the improved training of wasserstein GANs. In ICLR, 2018.
-
(2018)
ICLR
-
-
Wei, X.1
Liu, Z.2
Wang, L.3
Gong, B.4
-
38
-
-
84979976120
-
-
arXiv preprint arXiv:1506.03365
-
F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv: 1506.03365, 2015.
-
(2015)
Lsun: Construction of A Large-scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Seff, A.2
Zhang, Y.3
Song, S.4
Funkhouser, T.5
Xiao, J.6
-
39
-
-
85057942225
-
Generative image inpainting with contextual attention
-
J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting with contextual attention. In CVPR, 2018.
-
(2018)
CVPR
-
-
Yu, J.1
Lin, Z.2
Yang, J.3
Shen, X.4
Lu, X.5
Huang, T.S.6
-
40
-
-
85058783644
-
Translating and segmenting multimodal medical volumes with cycle-And shapeconsistency generative adversarial network
-
Z. Zhang, L. Yang, and Y. Zheng. Translating and segmenting multimodal medical volumes with cycle-And shapeconsistency generative adversarial network. In CVPR, 2018.
-
(2018)
CVPR
-
-
Zhang, Z.1
Yang, L.2
Zheng, Y.3
-
41
-
-
85087518435
-
Energy-based generative adversarial network
-
J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.
-
(2017)
ICLR
-
-
Zhao, J.1
Mathieu, M.2
LeCun, Y.3
|