메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 193-202

Object contour detection with a fully convolutional encoder-decoder network

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DECODING; EDGE DETECTION; IMAGE MATCHING; OBJECT DETECTION;

EID: 84986265719     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.28     Document Type: Conference Paper
Times cited : (415)

References (53)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 34: 2189-2202, 2012.
    • (2012) PAMI , vol.34 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 2
    • 84924221143 scopus 로고    scopus 로고
    • Monocular extraction of 2. 1 D sketch using constrained convex optimization
    • M. R. Amer, S. Yousefi, R. Raich, and S. Todorovic. Monocular extraction of 2. 1 D sketch using constrained convex optimization. IJCV, 112 (1): 23-42, 2015.
    • (2015) IJCV , vol.112 , Issue.1 , pp. 23-42
    • Amer, M.R.1    Yousefi, S.2    Raich, R.3    Todorovic, S.4
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33 (5): 898-916, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbeláez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 5
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • J. Ba and D. Kingma. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Ba, J.1    Kingma, D.2
  • 6
    • 84959231756 scopus 로고    scopus 로고
    • Deepedge: A multiscale bifurcated deep network for top-down contour detection
    • G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multiscale bifurcated deep network for top-down contour detection. In CVPR, 2015.
    • (2015) CVPR
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 7
    • 84973888826 scopus 로고    scopus 로고
    • High-for-low and lowfor-high: Efficient boundary detection from deep object features and its applications to high-level vision
    • G. Bertasius, J. Shi, and L. Torresani. High-for-low and lowfor-high: Efficient boundary detection from deep object features and its applications to high-level vision. In ICCV, 2015.
    • (2015) ICCV
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 8
    • 0034844730 scopus 로고    scopus 로고
    • Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images
    • Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In ICCV, 2001.
    • (2001) ICCV
    • Boykov, Y.Y.1    Jolly, M.-P.2
  • 9
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • J. Canny. A computational approach to edge detection. PAMI, (6): 679-698, 1986.
    • (1986) PAMI , Issue.6 , pp. 679-698
    • Canny, J.1
  • 10
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, 2010.
    • (2010) CVPR
    • Carreira, J.1    Sminchisescu, C.2
  • 12
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014.
    • (2014) CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.4
  • 13
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollár and C. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollár, P.1    Zitnick, C.2
  • 14
    • 79851509694 scopus 로고    scopus 로고
    • Category independent object proposals
    • I. Endres and D. Hoiem. Category independent object proposals. In ECCV, 2010.
    • (2010) ECCV
    • Endres, I.1    Hoiem, D.2
  • 16
    • 36448974509 scopus 로고    scopus 로고
    • Groups of adjacent contour segments for object detection
    • V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments for object detection. PAMI, 30 (1): 36-51, 2008.
    • (2008) PAMI , vol.30 , Issue.1 , pp. 36-51
    • Ferrari, V.1    Fevrier, L.2    Jurie, F.3    Schmid, C.4
  • 18
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 22
    • 50649107653 scopus 로고    scopus 로고
    • Recovering occlusion boundaries from a single image
    • D. Hoiem, A. N. Stein, A. Efros, and M. Hebert. Recovering occlusion boundaries from a single image. In ICCV, 2007.
    • (2007) ICCV
    • Hoiem, D.1    Stein, A.N.2    Efros, A.3    Hebert, M.4
  • 24
    • 84911456672 scopus 로고    scopus 로고
    • RIGOR: Reusing inference in graph cuts for generating object regions
    • A. Humayun, F. Li, and J. M. Rehg. RIGOR: Reusing inference in graph cuts for generating object regions. In CVPR, 2014.
    • (2014) CVPR
    • Humayun, A.1    Li, F.2    Rehg, J.M.3
  • 26
    • 84887362370 scopus 로고    scopus 로고
    • Shape sharing for object segmentation
    • J. Kim and K. Grauman. Shape sharing for object segmentation. In ECCV, 2012.
    • (2012) ECCV
    • Kim, J.1    Grauman, K.2
  • 27
    • 84959243006 scopus 로고    scopus 로고
    • Visual boundary prediction: A deep neural prediction network and quality dissection
    • J. J. Kivinen, C. K. Williams, and N. Heess. Visual boundary prediction: A deep neural prediction network and quality dissection. In AISTATS, 2014.
    • (2014) AISTATS
    • Kivinen, J.J.1    Williams, C.K.2    Heess, N.3
  • 28
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 30
  • 31
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 32
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.J.1    Zitnick, C.L.2    Dollár, P.3
  • 34
    • 84959243193 scopus 로고    scopus 로고
    • Multi-objective convolutional learning for face labeling
    • S. Liu, J. Yang, C. Huang, and M.-H. Yang. Multi-objective convolutional learning for face labeling. In CVPR, 2015.
    • (2015) CVPR
    • Liu, S.1    Yang, J.2    Huang, C.3    Yang, M.-H.4
  • 35
    • 84973860883 scopus 로고    scopus 로고
    • Semantic image segmentation via deep parsing network
    • Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic image segmentation via deep parsing network. In ICCV, 2015.
    • (2015) ICCV
    • Liu, Z.1    Li, X.2    Luo, P.3    Loy, C.C.4    Tang, X.5
  • 36
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 37
    • 0035358181 scopus 로고    scopus 로고
    • Contour and texture analysis for image segmentation
    • J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmentation. IJCV, 2001.
    • (2001) IJCV
    • Malik, J.1    Belongie, S.2    Leung, T.3    Shi, J.4
  • 38
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 39
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26 (5): 530-549, 2004.
    • (2004) PAMI , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.R.1    Fowlkes, C.C.2    Malik, J.3
  • 40
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 42
    • 84973926509 scopus 로고    scopus 로고
    • Boosting object proposals: From Pascal to COCO
    • J. Pont-Tuset and L. J. V. Gool. Boosting object proposals: From Pascal to COCO. In ICCV, 2015.
    • (2015) ICCV
    • Pont-Tuset, J.1    Gool, L.J.V.2
  • 43
    • 84911429815 scopus 로고    scopus 로고
    • Generating object segmentation proposals using global and local search
    • P. Rantalankila, J. Kannala, and E. Rahtu. Generating object segmentation proposals using global and local search. In CVPR, 2014.
    • (2014) CVPR
    • Rantalankila, P.1    Kannala, J.2    Rahtu, E.3
  • 45
  • 46
    • 84944761614 scopus 로고    scopus 로고
    • Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection
    • W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection. In CVPR, 2015.
    • (2015) CVPR
    • Shen, W.1    Wang, X.2    Wang, Y.3    Bai, X.4    Zhang, Z.5
  • 47
    • 85009847526 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • N. Silberman, P. Kohli, D. Hoiem, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
    • (2012) ECCV
    • Silberman, N.1    Kohli, P.2    Hoiem, D.3    Fergus, R.4
  • 48
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 49
    • 84959193626 scopus 로고    scopus 로고
    • Situational object boundary detection
    • J. Uijlings and V. Ferrar. Situational object boundary detection. In CVPR, 2015.
    • (2015) CVPR
    • Uijlings, J.1    Ferrar, V.2
  • 51
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2
  • 53
    • 85009853104 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edge
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edge. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.