메뉴 건너뛰기




Volumn 2018-December, Issue , 2018, Pages 1596-1607

Multivariate time series imputation with generative adversarial networks

Author keywords

[No Author keywords available]

Indexed keywords

FACTORIZATION; IMAGE RECORDING; TIME SERIES;

EID: 85064842702     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (456)

References (48)
  • 2
    • 84969929980 scopus 로고    scopus 로고
    • Missing data imputation using fuzzy-rough methods
    • Mehran Amiri and Richard Jensen. Missing data imputation using fuzzy-rough methods. Neurocomputing, 205:152-164, 2016.
    • (2016) Neurocomputing , vol.205 , pp. 152-164
    • Amiri, M.1    Jensen, R.2
  • 4
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • Gustavo EAPA Batista and Maria Carolina Monard. An analysis of four missing data treatment methods for supervised learning. Applied artificial intelligence, 17(5-6):519-533, 2003.
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 519-533
    • Batista, G.E.A.P.A.1    Monard, M.C.2
  • 7
    • 85045746406 scopus 로고    scopus 로고
    • Recurrent neural networks for multivariate time series with missing values
    • Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.
    • (2018) Scientific Reports , vol.8 , Issue.1 , pp. 6085
    • Che, Z.1    Purushotham, S.2    Cho, K.3    Sontag, D.4    Liu, Y.5
  • 8
    • 84908545219 scopus 로고    scopus 로고
    • A review of missing data handling methods in education research
    • Jehanzeb R Cheema. A review of missing data handling methods in education research. Review of Educational Research, 84(4):487-508, 2014.
    • (2014) Review of Educational Research , vol.84 , Issue.4 , pp. 487-508
    • Cheema, J.R.1
  • 11
    • 85064816887 scopus 로고    scopus 로고
    • Available on
    • KDD Cup. Available on: http://www.kdd.org/kdd2018/, 2018.
    • (2018)
  • 14
    • 84923379438 scopus 로고    scopus 로고
    • Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values
    • Pedro J García-Laencina, Pedro Henriques Abreu, Miguel Henriques Abreu, and Noémia Afonoso. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Computers in biology and medicine, 59:125-133, 2015.
    • (2015) Computers in Biology and Medicine , vol.59 , pp. 125-133
    • García-Laencina, P.J.1    Abreu, P.H.2    Abreu, M.H.3    Afonoso, N.4
  • 16
    • 78650175506 scopus 로고    scopus 로고
    • A neural network-based framework for the reconstruction of incomplete data sets
    • Iffat A Gheyas and Leslie S Smith. A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing, 73(16-18):3039-3065, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3039-3065
    • Gheyas, I.A.1    Smith, L.S.2
  • 18
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • John W Graham. Missing data analysis: Making it work in the real world. Annual review of psychology, 60:549-576, 2009.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 19
    • 84961700509 scopus 로고    scopus 로고
    • Matrix completion and low-rank SVD via fast alternating least squares
    • Trevor Hastie, Rahul Mazumder, Jason D Lee, and Reza Zadeh. Matrix completion and low-rank svd via fast alternating least squares. Journal of Machine Learning Research, 16:3367-3402, 2015.
    • (2015) Journal of Machine Learning Research , vol.16 , pp. 3367-3402
    • Hastie, T.1    Mazumder, R.2    Lee, J.D.3    Zadeh, R.4
  • 22
    • 78751613501 scopus 로고    scopus 로고
    • Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm
    • Tsung Jung Hsieh, Hsiao Fen Hsiao, and Wei Chang Yeh. Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm. Applied Soft Computing Journal, 11(2):2510-2525, 2011.
    • (2011) Applied Soft Computing Journal , vol.11 , Issue.2 , pp. 2510-2525
    • Hsieh, T.J.1    Hsiao, H.F.2    Yeh, W.C.3
  • 25
    • 84931338335 scopus 로고    scopus 로고
    • Data preprocessing and mortality prediction: The physionet/cinc 2012 challenge revisited
    • IEEE, 2014
    • Alistair EW Johnson, Andrew A Kramer, and Gari D Clifford. Data preprocessing and mortality prediction: The physionet/cinc 2012 challenge revisited. In Computing in Cardiology Conference (CinC), 2014, pages 157-160. IEEE, 2014.
    • (2014) Computing in Cardiology Conference (CinC) , pp. 157-160
    • Johnson, A.E.W.1    Kramer, A.A.2    Clifford, G.D.3
  • 26
    • 84926065435 scopus 로고    scopus 로고
    • Dealing with missing values in data
    • Jiri Kaiser. Dealing with missing values in data. Journal of systems integration, 5(1):42, 2014.
    • (2014) Journal of Systems Integration , vol.5 , Issue.1 , pp. 42
    • Kaiser, J.1
  • 29
    • 85030482319 scopus 로고    scopus 로고
    • Predicting mortality of intensive care patients via learning about hazard
    • Dae Hyun Lee and Eric Horvitz. Predicting mortality of intensive care patients via learning about hazard. In AAAI, pages 4953-4954, 2017.
    • (2017) AAAI , pp. 4953-4954
    • Lee, D.H.1    Horvitz, E.2
  • 34
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Aug
    • Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. Journal of machine learning research, 11(Aug):2287-2322, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 38
    • 37748999261 scopus 로고    scopus 로고
    • Missing data: A comparison of neural network and expectation maximization techniques
    • Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data: A comparison of neural network and expectation maximization techniques. Current Science, pages 1514-1521, 2007.
    • (2007) Current Science , pp. 1514-1521
    • Nelwamondo, F.V.1    Mohamed, S.2    Marwala, T.3
  • 40
    • 85064805043 scopus 로고    scopus 로고
    • Inc., Natick, Massachusetts, United States
    • MATLAB Release. The mathworks. Inc., Natick, Massachusetts, United States, 488, 2013.
    • (2013) MATLAB Release. The Mathworks , pp. 488
  • 42
    • 84875639259 scopus 로고    scopus 로고
    • Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012
    • 2012, IEEE
    • Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. In Computing in Cardiology (CinC), 2012, pages 245-248. IEEE, 2012.
    • (2012) Computing in Cardiology (CinC) , pp. 245-248
    • Silva, I.1    Moody, G.2    Scott, D.J.3    Celi, L.A.4    Mark, R.G.5
  • 43
    • 84911169494 scopus 로고    scopus 로고
    • A brief review of the main approaches for treatment of missing data
    • Luciana O Silva and Luis E Zárate. A brief review of the main approaches for treatment of missing data. Intelligent Data Analysis, 18(6):1177-1198, 2014.
    • (2014) Intelligent Data Analysis , vol.18 , Issue.6 , pp. 1177-1198
    • Silva, L.O.1    Zárate, L.E.2
  • 47
    • 85029367626 scopus 로고    scopus 로고
    • SeqGan: Sequence generative adversarial nets with policy gradient
    • Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy gradient. In AAAI, pages 2852-2858, 2017.
    • (2017) AAAI , pp. 2852-2858
    • Yu, L.1    Zhang, W.2    Wang, J.3    Yu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.