-
2
-
-
84991208650
-
Training generative neural networks via maximum mean discrepancy optimization
-
1505.03906
-
Dziugaite, Gintare Karolina, Roy, Daniel M., and Ghahramani, Zoubin. Training generative neural networks via maximum mean discrepancy optimization. CoRR, abs/1505.03906, 2015.
-
(2015)
CoRR
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
3
-
-
85019185445
-
Stochastic optimization for large-scale optimal transport
-
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. eds., Curran Associates, Inc.
-
Genevay, Aude, Cuturi, Marco, Peyré, Gabriel, and Bach, Francis. Stochastic optimization for large-scale optimal transport. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp. 3440-3448. Curran Associates, Inc., 2016.
-
(2016)
Advances in Neural Information Processing Systems
, vol.29
, pp. 3440-3448
-
-
Genevay, A.1
Cuturi, M.2
Peyré, G.3
Bach, F.4
-
4
-
-
84937849144
-
Generative adversarial nets
-
Curran Associates, Inc.
-
Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mchdi, Xu, Bing, Wardc-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In Advances in Neural Information Processing Systems 27, pp. 2672-2680. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 2672-2680
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Wardc-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
5
-
-
84859477054
-
A kernel two-sample test
-
Gretton, Arthur, Borgwardt, Karsten M., Rasch, Malte J., Schölkopf, Bernhard, and Smola, Alexander. A kernel two-sample test. J. Mach. Learn. Res., 13:723-773, 2012. ISSN 1532-4435.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
6
-
-
85046996442
-
How (not) to train your generative model: Scheduled sampling, likelihood, adversary?
-
1511.05101
-
Huszar, Ferene. How (not) to train your generative model: Scheduled sampling, likelihood, adversary? CoRR, abs/1511.05101, 2015.
-
(2015)
CoRR
-
-
Huszar, F.1
-
7
-
-
0000637549
-
Concrete representation of abstract (m) - Spaces (a characterization of the space of continuous functions)
-
Kakutani, Shizuo. Concrete representation of abstract (m) - spaces (a characterization of the space of continuous functions). Annals of Mathematics, 42(4):994-1024, 1941.
-
(1941)
Annals of Mathematics
, vol.42
, Issue.4
, pp. 994-1024
-
-
Kakutani, S.1
-
8
-
-
85083951076
-
Adam: A method for stochastic optimization
-
1412.6980
-
Kingma, Diederik P. and Ba, Jimmy. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
9
-
-
84959248509
-
Auto-encoding variational bayes
-
1312.6114
-
Kingma, Diederik P. and Welling, Max. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.
-
(2013)
CoRR
-
-
Kingma, D.P.1
Welling, M.2
-
10
-
-
84970016114
-
Generative moment matching networks
-
JMLR Workshop and Conference Proceedings
-
Li, Yujia, Swersky, Kevin, and Zemel, Rich. Generative moment matching networks. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1718-1727. JMLR Workshop and Conference Proceedings, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1718-1727
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
11
-
-
85047013332
-
Unrolled generative adversarial networks
-
1611.02163
-
Metz, Luke, Poole, Ben, Pfau, David, and Sohl-Dickstein, Jascha. Unrolled generative adversarial networks. Corr, abs/1611.02163, 2016.
-
(2016)
Corr
-
-
Metz, L.1
Poole, B.2
Pfau, D.3
Sohl-Dickstein, J.4
-
12
-
-
0036212678
-
Envelope theorems for arbitrary choice sets
-
Milgrom, Paul and Segal, Ilya. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583-601, 2002. ISSN 1468-0262.
-
(2002)
Econometrica
, vol.70
, Issue.2
, pp. 583-601
-
-
Milgrom, P.1
Segal, I.2
-
13
-
-
84999036937
-
Asynchronous methods for deep reinforcement learning
-
New York City, NY, USA, June 19-24, 2016
-
Mnih, Volodymyr, Badia, Adrià Puigdomènech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy P., Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforcement learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 1928-1937, 2016.
-
(2016)
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016
, pp. 1928-1937
-
-
Mnih, V.1
Badia, A.P.2
Mirza, M.3
Graves, A.4
Lillicrap, T.P.5
Harley, T.6
Silver, D.7
Kavukcuoglu, K.8
-
14
-
-
85019180324
-
Wasserstein training of restricted boltzmann machines
-
Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. eds., Curran Associates, Inc.
