메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 466-477

Toward multimodal image-to-image translation

Author keywords

[No Author keywords available]

Indexed keywords

MAPPING; NETWORK ARCHITECTURE;

EID: 85046999558     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1387)

References (55)
  • 1
    • 85081997770 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
    • (2017) ICLR
    • Arjovsky, M.1    Bottou, L.2
  • 3
    • 85039423419 scopus 로고    scopus 로고
    • Photographic image synthesis with cascaded refinement networks
    • Q. Chen and V. Koltun. Photographic image synthesis with cascaded refinement networks. In ICCV, 2017.
    • (2017) ICCV
    • Chen, Q.1    Koltun, V.2
  • 4
    • 85019228440 scopus 로고    scopus 로고
    • Infogan: Interpretable representation learning by information maximizing generative adversarial nets
    • X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
    • (2016) NIPS
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 9
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016.
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 11
    • 0033285309 scopus 로고    scopus 로고
    • Texture synthesis by non-parametric sampling
    • A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICCV, 1999.
    • (1999) ICCV
    • Efros, A.A.1    Leung, T.K.2
  • 12
    • 84986325538 scopus 로고    scopus 로고
    • Image style transfer using convolutional neural networks
    • L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional neural networks. In CVPR, pages 2414-2423, 2016.
    • (2016) CVPR , pp. 2414-2423
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 17
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 84980049328 scopus 로고    scopus 로고
    • Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification
    • S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. SIGGRAPH, 35(4), 2016.
    • (2016) SIGGRAPH , vol.35 , Issue.4
    • Iizuka, S.1    Simo-Serra, E.2    Ishikawa, H.3
  • 20
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. In CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 21
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016.
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 22
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 23
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 25
    • 84905741277 scopus 로고    scopus 로고
    • Transient attributes for high-level understanding and editing of outdoor scenes
    • P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays. Transient attributes for high-level understanding and editing of outdoor scenes. SIGGRAPH, 2014.
    • (2014) SIGGRAPH
    • Laffont, P.-Y.1    Ren, Z.2    Tao, X.3    Qian, C.4    Hays, J.5
  • 27
    • 85030792287 scopus 로고    scopus 로고
    • Learning representations for automatic colorization
    • G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations for automatic colorization. In ECCV, 2016.
    • (2016) ECCV
    • Larsson, G.1    Maire, M.2    Shakhnarovich, G.3
  • 29
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016.
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 31
    • 85041919547 scopus 로고    scopus 로고
    • Plug & play generative networks: Conditional iterative generation of images in latent space
    • A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & play generative networks: Conditional iterative generation of images in latent space. In CVPR, 2017.
    • (2017) CVPR
    • Nguyen, A.1    Yosinski, J.2    Bengio, Y.3    Dosovitskiy, A.4    Clune, J.5
  • 35
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 37
    • 84951834022 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • Springer
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015.
    • (2015) MICCAI , pp. 234-241
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 40
    • 85040345002 scopus 로고    scopus 로고
    • Scribbler: Controlling deep image synthesis with sketch and color
    • P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scribbler: Controlling deep image synthesis with sketch and color. In CVPR, 2017.
    • (2017) CVPR
    • Sangkloy, P.1    Lu, J.2    Fang, C.3    Yu, F.4    Hays, J.5
  • 41
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. Technical report, DTIC Document, 1986.
    • (1986) Technical Report, DTIC Document
    • Smolensky, P.1
  • 42
    • 84965139640 scopus 로고    scopus 로고
    • Learning structured output representation using deep conditional generative models
    • K. Sohn, X. Yan, and H. Lee. Learning structured output representation using deep conditional generative models. In NIPS, 2015.
    • (2015) NIPS
    • Sohn, K.1    Yan, X.2    Lee, H.3
  • 43
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 44
    • 85018884809 scopus 로고    scopus 로고
    • An uncertain future: Forecasting from static images using variational autoencoders
    • J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In ECCV, 2016.
    • (2016) ECCV
    • Walker, J.1    Doersch, C.2    Gupta, A.3    Hebert, M.4
  • 46
    • 85018923844 scopus 로고    scopus 로고
    • Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
    • T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NIPS, 2016.
    • (2016) NIPS
    • Xue, T.1    Wu, J.2    Bouman, K.3    Freeman, B.4
  • 47
    • 85041905053 scopus 로고    scopus 로고
    • High-resolution image inpainting using multi-scale neural patch synthesis
    • C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution image inpainting using multi-scale neural patch synthesis. In CVPR, 2017.
    • (2017) CVPR
    • Yang, C.1    Lu, X.2    Lin, Z.3    Shechtman, E.4    Wang, O.5    Li, H.6
  • 48
    • 84911374908 scopus 로고    scopus 로고
    • Fine-grained visual comparisons with local learning
    • A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In CVPR, 2014.
    • (2014) CVPR
    • Yu, A.1    Grauman, K.2
  • 49
    • 85040306596 scopus 로고    scopus 로고
    • Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
    • H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In ICCV, 2017.
    • (2017) ICCV
    • Zhang, H.1    Xu, T.2    Li, H.3    Zhang, S.4    Huang, X.5    Wang, X.6    Metaxas, D.7
  • 53
    • 85087518435 scopus 로고    scopus 로고
    • Energy-based generative adversarial network
    • J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial network. In ICLR, 2017.
    • (2017) ICLR
    • Zhao, J.1    Mathieu, M.2    LeCun, Y.3
  • 54
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the natural image manifold. In ECCV, 2016.
    • (2016) ECCV
    • Zhu, J.-Y.1    Krähenbühl, P.2    Shechtman, E.3    Efros, A.A.4
  • 55
    • 85041892358 scopus 로고    scopus 로고
    • Unpaired image-to-image translation using cycle-consistent adversarial networks
    • J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017.
    • (2017) ICCV
    • Zhu, J.-Y.1    Park, T.2    Isola, P.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.