-
1
-
-
0001199215
-
A general class of coefficients of divergence of one distribution from another
-
S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from another. JRSS (B), pages 131-142, 1966.
-
(1966)
JRSS (B)
, pp. 131-142
-
-
Ali, S.M.1
Silvey, S.D.2
-
3
-
-
0347963789
-
GTM: The generative topographic mapping
-
C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topographic mapping. Neural Computation, 10(1):215-234, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.M.1
Svensén, M.2
Williams, C.K.I.3
-
6
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS, pages 2933-2941, 2014.
-
(2014)
NIPS
, pp. 2933-2941
-
-
Dauphin, Y.N.1
Pascanu, R.2
Gulcehre, C.3
Cho, K.4
Ganguli, S.5
Bengio, Y.6
-
7
-
-
84983185824
-
Training generative neural networks via maximum mean discrepancy optimization
-
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum mean discrepancy optimization. In UAI, pages 258-267, 2015.
-
(2015)
UAI
, pp. 258-267
-
-
Dziugaite, G.K.1
Roy, D.M.2
Ghahramani, Z.3
-
9
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. JASA, 102(477): 359-378, 2007.
-
(2007)
JASA
, vol.102
, Issue.477
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
10
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages 2672-2680, 2014.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
13
-
-
85162060108
-
A kernel statistical test of independence
-
A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola. A kernel statistical test of independence. In NIPS, pages 585-592, 2007.
-
(2007)
NIPS
, pp. 585-592
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.H.3
Song, L.4
Schölkopf, B.5
Smola, A.J.6
-
14
-
-
77956510865
-
Noise-contrastive estimation: A new estimation principle for Unnormalized statistical models
-
M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In AISTATS, pages 297-304, 2010.
-
(2010)
AISTATS
, pp. 297-304
-
-
Gutmann, M.1
Hyvärinen, A.2
-
19
-
-
84862524901
-
The neural autoregressive distribution estimator
-
H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Larochelle, H.1
Murray, I.2
-
20
-
-
84970016114
-
Generative moment matching networks
-
Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In ICML, 2015.
-
(2015)
ICML
-
-
Li, Y.1
Swersky, K.2
Zemel, R.3
-
21
-
-
33947426775
-
On divergences and informations in statistics and information theory
-
F. Liese and I. Vajda. On divergences and informations in statistics and information theory. Information Theory, IEEE, 52(10):4394-4412, 2006.
-
(2006)
Information Theory, IEEE
, vol.52
, Issue.10
, pp. 4394-4412
-
-
Liese, F.1
Vajda, I.2
-
22
-
-
33645246465
-
Bayesian neural networks and density networks
-
D. J. C. MacKay. Bayesian neural networks and density networks. Nucl. Instrum. Meth. A, 354(1):73-80, 1995.
-
(1995)
Nucl. Instrum. Meth. A
, vol.354
, Issue.1
, pp. 73-80
-
-
MacKay, D.J.C.1
-
25
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. Information Theory, IEEE, 56(11):5847-5861, 2010.
-
(2010)
Information Theory, IEEE
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
26
-
-
84888265445
-
On the chi-square and higher-order chi distances for approximating f-divergences
-
F. Nielsen and R. Nock. On the chi-square and higher-order chi distances for approximating f-divergences. Signal Processing Letters, IEEE, 21(1):10-13, 2014.
-
(2014)
Signal Processing Letters, IEEE
, vol.21
, Issue.1
, pp. 10-13
-
-
Nielsen, F.1
Nock, R.2
-
28
-
-
79955815221
-
Information, divergence and risk for binary experiments
-
(Mar)
-
M. D. Reid and R. C. Williamson. Information, divergence and risk for binary experiments. Journal of Machine Learning Research, 12(Mar):731-817, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 731-817
-
-
Reid, M.D.1
Williamson, R.C.2
-
29
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278-1286, 2014.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
30
-
-
85018875486
-
Improved techniques for training GANs
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. In NIPS, 2016.
-
(2016)
NIPS
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
31
-
-
84969975031
-
Deep unsupervised learning using non-equilibrium thermodynamics
-
J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning using non-equilibrium thermodynamics. ICML, pages 2256-2265, 2015.
-
(2015)
ICML
, pp. 2256-2265
-
-
Sohl-Dickstein, J.1
Weiss, E.A.2
Maheswaranathan, N.3
Ganguli, S.4
-
32
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schölkopf, and G. Lanckriet. Hilbert space embeddings and metrics on probability measures. JMLR, 11:1517-1561, 2010.
-
(2010)
JMLR
, vol.11
, pp. 1517-1561
-
-
Sriperumbudur, B.K.1
Gretton, A.2
Fukumizu, K.3
Schölkopf, B.4
Lanckriet, G.5
-
34
-
-
84898933061
-
RNADE: The real-valued neural autoregressive density-estimator
-
B. Uria, I. Murray, and H. Larochelle. RNADE: The real-valued neural autoregressive density-estimator. In NIPS, pages 2175-2183, 2013.
-
(2013)
NIPS
, pp. 2175-2183
-
-
Uria, B.1
Murray, I.2
Larochelle, H.3
-
35
-
-
84979976120
-
-
arXiv:1506.03365
-
F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv:1506.03365, 2015.
-
(2015)
LSUN: Construction of a Large-scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Zhang, Y.2
Song, S.3
Seff, A.4
Xiao, J.5
|