메뉴 건너뛰기




Volumn 52, Issue 1, 2020, Pages

How generative adversarial networks and their variants work: An overview

Author keywords

Domain adaptation; Generative adversarial networks; Integral probability metric; Mode collapse; Semi supervised learning; Variational auto encoder

Indexed keywords

LEARNING ALGORITHMS; NETWORK CODING; SUPERVISED LEARNING;

EID: 85062420736     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/3301282     Document Type: Review
Times cited : (302)

References (146)
  • 1
  • 29
    • 0001782017 scopus 로고
    • On conjugate convex functions
    • 1949
    • Werner Fenchel. 1949. On conjugate convex functions. Canadian Journal of Mathematics 1, 73–77 (1949).
    • (1949) Canadian Journal of Mathematics , vol.1 , pp. 73-77
    • Fenchel, W.1
  • 43
    • 0000984295 scopus 로고
    • Kantorovich-rubinstein norm and its application in the theory of Lipschitz spaces
    • 1992
    • Leonid G. Hanin. 1992. Kantorovich-rubinstein norm and its application in the theory of Lipschitz spaces. Proc. Amer. Math. Soc. 115, 2 (1992), 345–352.
    • (1992) Proc. Amer. Math. Soc. , vol.115 , Issue.2 , pp. 345-352
    • Hanin, L.G.1
  • 45
    • 85018872345 scopus 로고    scopus 로고
    • Generative adversarial imitation learning
    • Curran Associates
    • Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning. In Advances in Neural Information Processing Systems. Curran Associates, 4565–4573.
    • (2016) Advances in Neural Information Processing Systems , pp. 4565-4573
    • Ho, J.1    Ermon, S.2
  • 46
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • 1997
    • Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 53
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • 1957
    • Edwin T. Jaynes. 1957. Information theory and statistical mechanics. Physical Review 106, 4 (1957), 620.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620
    • Jaynes, E.T.1
  • 69
    • 85054310187 scopus 로고    scopus 로고
    • Perceptual generative adversarial networks for small object detection
    • Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu, Jiashi Feng, and Shuicheng Yan. 2017. Perceptual generative adversarial networks for small object detection. In IEEE CVPR.
    • (2017) IEEE CVPR
    • Li, J.1    Liang, X.2    Wei, Y.3    Xu, T.4    Feng, J.5    Yan, S.6
  • 72
    • 85047006356 scopus 로고    scopus 로고
    • arXiv preprint 2017
    • Jae Hyun Lim and Jong Chul Ye. 2017. Geometric GAN. arXiv preprint arXiv:1705.02894 (2017).
    • (2017) Geometric GAN
    • Lim, J.H.1    Ye, J.C.2
  • 84
    • 85046275217 scopus 로고    scopus 로고
    • arXiv preprint 2017
    • Youssef Mroueh and Tom Sercu. 2017. Fisher GAN. arXiv preprint arXiv:1705.09675 (2017).
    • (2017) Fisher GAN
    • Mroueh, Y.1    Sercu, T.2
  • 86
    • 85162064389 scopus 로고    scopus 로고
    • Sample complexity of testing the manifold hypothesis
    • Curran Associates
    • Hariharan Narayanan and Sanjoy Mitter. 2010. Sample complexity of testing the manifold hypothesis. In Advances in Neural Information Processing Systems. Curran Associates, 1786–1794.
    • (2010) Advances in Neural Information Processing Systems , pp. 1786-1794
    • Narayanan, H.1    Mitter, S.2
  • 87
    • 85019234593 scopus 로고    scopus 로고
    • Synthesizing the preferred inputs for neurons in neural networks via deep generator networks
    • Curran Associates
    • Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. 2016. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In Advances in Neural Information Processing Systems. Curran Associates, 3387–3395.
    • (2016) Advances in Neural Information Processing Systems , pp. 3387-3395
    • Nguyen, A.1    Dosovitskiy, A.2    Yosinski, J.3    Brox, T.4    Clune, J.5
  • 89
    • 85018914753 scopus 로고    scopus 로고
    • F-GAN: Training generative neural samplers using variational divergence minimization
    • Curran Associates
    • Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training generative neural samplers using variational divergence minimization. In Advances in Neural Information Processing Systems. Curran Associates, 271–279.
    • (2016) Advances in Neural Information Processing Systems , pp. 271-279
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 103
    • 0002605356 scopus 로고
    • A central limit theorem and a strong mixing condition
    • 1956
    • Murray Rosenblatt. 1956. A central limit theorem and a strong mixing condition. Proceedings of the National Academy of Sciences 42, 1 (1956), 43–47.
    • (1956) Proceedings of The National Academy of Sciences , vol.42 , Issue.1 , pp. 43-47
    • Rosenblatt, M.1
  • 120
    • 0001467706 scopus 로고
    • A note on the Marcinkiewicz integral
    • Alberto Torchinsky and Shilin Wang. 1990. A note on the Marcinkiewicz integral. In Colloquium Mathematicae, Vol. 1. 235–243.
    • (1990) Colloquium Mathematicae , vol.1 , pp. 235-243
    • Torchinsky, A.1    Wang, S.2
  • 127
    • 85046801720 scopus 로고    scopus 로고
    • Perceptual adversarial networks for image-to-image transformation
    • 2018
    • Chaoyue Wang, Chang Xu, Chaohui Wang, and Dacheng Tao. 2018. Perceptual adversarial networks for image-to-image transformation. IEEE Transactions on Image Processing 27, 8 (2018), 4066–4079.
    • (2018) IEEE Transactions on Image Processing , vol.27 , Issue.8 , pp. 4066-4079
    • Wang, C.1    Xu, C.2    Wang, C.3    Tao, D.4
  • 129
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • 2004
    • Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4 (2004), 600–612.
    • (2004) IEEE Transactions on Image Processing , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 130
    • 85205851928 scopus 로고    scopus 로고
    • Department of Computer Science, University of Toronto, 2005
    • Max Welling. 2005. Fisher linear discriminant analysis.Department of Computer Science, University of Toronto, 3, 1 (2005).
    • (2005) Fisher Linear Discriminant Analysis , vol.3 , pp. 1
    • Welling, M.1
  • 133
    • 85016159876 scopus 로고    scopus 로고
    • Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
    • Curran Associates
    • Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in Neural Information Processing Systems. Curran Associates, 82–90.
    • (2016) Advances in Neural Information Processing Systems , pp. 82-90
    • Wu, J.1    Zhang, C.2    Xue, T.3    Freeman, B.4    Tenenbaum, J.5
  • 141
    • 85029367626 scopus 로고    scopus 로고
    • SeqGAN: Sequence generative adversarial nets with policy gradient
    • Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy gradient. In AAAI. 2852–2858.
    • (2017) AAAI , pp. 2852-2858
    • Yu, L.1    Zhang, W.2    Wang, J.3    Yu, Y.4
  • 146
    • 85148975703 scopus 로고    scopus 로고
    • Maximum entropy inverse reinforcement learning
    • Chicago, IL
    • Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. 2008. Maximum entropy inverse reinforcement learning. In AAAI, Vol. 8. Chicago, IL, 1433–1438.
    • (2008) AAAI , vol.8 , pp. 1433-1438
    • Ziebart, B.D.1    Maas, A.L.2    Bagnell, J.A.3    Dey, A.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.