-
1
-
-
85081997770
-
Towards principled methods for training generative adversarial networks
-
M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
-
(2017)
ICLR
-
-
Arjovsky, M.1
Bottou, L.2
-
3
-
-
85039423419
-
Photographic image synthesis with cascaded refinement networks
-
Q. Chen and V. Koltun. Photographic image synthesis with cascaded refinement networks. In ICCV, 2017.
-
(2017)
ICCV
-
-
Chen, Q.1
Koltun, V.2
-
4
-
-
85019228440
-
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
-
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
-
(2016)
NIPS
-
-
Chen, X.1
Duan, Y.2
Houthooft, R.3
Schulman, J.4
Sutskever, I.5
Abbeel, P.6
-
5
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016.
-
(2016)
CVPR
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
6
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Denton, E.L.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
9
-
-
85019269786
-
Generating images with perceptual similarity metrics based on deep networks
-
A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Dosovitskiy, A.1
Brox, T.2
-
10
-
-
85040678119
-
Adversarially learned inference
-
V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville. Adversarially learned inference. In ICLR, 2016.
-
(2016)
ICLR
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Mastropietro, O.4
Lamb, A.5
Arjovsky, M.6
Courville, A.7
-
11
-
-
0033285309
-
Texture synthesis by non-parametric sampling
-
A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICCV, 1999.
-
(1999)
ICCV
-
-
Efros, A.A.1
Leung, T.K.2
-
12
-
-
84986325538
-
Image style transfer using convolutional neural networks
-
L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, pages 2414-2423, 2016.
-
(2016)
CVPR
, pp. 2414-2423
-
-
Gatys, L.A.1
Ecker, A.S.2
Bethge, M.3
-
13
-
-
85047021669
-
-
arXiv preprint
-
A. Ghosh, V. Kulharia, V. Namboodiri, P. H. Torr, and P. K. Dokania. Multi-agent diverse generative adversarial networks. arXiv preprint arXiv:1704.02906, 2017.
-
(2017)
Multi-agent Diverse Generative Adversarial Networks
-
-
Ghosh, A.1
Kulharia, V.2
Namboodiri, V.3
Torr, P.H.4
Dokania, P.K.5
-
15
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
16
-
-
85088404639
-
Pixcolor: Pixel recursive colorization
-
S. Guadarrama, R. Dahl, D. Bieber, M. Norouzi, J. Shlens, and K. Murphy. Pixcolor: Pixel recursive colorization. In BMVC, 2017.
-
(2017)
BMVC
-
-
Guadarrama, S.1
Dahl, R.2
Bieber, D.3
Norouzi, M.4
Shlens, J.5
Murphy, K.6
-
17
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
19
-
-
84980049328
-
Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification
-
S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. SIGGRAPH, 35(4), 2016.
-
(2016)
SIGGRAPH
, vol.35
, Issue.4
-
-
Iizuka, S.1
Simo-Serra, E.2
Ishikawa, H.3
-
20
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
-
(2017)
CVPR
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
21
-
-
85019245160
-
Perceptual losses for real-time style transfer and super-resolution
-
J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
-
(2016)
ECCV
-
-
Johnson, J.1
Alahi, A.2
Fei-Fei, L.3
-
22
-
-
85083951076
-
Adam: A method for stochastic optimization
-
D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
23
-
-
85083952489
-
Auto-encoding variational bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
25
-
-
84905741277
-
Transient attributes for high-level understanding and editing of outdoor scenes
-
P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays. Transient attributes for high-level understanding and editing of outdoor scenes. SIGGRAPH, 2014.
-
(2014)
SIGGRAPH
-
-
Laffont, P.-Y.1
Ren, Z.2
Tao, X.3
Qian, C.4
Hays, J.5
-
27
-
-
85030792287
-
Learning representations for automatic colorization
-
G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016.
-
(2016)
ECCV
-
-
Larsson, G.1
Maire, M.2
Shakhnarovich, G.3
-
28
-
-
85041908569
-
Least squares generative adversarial networks
-
X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P. Smolley. Least squares generative adversarial networks. In ICCV, 2017.
-
(2017)
ICCV
-
-
Mao, X.1
Li, Q.2
Xie, H.3
Lau, R.Y.4
Wang, Z.5
Smolley, S.P.6
-
29
-
-
85083952137
-
Deep multi-scale video prediction beyond mean square error
-
M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
-
(2016)
ICLR
-
-
Mathieu, M.1
Couprie, C.2
LeCun, Y.3
-
31
-
-
85041919547
-
Plug & play generative networks: Conditional iterative generation of images in latent space
-
A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & play generative networks: Conditional iterative generation of images in latent space. In CVPR, 2017.
