메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages 1040-1050

Semi-supervised QA with generative domain-adaptive nets

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; REINFORCEMENT LEARNING;

EID: 85040946940     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/P17-1096     Document Type: Conference Paper
Times cited : (140)

References (46)
  • 1
    • 85040908523 scopus 로고    scopus 로고
    • https://doi.org/10.18653/v1/P17-1096
  • 2
    • 84898798212 scopus 로고    scopus 로고
    • Unsupervised domain adaptation by domain invariant projection
    • Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salzmann. 2013. Unsupervised domain adaptation by domain invariant projection. In ICCV. pages 769-776.
    • (2013) ICCV , pp. 769-776
    • Baktashmotlagh, M.1    Harandi, M.T.2    Lovell, B.C.3    Salzmann, M.4
  • 3
    • 84904308637 scopus 로고    scopus 로고
    • Semantic parsing on freebase from question-answer pairs
    • Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on freebase from question-answer pairs. In EMNLP.
    • (2013) EMNLP
    • Berant, J.1    Chou, A.2    Frostig, R.3    Liang, P.4
  • 9
    • 84859918687 scopus 로고    scopus 로고
    • Incorporating non-local information into information extraction systems by gibbs sampling
    • Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction systems by gibbs sampling. In ACL. Association for Computational Linguistics, pages 363-370.
    • (2005) ACL. Association for Computational Linguistics , pp. 363-370
    • Finkel, J.R.1    Grenager, T.2    Manning, C.3
  • 11
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML. pages 513-520.
    • (2011) ICML , pp. 513-520
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 12
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grau-man. 2012. Geodesic flow kernel for unsupervised domain adaptation. In CVPR. IEEE, pages 2066-2073.
    • (2012) CVPR. IEEE , pp. 2066-2073
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 14
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Raghuraman Gopalan, Ruonan Li, and Rama Chel-lappa. 2011. Domain adaptation for object recognition: An unsupervised approach. In ICCV. IEEE, pages 999-1006.
    • (2011) ICCV. IEEE , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 20
    • 84930643107 scopus 로고    scopus 로고
    • Semi-supervised learning with deep generative models
    • Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. 2014. Semi-supervised learning with deep generative models. In NIPS. pages 3581-3589.
    • (2014) NIPS , pp. 3581-3589
    • Kingma, D.P.1    Mohamed, S.2    Rezende, D.J.3    Welling, M.4
  • 21
    • 84969549144 scopus 로고    scopus 로고
    • Learning transferable features with deep adaptation networks
    • Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. 2015. Learning transferable features with deep adaptation networks. In ICML. pages 97-105.
    • (2015) ICML , pp. 97-105
    • Long, M.1    Cao, Y.2    Wang, J.3    Jordan, M.I.4
  • 24
    • 85071396128 scopus 로고    scopus 로고
    • Squad: 100,000+ questions for machine comprehension of text
    • Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. In EMNLP.
    • (2016) EMNLP
    • Rajpurkar, P.1    Zhang, J.2    Lopyrev, K.3    Liang, P.4
  • 25
    • 84965136229 scopus 로고    scopus 로고
    • Semi-supervised learning with ladder networks
    • Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. 2015. Semi-supervised learning with ladder networks. In NIPS. pages 3546-3554.
    • (2015) NIPS , pp. 3546-3554
    • Rasmus, A.1    Berglund, M.2    Honkala, M.3    Valpola, H.4    Raiko, T.5
  • 26
    • 84926345282 scopus 로고    scopus 로고
    • Mctest: A challenge dataset for the open-domain machine comprehension of text
    • Matthew Richardson, Christopher JC Burges, and Erin Renshaw. 2013. Mctest: A challenge dataset for the open-domain machine comprehension of text. In EMNLP. volume 3.
    • (2013) EMNLP , vol.3
    • Richardson, M.1    Burges, C.J.C.2    Renshaw, E.3
  • 29
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In NIPS. pages 3104-3112.
    • (2014) NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 33
    • 85012014142 scopus 로고    scopus 로고
    • Modeling coverage for neural machine translation
    • Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. 2016. Modeling coverage for neural machine translation. In ACL.
    • (2016) ACL
    • Tu, Z.1    Lu, Z.2    Liu, Y.3    Liu, X.4    Li, H.5
  • 34
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec
    • Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR 11(Dec):3371-3408.
    • (2010) JMLR , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 35
    • 0033661290 scopus 로고    scopus 로고
    • Building a question answering test collection
    • Ellen M Voorhees and Dawn M Tice. 2000. Building a question answering test collection. In SIGIR. ACM, pages 200-207.
    • (2000) SIGIR. ACM , pp. 200-207
    • Voorhees, E.M.1    Tice, D.M.2
  • 38
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • Ronald J Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3-4):229-256.
    • (1992) Machine Learning , vol.8 , Issue.3-4 , pp. 229-256
    • Williams, R.J.1
  • 41
    • 84959887366 scopus 로고    scopus 로고
    • Wikiqa: A challenge dataset for open-domain question answering
    • Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. Wikiqa: A challenge dataset for open-domain question answering. In EMNLP. Citeseer, pages 2013-2018.
    • (2015) EMNLP. Citeseer , pp. 2013-2018
    • Yang, Y.1    Yih, W.-T.2    Meek, C.3
  • 42
    • 84997706245 scopus 로고    scopus 로고
    • Revisiting semi-supervised learning with graph embeddings
    • Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. 2016a. Revisiting semi-supervised learning with graph embeddings. In ICML.
    • (2016) ICML
    • Yang, Z.1    Cohen, W.2    Salakhutdinov, R.3
  • 43
    • 85088232410 scopus 로고    scopus 로고
    • Words or characters? Fine-grained gating for reading comprehension
    • Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W Cohen, and Ruslan Salakhutdinov. 2017. Words or characters? fine-grained gating for reading comprehension. In ICLR.
    • (2017) ICLR
    • Yang, Z.1    Dhingra, B.2    Yuan, Y.3    Hu, J.4    Cohen, W.W.5    Salakhutdinov, R.6
  • 44
    • 85018878538 scopus 로고    scopus 로고
    • Review networks for caption generation
    • Zhilin Yang, Ye Yuan, Yuexin Wu, William W Cohen, and Ruslan R Salakhutdinov. 2016b. Review networks for caption generation. In NIPS. pages 2361-2369.
    • (2016) NIPS , pp. 2361-2369
    • Yang, Z.1    Yuan, Y.2    Wu, Y.3    Cohen, W.W.4    Salakhutdinov, R.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.