-
Montavon, Grégoire, Müller, Klaus-Robert, and Cuturi, Marco. Wasserstein training of restricted boltzmann machines. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp. 3718-3726. Curran Associates, Inc., 2016.
-
(2016)
Advances in Neural Information Processing Systems
, vol.29
, pp. 3718-3726
-
-
Montavon, G.1
Müller, K.-R.2
Cuturi, M.3
-
15
-
-
0010487372
-
Integral probability metrics and their generating classes of functions
-
Müller, Alfred. Integral probability metrics and their generating classes of functions. Advances in Applied Probability, 29(2):429-443, 1997.
-
(1997)
Advances in Applied Probability
, vol.29
, Issue.2
, pp. 429-443
-
-
Müller, A.1
-
16
-
-
0000273048
-
Annealed importance sampling
-
April
-
Neal, Radford M. Annealed importance sampling. Statistics and Computing, 11(2):125-139, April 2001. ISSN 0960-3174.
-
(2001)
Statistics and Computing
, vol.11
, Issue.2
, pp. 125-139
-
-
Neal, R.M.1
-
17
-
-
85018914753
-
-
Nowozin, Sebastian, Cseke, Botond, and Tomioka, Ryota. f-gan: Training generative neural samplers using variational divergence minimization, pp. 271-279, 2016.
-
(2016)
F-gan: Training Generative Neural Samplers Using Variational Divergence Minimization
, pp. 271-279
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
18
-
-
84978298377
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
1511.06434
-
Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
-
(2015)
CoRR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
19
-
-
85048659713
-
On the high-dimensional power of linear-time kernel twosample testing under mean-difference alternatives
-
1411.6314
-
Ramdas, Aaditya, Reddi, Sashank J., Poczos, Barnabas, Singh, Aarti, and Wasserman, Larry. On the high-dimensional power of linear-time kernel twosample testing under mean-difference alternatives. Corr, abs/1411.6314, 2014.
-
(2014)
Corr
-
-
Ramdas, A.1
Reddi, S.J.2
Poczos, B.3
Singh, A.4
Wasserman, L.5
-
20
-
-
85088227458
-
Generative models and model criticism via optimized maximum mean discrepancy
-
Sutherland, Dougal J, Tung, Hsiao-Yu, Strathmann, Heiko, De, Soumyajit, Ramdas, Aaditya, Smola, Alex, and Gretton, Arthur. Generative models and model criticism via optimized maximum mean discrepancy. In International Conference on Learning Representations, 2017.
-
(2017)
International Conference on Learning Representations
-
-
Sutherland, D.J.1
Tung, H.-Y.2
Strathmann, H.3
De, S.4
Ramdas, A.5
Smola, A.6
Gretton, A.7
-
22
-
-
37349070894
-
-
Grundlehren der mathematischen Wissenschaften. Springer, Berlin
-
Villani, Cedric. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 2009.
-
(2009)
Optimal Transport: Old and New
-
-
Villani, C.1
-
23
-
-
85048654890
-
On the quantitative analysis of decoder-based generative models
-
1611.04273
-
Wu, Yuhuai, Burda, Yuri, Salakhutdinov, Ruslan, and Grosse, Roger B. On the quantitative analysis of decoder-based generative models. CoRR, abs/1611.04273, 2016.
-
(2016)
CoRR
-
-
Wu, Y.1
Burda, Y.2
Salakhutdinov, R.3
Grosse, R.B.4
-
24
-
-
85018506849
-
LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop
-
1506.03365
-
Yu, Fisher, Zhang, Yinda, Song, Shuran, Seff, Ari, and Xiao, Jianxiong. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. Corr, abs/1506.03365, 2015.
-
(2015)
Corr
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
-
25
-
-
85026325239
-
Energy-based generative adversarial network
-
1609.03126
-
Zhao, Junbo, Mathieu, Michael, and LeCun, Yann. Energy-based generative adversarial network. Corr, abs/1609.03126, 2016.
-
(2016)
Corr
-
-
Zhao, J.1
Mathieu, M.2
LeCun, Y.3
|