-
(2017)
CVPR
-
-
Nguyen, A.1
Yosinski, J.2
Bengio, Y.3
Dosovitskiy, A.4
Clune, J.5
-
33
-
-
85018873682
-
Conditional image generation with pixelcnn decoders
-
A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu. Conditional image generation with pixelcnn decoders. In NIPS, 2016.
-
(2016)
NIPS
-
-
Oord, A.V.D.1
Kalchbrenner, N.2
Vinyals, O.3
Espeholt, L.4
Graves, A.5
Kavukcuoglu, K.6
-
34
-
-
84986294165
-
Context encoders: Feature learning by inpainting
-
D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016.
-
(2016)
CVPR
-
-
Pathak, D.1
Krähenbühl, P.2
Donahue, J.3
Darrell, T.4
Efros, A.5
-
35
-
-
85083950271
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
-
(2016)
ICLR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
36
-
-
84998636515
-
Generative adversarial text-to-image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image synthesis. In ICML, 2016.
-
(2016)
ICML
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
37
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer
-
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015.
-
(2015)
MICCAI
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
38
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al Imagenet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
39
-
-
84989923527
-
-
arXiv preprint
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. arXiv preprint arXiv:1606.03498, 2016.
-
(2016)
Improved Techniques for Training Gans
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
40
-
-
85040345002
-
Scribbler: Controlling deep image synthesis with sketch and color
-
P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scribbler: Controlling deep image synthesis with sketch and color. In CVPR, 2017.
-
(2017)
CVPR
-
-
Sangkloy, P.1
Lu, J.2
Fang, C.3
Yu, F.4
Hays, J.5
-
41
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Technical report, DTIC Document, 1986.
-
(1986)
Technical Report, DTIC Document
-
-
Smolensky, P.1
-
42
-
-
84965139640
-
Learning structured output representation using deep conditional generative models
-
K. Sohn, X. Yan, and H. Lee. Learning structured output representation using deep conditional generative models. In NIPS, 2015.
-
(2015)
NIPS
-
-
Sohn, K.1
Yan, X.2
Lee, H.3
-
43
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
44
-
-
85018884809
-
An uncertain future: Forecasting from static images using variational autoencoders
-
J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In ECCV, 2016.
-
(2016)
ECCV
-
-
Walker, J.1
Doersch, C.2
Gupta, A.3
Hebert, M.4
-
45
-
-
85039412217
-
-
ArXiv Preprint
-
W. Xian, P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Texturegan: Controlling deep image synthesis with texture patches. In arXiv preprint arXiv:1706.02823, 2017.
-
(2017)
Texturegan: Controlling Deep Image Synthesis with Texture Patches
-
-
Xian, W.1
Sangkloy, P.2
Lu, J.3
Fang, C.4
Yu, F.5
Hays, J.6
-
46
-
-
85018923844
-
Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
-
T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Xue, T.1
Wu, J.2
Bouman, K.3
Freeman, B.4
-
47
-
-
85041905053
-
High-resolution image inpainting using multi-scale neural patch synthesis
-
C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution image inpainting using multi-scale neural patch synthesis. In CVPR, 2017.
-
(2017)
CVPR
-
-
Yang, C.1
Lu, X.2
Lin, Z.3
Shechtman, E.4
Wang, O.5
Li, H.6
-
48
-
-
84911374908
-
Fine-grained visual comparisons with local learning
-
A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In CVPR, 2014.
-
(2014)
CVPR
-
-
Yu, A.1
Grauman, K.2
-
49
-
-
85040306596
-
Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
-
H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In ICCV, 2017.
-
(2017)
ICCV
-
-
Zhang, H.1
Xu, T.2
Li, H.3
Zhang, S.4
Huang, X.5
Wang, X.6
Metaxas, D.7
-
51
-
-
85030753700
-
Real-time user-guided image colorization with learned deep priors
-
R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros. Real-time user-guided image colorization with learned deep priors. SIGGRAPH, 2017.
-
(2017)
SIGGRAPH
-
-
Zhang, R.1
Zhu, J.-Y.2
Isola, P.3
Geng, X.4
Lin, A.S.5
Yu, T.6
Efros, A.A.7
-
52
-
-
85046996323
-
-
ArXiv Preprint
-
R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep features as a perceptual metric. In arXiv preprint arXiv:1801.03924, 2018.
-
(2018)
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
-
-
Zhang, R.1
Isola, P.2
Efros, A.A.3
Shechtman, E.4
Wang, O.5
-
53
-
-
85087518435
-
Energy-based generative adversarial network
-
J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.
-
(2017)
ICLR
-
-
Zhao, J.1
Mathieu, M.2
LeCun, Y.3
-
55
-
-
85041892358
-
Unpaired image-to-image translation using cycle-consistent adversarial networks
-
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.
-
(2017)
ICCV
-
-
Zhu, J.-Y.1
Park, T.2
Isola, P.3
Efros, A.A.4
|