메뉴 건너뛰기




Volumn 2019-June, Issue , 2019, Pages 4287-4296

Sphere generative adversarial network based on geometric moment matching

Author keywords

Deep Learning; Image and Video Synthesis

Indexed keywords

COMPUTER VISION; DEEP LEARNING; HIGHER ORDER STATISTICS;

EID: 85078775815     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2019.00442     Document Type: Conference Paper
Times cited : (47)

References (41)
  • 1
    • 85083951011 scopus 로고    scopus 로고
    • Learning representations and generative models for 3d point clouds
    • P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning representations and generative models for 3D point clouds. In ICLR, 2018.
    • (2018) ICLR
    • Achlioptas, P.1    Diamanti, O.2    Mitliagkas, I.3    Guibas, L.4
  • 2
    • 85047016172 scopus 로고    scopus 로고
    • Wasserstein generative adversarial networks
    • M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML, 2017.
    • (2017) ICML
    • Arjovsky, M.1    Chintala, S.2    Bottou, L.3
  • 5
    • 85059854610 scopus 로고    scopus 로고
    • Cartoongan: Generative adversarial networks for photo cartoonization
    • Y. Chen, Y.-K. Lai, and Y.-J. Liu. Cartoongan: Generative adversarial networks for photo cartoonization. In CVPR, 2018.
    • (2018) CVPR
    • Chen, Y.1    Lai, Y.-K.2    Liu, Y.-J.3
  • 6
    • 80053446757 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, 2011.
    • (2011) AISTATS
    • Coates, A.1    Ng, A.2    Lee, H.3
  • 7
    • 85062835130 scopus 로고    scopus 로고
    • Segan: Segmenting and generating the invisible
    • K. Ehsani, R. Mottaghi, and A. Farhadi. Segan: Segmenting and generating the invisible. In CVPR, 2018.
    • (2018) CVPR
    • Ehsani, K.1    Mottaghi, R.2    Farhadi, A.3
  • 10
    • 85060430951 scopus 로고    scopus 로고
    • Optiongan: Learning joint rewardpolicy options using generative adversarial inverse reinforcement learning
    • P. Henderson, W.-D. Chang, P.-L. Bacon, D. Meger, J. Pineau, and D. Precup. Optiongan: Learning joint rewardpolicy options using generative adversarial inverse reinforcement learning. In AAAI, 2018.
    • (2018) AAAI
    • Henderson, P.1    Chang, W.-D.2    Bacon, P.-L.3    Meger, D.4    Pineau, J.5    Precup, D.6
  • 11
    • 85041020882 scopus 로고    scopus 로고
    • Gans trained by a two time-scale update rule converge to a local nash equilibrium
    • M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.
    • (2017) NIPS
    • Heusel, M.1    Ramsauer, H.2    Unterthiner, T.3    Nessler, B.4    Hochreiter, S.5
  • 12
    • 85030759098 scopus 로고    scopus 로고
    • Image-To-image translation with conditional adversarial nets
    • P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-To-image translation with conditional adversarial nets. In CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 16
    • 85046994653 scopus 로고    scopus 로고
    • Mmd gan: Towards deeper understanding of moment matching network
    • C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Poczos. Mmd gan: Towards deeper understanding of moment matching network. In NIPS, 2017.
    • (2017) NIPS
    • Li, C.-L.1    Chang, W.-C.2    Cheng, Y.3    Yang, Y.4    Poczos, B.5
  • 19
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 20
    • 85083950959 scopus 로고    scopus 로고
    • Spectral normalization for generative adversarial networks
    • T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial networks. In ICLR, 2018.
    • (2018) ICLR
    • Miyato, T.1    Kataoka, T.2    Koyama, M.3    Yoshida, Y.4
  • 23
    • 0010487372 scopus 로고    scopus 로고
    • Integral probability metrics and their generating classes of functions
    • A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2): 429-443, 1997.
    • (1997) Advances in Applied Probability , vol.29 , Issue.2 , pp. 429-443
    • Müller, A.1
  • 24
    • 85083952812 scopus 로고    scopus 로고
    • On the regularization of wasserstein gans
    • H. Petzka, A. Fischer, and D. Lukovnikov. On the regularization of wasserstein GANs. In ICLR, 2018.
    • (2018) ICLR
    • Petzka, H.1    Fischer, A.2    Lukovnikov, D.3
  • 30
  • 34
    • 85019264996 scopus 로고    scopus 로고
    • Generative image modeling using style and structure adversarial networks
    • X. Wang and A. Gupta. Generative image modeling using style and structure adversarial networks. In ECCV, 2016.
    • (2016) ECCV
    • Wang, X.1    Gupta, A.2
  • 35
    • 85041931708 scopus 로고    scopus 로고
    • A-fast-rcnn: Hard positive generation via adversary for object detection
    • X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard positive generation via adversary for object detection. In CVPR, 2017.
    • (2017) CVPR
    • Wang, X.1    Shrivastava, A.2    Gupta, A.3
  • 36
    • 85048385339 scopus 로고    scopus 로고
    • Improving generative adversarial networks with denoising feature matching
    • D. Warde-Farley and Y. Bengio. Improving generative adversarial networks with denoising feature matching. In ICLR, 2017.
    • (2017) ICLR
    • Warde-Farley, D.1    Bengio, Y.2
  • 37
    • 85055104337 scopus 로고    scopus 로고
    • Improving the improved training of wasserstein gans
    • X. Wei, Z. Liu, L. Wang, and B. Gong. Improving the improved training of wasserstein GANs. In ICLR, 2018.
    • (2018) ICLR
    • Wei, X.1    Liu, Z.2    Wang, L.3    Gong, B.4
  • 39
    • 85057942225 scopus 로고    scopus 로고
    • Generative image inpainting with contextual attention
    • J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative image inpainting with contextual attention. In CVPR, 2018.
    • (2018) CVPR
    • Yu, J.1    Lin, Z.2    Yang, J.3    Shen, X.4    Lu, X.5    Huang, T.S.6
  • 40
    • 85058783644 scopus 로고    scopus 로고
    • Translating and segmenting multimodal medical volumes with cycle-And shapeconsistency generative adversarial network
    • Z. Zhang, L. Yang, and Y. Zheng. Translating and segmenting multimodal medical volumes with cycle-And shapeconsistency generative adversarial network. In CVPR, 2018.
    • (2018) CVPR
    • Zhang, Z.1    Yang, L.2    Zheng, Y.3
  • 41
    • 85087518435 scopus 로고    scopus 로고
    • Energy-based generative adversarial network
    • J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.
    • (2017) ICLR
    • Zhao, J.1    Mathieu, M.2    LeCun, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.