-
1
-
-
77954657555
-
Non-local MRI upsampling
-
Manjon, J., Coupe, P., Buades, A., Fonov, V., Collins, D., Robles, M., Non-local MRI upsampling. Med. Image Anal. 14:6 (2010), 784–792.
-
(2010)
Med. Image Anal.
, vol.14
, Issue.6
, pp. 784-792
-
-
Manjon, J.1
Coupe, P.2
Buades, A.3
Fonov, V.4
Collins, D.5
Robles, M.6
-
2
-
-
56749159996
-
Brain hallucination
-
Rousseau, F., Brain hallucination. ECCV, 2008, 497–508.
-
(2008)
ECCV
, pp. 497-508
-
-
Rousseau, F.1
-
3
-
-
84894629148
-
Example-based restoration of high-resolution magnetic resonance image acquisitions
-
Konukoglu, E., van der Kouwe, A., Sabuncu, M., Fischl, B., Example-based restoration of high-resolution magnetic resonance image acquisitions. Proc. MICCAI, 2013, 131–138.
-
(2013)
Proc. MICCAI
, pp. 131-138
-
-
Konukoglu, E.1
van der Kouwe, A.2
Sabuncu, M.3
Fischl, B.4
-
4
-
-
84872606261
-
Single-image super-resolution of brain MR images using overcomplete dictionaries
-
Rueda, A., Malpica, N., Romero, E., Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17:1 (2013), 113–132.
-
(2013)
Med. Image Anal.
, vol.17
, Issue.1
, pp. 113-132
-
-
Rueda, A.1
Malpica, N.2
Romero, E.3
-
5
-
-
84927941669
-
Super-resolution reconstruction of cardiac MRI using coupled dictionary learning
-
Bhatia, K., Price, A., Shi, W., Hajnal, J., Rueckert, D., Super-resolution reconstruction of cardiac MRI using coupled dictionary learning. Proc. ISBI, 2014, 947–950.
-
(2014)
Proc. ISBI
, pp. 947-950
-
-
Bhatia, K.1
Price, A.2
Shi, W.3
Hajnal, J.4
Rueckert, D.5
-
6
-
-
85013300936
-
Bayesian image quality transfer
-
Tanno, R., Ghosh, A., Grussu, F., Kaden, E., Criminisi, A., Alexander, D., Bayesian image quality transfer. Proc. MICCAI, 2016, 173–265.
-
(2016)
Proc. MICCAI
, pp. 173-265
-
-
Tanno, R.1
Ghosh, A.2
Grussu, F.3
Kaden, E.4
Criminisi, A.5
Alexander, D.6
-
7
-
-
84973866806
-
Compression artifacts reduction by a deep convolutional network
-
Dong, C., Deng, Y., Loy, C., Tang, X., Compression artifacts reduction by a deep convolutional network. Proc. IEEE ICCV, 2015, 576–584.
-
(2015)
Proc. IEEE ICCV
, pp. 576-584
-
-
Dong, C.1
Deng, Y.2
Loy, C.3
Tang, X.4
-
8
-
-
84996524106
-
Self super-resolution for magnetic resonance images
-
Jog, A., aron Carass, A., Prince, J., Self super-resolution for magnetic resonance images. Proc. MICCAI, 2016, 553–560.
-
(2016)
Proc. MICCAI
, pp. 553-560
-
-
Jog, A.1
aron Carass, A.2
Prince, J.3
-
9
-
-
84996536677
-
Multi-input cardiac image super-resolution using convolutional neural networks
-
Oktay, O., et al. Multi-input cardiac image super-resolution using convolutional neural networks. Proc. MICCAI, 2016, 246–254.
-
(2016)
Proc. MICCAI
, pp. 246-254
-
-
Oktay, O.1
-
10
-
-
85056981649
-
-
Photo-realistic single image super-resolution using a generative adversarial network, CoRR abs/1609.04802.
-
Ledig, C., et al. Photo-realistic single image super-resolution using a generative adversarial network, CoRR abs/1609.04802.
-
-
-
Ledig, C.1
-
11
-
-
85029496528
-
Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis
-
Mahapatra, D., Bozorgtabar, B., Hewavitharanage, S., Garnavi, R., Image super resolution using generative adversarial networks and local saliency maps for retinal image analysis. MICCAI, 2017, 382–390.
