메뉴 건너뛰기




Volumn 71, Issue , 2019, Pages 30-39

Image super-resolution using progressive generative adversarial networks for medical image analysis

Author keywords

Adversarial networks; Image super resolution; MRI; Pathology; Progressive generative models; Retinal fundus

Indexed keywords

IMAGE ANALYSIS; IMAGE QUALITY; IMAGE SEGMENTATION; MAGNETIC RESONANCE; MAGNETIC RESONANCE IMAGING; MEDICAL IMAGING; OPHTHALMOLOGY; OPTICAL RESOLVING POWER; PATHOLOGY;

EID: 85056921498     PISSN: 08956111     EISSN: 18790771     Source Type: Journal    
DOI: 10.1016/j.compmedimag.2018.10.005     Document Type: Article
Times cited : (249)

References (26)
  • 2
    • 56749159996 scopus 로고    scopus 로고
    • Brain hallucination
    • Rousseau, F., Brain hallucination. ECCV, 2008, 497–508.
    • (2008) ECCV , pp. 497-508
    • Rousseau, F.1
  • 3
    • 84894629148 scopus 로고    scopus 로고
    • Example-based restoration of high-resolution magnetic resonance image acquisitions
    • Konukoglu, E., van der Kouwe, A., Sabuncu, M., Fischl, B., Example-based restoration of high-resolution magnetic resonance image acquisitions. Proc. MICCAI, 2013, 131–138.
    • (2013) Proc. MICCAI , pp. 131-138
    • Konukoglu, E.1    van der Kouwe, A.2    Sabuncu, M.3    Fischl, B.4
  • 4
    • 84872606261 scopus 로고    scopus 로고
    • Single-image super-resolution of brain MR images using overcomplete dictionaries
    • Rueda, A., Malpica, N., Romero, E., Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17:1 (2013), 113–132.
    • (2013) Med. Image Anal. , vol.17 , Issue.1 , pp. 113-132
    • Rueda, A.1    Malpica, N.2    Romero, E.3
  • 5
    • 84927941669 scopus 로고    scopus 로고
    • Super-resolution reconstruction of cardiac MRI using coupled dictionary learning
    • Bhatia, K., Price, A., Shi, W., Hajnal, J., Rueckert, D., Super-resolution reconstruction of cardiac MRI using coupled dictionary learning. Proc. ISBI, 2014, 947–950.
    • (2014) Proc. ISBI , pp. 947-950
    • Bhatia, K.1    Price, A.2    Shi, W.3    Hajnal, J.4    Rueckert, D.5
  • 7
    • 84973866806 scopus 로고    scopus 로고
    • Compression artifacts reduction by a deep convolutional network
    • Dong, C., Deng, Y., Loy, C., Tang, X., Compression artifacts reduction by a deep convolutional network. Proc. IEEE ICCV, 2015, 576–584.
    • (2015) Proc. IEEE ICCV , pp. 576-584
    • Dong, C.1    Deng, Y.2    Loy, C.3    Tang, X.4
  • 8
    • 84996524106 scopus 로고    scopus 로고
    • Self super-resolution for magnetic resonance images
    • Jog, A., aron Carass, A., Prince, J., Self super-resolution for magnetic resonance images. Proc. MICCAI, 2016, 553–560.
    • (2016) Proc. MICCAI , pp. 553-560
    • Jog, A.1    aron Carass, A.2    Prince, J.3
  • 9
    • 84996536677 scopus 로고    scopus 로고
    • Multi-input cardiac image super-resolution using convolutional neural networks
    • Oktay, O., et al. Multi-input cardiac image super-resolution using convolutional neural networks. Proc. MICCAI, 2016, 246–254.
    • (2016) Proc. MICCAI , pp. 246-254
    • Oktay, O.1
  • 10
    • 85056981649 scopus 로고    scopus 로고
    • Photo-realistic single image super-resolution using a generative adversarial network, CoRR abs/1609.04802.
    • Ledig, C., et al. Photo-realistic single image super-resolution using a generative adversarial network, CoRR abs/1609.04802.
    • Ledig, C.1
  • 11
    • 85029496528 scopus 로고    scopus 로고
    • Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis
    • Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R., Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. MICCAI, 2017, 382–390.
    • (2017) MICCAI , pp. 382-390
    • Mahapatra, D.1    Bozorgtabar, B.2    Hewavitharanage, S.3    Garnavi, R.4
  • 13
    • 85048119967 scopus 로고    scopus 로고
    • Deformable medical image registration using generative adversarial networks
    • Mahapatra, D., Antony, B., Sedai, S., Garnavi, R., Deformable medical image registration using generative adversarial networks. Proc. IEEE ISBI, 2018, 1449–1453.
    • (2018) Proc. IEEE ISBI , pp. 1449-1453
    • Mahapatra, D.1    Antony, B.2    Sedai, S.3    Garnavi, R.4
  • 14
    • 85054052065 scopus 로고    scopus 로고
    • Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network
    • Mahapatra, D., Bozorgtabar, S., Thiran, J.-P., Reyes, M., Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. Proc. MICCAI (2), 2018, 580–588.
    • (2018) Proc. MICCAI (2) , pp. 580-588
    • Mahapatra, D.1    Bozorgtabar, S.2    Thiran, J.-P.3    Reyes, M.4
  • 15
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • Isola, P., Zhu, J., Zhou, T., Efros, A., Image-to-image translation with conditional adversarial networks. CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.2    Zhou, T.3    Efros, A.4
  • 16
    • 85028596902 scopus 로고    scopus 로고
    • Unpaired image-to-image translation using cycle-consistent adversarial networks
    • arXiv preprint arXiv:1703.10593
    • Zhu, J., park, T., Isola, P., Efros, A., Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 arXiv preprint arXiv:1703.10593.
    • (2017)
    • Zhu, J.1    park, T.2    Isola, P.3    Efros, A.4
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Proc. CVPR, 2016, 770–778.
    • (2016) Proc. CVPR , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 85056941163 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
    • Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
    • Simonyan, K.1    Zisserman, A.2
  • 20
    • 85056934178 scopus 로고    scopus 로고
    • https://www.eyepacs.com.
  • 21
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Dong, C., Loy, C., He, K., Tang, X., Image super-resolution using deep convolutional networks. IEEE Trans. Patt. Anal. Mach. Intell. 38:2 (2016), 295–307.
    • (2016) IEEE Trans. Patt. Anal. Mach. Intell. , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.2    He, K.3    Tang, X.4
  • 22
    • 84959234116 scopus 로고    scopus 로고
    • Fast and accurate image upscaling with super-resolution forests
    • Schulter, S., Leistner, C., Bischof, H., Fast and accurate image upscaling with super-resolution forests. Proc CVPR, 2015, 3791–3799.
    • (2015) Proc CVPR , pp. 3791-3799
    • Schulter, S.1    Leistner, C.2    Bischof, H.3
  • 23
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: from error visibility to structural similarity
    • Wang, Z., et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Imag. Proc. 13:4 (2004), 600–612.
    • (2004) IEEE Trans. Imag. Proc. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1
  • 24
    • 84857344414 scopus 로고    scopus 로고
    • S3: a spectral and spatial measure of local perceived sharpness in natural images
    • Vu, C., Phan, T., Chandler, D., S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Imag. Proc. 21:3 (2012), 934–945.
    • (2012) IEEE Trans. Imag. Proc. , vol.21 , Issue.3 , pp. 934-945
    • Vu, C.1    Phan, T.2    Chandler, D.3
  • 25
    • 85056934199 scopus 로고    scopus 로고
    • Anon. https://github.com/orobix/retina-unet.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.