메뉴 건너뛰기




Volumn , Issue , 2019, Pages

Large scale GaN training for high fidelity natural image synthesis

Author keywords

[No Author keywords available]

Indexed keywords

ECONOMIC AND SOCIAL EFFECTS; GALLIUM NITRIDE; III-V SEMICONDUCTORS;

EID: 85083953405     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3988)

References (53)
  • 2
    • 85047016172 scopus 로고    scopus 로고
    • Wasserstein generative adversarial networks
    • Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In ICML, 2017.
    • (2017) ICML
    • Arjovsky, M.1    Chintala, S.2    Bottou, L.3
  • 6
    • 85088232940 scopus 로고    scopus 로고
    • Neural photo editing with introspective adversarial networks
    • Andrew Brock, Theodore Lim, J.M. Ritchie, and Nick Weston. Neural photo editing with introspective adversarial networks. In ICLR, 2017.
    • (2017) ICLR
    • Brock, A.1    Lim, T.2    Ritchie, J.M.3    Weston, N.4
  • 7
    • 85019228440 scopus 로고    scopus 로고
    • Infogan: Interpretable representation learning by information maximizing generative adversarial nets
    • Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
    • (2016) NIPS
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6
  • 9
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 10
    • 85088228106 scopus 로고    scopus 로고
    • A learned representation for artistic style
    • Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. In ICLR, 2017.
    • (2017) ICLR
    • Dumoulin, V.1    Shlens, J.2    Kudlur, M.3
  • 11
    • 85083954393 scopus 로고    scopus 로고
    • Many paths to equilibrium: GANs do not need to decrease a divergence at every step
    • William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir Mohamed, and Ian Goodfellow. Many paths to equilibrium: GANs do not need to decrease a divergence at every step. In ICLR, 2018.
    • (2018) ICLR
    • Fedus, W.1    Rosca, M.2    Lakshminarayanan, B.3    Dai, A.M.4    Mohamed, S.5    Goodfellow, I.6
  • 12
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010.
    • (2010) AISTATS
    • Glorot, X.1    Bengio, Y.2
  • 15
    • 85071171163 scopus 로고    scopus 로고
    • Google. Cloud TPUs. https://cloud.google.com/tpu/, 2018.
    • (2018) Cloud TPUs
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
  • 19
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 20
    • 85083950495 scopus 로고    scopus 로고
    • Progressive growing of GANs for improved quality, stability, and variation
    • Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved quality, stability, and variation. In ICLR, 2018.
    • (2018) ICLR
    • Karras, T.1    Aila, T.2    Laine, S.3    Lehtinen, J.4
  • 21
    • 84941620184 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.1    Ba, J.2
  • 24
  • 27
    • 85057290214 scopus 로고    scopus 로고
    • Which training methods for GANs do actually converge?
    • Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for GANs do actually converge? In ICML, 2018.
    • (2018) ICML
    • Mescheder, L.1    Geiger, A.2    Nowozin, S.3
  • 29
    • 85083951993 scopus 로고    scopus 로고
    • CGANs with projection discriminator
    • Takeru Miyato and Masanori Koyama. cGANs with projection discriminator. In ICLR, 2018.
    • (2018) ICLR
    • Miyato, T.1    Koyama, M.2
  • 30
    • 85083950959 scopus 로고    scopus 로고
    • Spectral normalization for generative adversarial networks
    • Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In ICLR, 2018.
    • (2018) ICLR
    • Miyato, T.1    Kataoka, T.2    Koyama, M.3    Yoshida, Y.4
  • 31
    • 85018914753 scopus 로고    scopus 로고
    • F-GaN: Training generative neural samplers using variational divergence minimization
    • Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, 2016.
    • (2016) NIPS
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 32
    • 85029586812 scopus 로고    scopus 로고
    • Deconvolution and checkerboard artifacts
    • Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts. Distill, 2016.
    • (2016) Distill
    • Odena, A.1    Dumoulin, V.2    Olah, C.3
  • 33
    • 85041893734 scopus 로고    scopus 로고
    • Conditional image synthesis with auxiliary classifier GANs
    • Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier GANs. In ICML, 2017.
    • (2017) ICML
    • Odena, A.1    Olah, C.2    Shlens, J.3
  • 35
  • 37
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 39
    • 85017457992 scopus 로고    scopus 로고
    • Weight normalization: A simple reparameterization to accelerate training of deep neural networks
    • Tim Salimans and Diederik Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In NIPS, 2016.
    • (2016) NIPS
    • Salimans, T.1    Kingma, D.2
  • 42
    • 85083950783 scopus 로고    scopus 로고
    • Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
    • Andrew Saxe, James McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. In ICLR, 2014.
    • (2014) ICLR
    • Saxe, A.1    McClelland, J.2    Ganguli, S.3
  • 43
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 45
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929-1958, 2014.
    • (2014) JMLR , vol.15 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 46
    • 85041923826 scopus 로고    scopus 로고
    • Revisiting unreasonable effectiveness of data in deep learning era
    • Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness of data in deep learning era. In ICCV, 2017.
    • (2017) ICCV
    • Sun, C.1    Shrivastava, A.2    Singh, S.3    Gupta, A.4
  • 47
    • 84986296808 scopus 로고    scopus 로고
    • Rethinking the inception architecture for computer vision
    • Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016.
    • (2016) CVPR
    • Szegedy, C.1    Vanhoucke, V.2    Ioffe, S.3    Shlens, J.4    Wojna, Z.5
  • 49
    • 85046995969 scopus 로고    scopus 로고
    • Hierarchical implicit models and likelihood-free variational inference
    • Dustin Tran, Rajesh Ranganath, and David M. Blei. Hierarchical implicit models and likelihood-free variational inference. In NIPS, 2017.
    • (2017) NIPS
    • Tran, D.1    Ranganath, R.2    Blei, D.M.3
  • 51
    • 85088225625 scopus 로고    scopus 로고
    • On the quantitative analysis of decoder-based generative models
    • Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger B. Grosse. On the quantitative analysis of decoder-based generative models. In ICLR, 2017.
    • (2017) ICLR
    • Wu, Y.1    Burda, Y.2    Salakhutdinov, R.3    Grosse, R.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.