-
(2017)
MICCAI
, pp. 382-390
-
-
Mahapatra, D.1
Bozorgtabar, B.2
Hewavitharanage, S.3
Garnavi, R.4
-
12
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, I., Pouget-Abadiey, J., Mirza, M., Xu, B., Warde-Farley, D., Ozairz, S., Courville, A., Bengio, Y., Generative adversarial nets. Proc. NIPS, 2014, 2672–2680.
-
(2014)
Proc. NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadiey, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozairz, S.6
Courville, A.7
Bengio, Y.8
-
13
-
-
85048119967
-
Deformable medical image registration using generative adversarial networks
-
Mahapatra, D., Antony, B., Sedai, S., Garnavi, R., Deformable medical image registration using generative adversarial networks. Proc. IEEE ISBI, 2018, 1449–1453.
-
(2018)
Proc. IEEE ISBI
, pp. 1449-1453
-
-
Mahapatra, D.1
Antony, B.2
Sedai, S.3
Garnavi, R.4
-
14
-
-
85054052065
-
Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network
-
Mahapatra, D., Bozorgtabar, S., Thiran, J.-P., Reyes, M., Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. Proc. MICCAI (2), 2018, 580–588.
-
(2018)
Proc. MICCAI (2)
, pp. 580-588
-
-
Mahapatra, D.1
Bozorgtabar, S.2
Thiran, J.-P.3
Reyes, M.4
-
15
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
Isola, P., Zhu, J., Zhou, T., Efros, A., Image-to-image translation with conditional adversarial networks. CVPR, 2017.
-
(2017)
CVPR
-
-
Isola, P.1
Zhu, J.2
Zhou, T.3
Efros, A.4
-
16
-
-
85028596902
-
Unpaired image-to-image translation using cycle-consistent adversarial networks
-
arXiv preprint arXiv:1703.10593
-
Zhu, J., park, T., Isola, P., Efros, A., Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 arXiv preprint arXiv:1703.10593.
-
(2017)
-
-
Zhu, J.1
park, T.2
Isola, P.3
Efros, A.4
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image recognition. Proc. CVPR, 2016, 770–778.
-
(2016)
Proc. CVPR
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
85056941163
-
-
Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
-
Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556.
-
-
-
Simonyan, K.1
Zisserman, A.2
-
19
-
-
84946751287
-
Facenet: a unified embedding for face recognition and clustering
-
Schroff, F., Kalenichenko, D., Philbin, J., Facenet: a unified embedding for face recognition and clustering. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, 815–823.
-
(2015)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 815-823
-
-
Schroff, F.1
Kalenichenko, D.2
Philbin, J.3
-
20
-
-
85056934178
-
-
https://www.eyepacs.com.
-
-
-
-
21
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
Dong, C., Loy, C., He, K., Tang, X., Image super-resolution using deep convolutional networks. IEEE Trans. Patt. Anal. Mach. Intell. 38:2 (2016), 295–307.
-
(2016)
IEEE Trans. Patt. Anal. Mach. Intell.
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.2
He, K.3
Tang, X.4
-
22
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
Schulter, S., Leistner, C., Bischof, H., Fast and accurate image upscaling with super-resolution forests. Proc CVPR, 2015, 3791–3799.
-
(2015)
Proc CVPR
, pp. 3791-3799
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
23
-
-
1942436689
-
Image quality assessment: from error visibility to structural similarity
-
Wang, Z., et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Imag. Proc. 13:4 (2004), 600–612.
-
(2004)
IEEE Trans. Imag. Proc.
, vol.13
, Issue.4
, pp. 600-612
-
-
Wang, Z.1
-
24
-
-
84857344414
-
S3: a spectral and spatial measure of local perceived sharpness in natural images
-
Vu, C., Phan, T., Chandler, D., S3: a spectral and spatial measure of local perceived sharpness in natural images. IEEE Trans. Imag. Proc. 21:3 (2012), 934–945.
-
(2012)
IEEE Trans. Imag. Proc.
, vol.21
, Issue.3
, pp. 934-945
-
-
Vu, C.1
Phan, T.2
Chandler, D.3
-
25
-
-
85056934199
-
-
Anon. https://github.com/orobix/retina-unet.
-
-
-
-
26
-
-
84870802703
-
valuation framework for algorithms segmenting short axis cardiac MRI
-
Radau, P., Lu, Y., Connelly, K., Paul, G., et al. valuation framework for algorithms segmenting short axis cardiac MRI. The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge, 2009.
-
(2009)
The MIDAS Journal-Cardiac MR Left Ventricle Segmentation Challenge
-
-
Radau, P.1
Lu, Y.2
Connelly, K.3
Paul, G.4
|