메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Spectral normalization for generative adversarial networks

Author keywords

[No Author keywords available]

Indexed keywords

ADVERSARIAL NETWORKS; SPECTRAL NORMALIZATION; STABILIZATION TECHNIQUES;

EID: 85083950959     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4263)

References (44)
  • 1
    • 85081997770 scopus 로고    scopus 로고
    • Towards principled methods for training generative adversarial networks
    • Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial networks. In ICLR, 2017.
    • (2017) ICLR
    • Arjovsky, M.1    Bottou, L.2
  • 2
    • 85035363407 scopus 로고    scopus 로고
    • Wasserstein generative adversarial networks
    • Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In ICML, pp. 214–223, 2017.
    • (2017) ICML , pp. 214-223
    • Arjovsky, M.1    Chintala, S.2    Bottou, L.3
  • 3
    • 85047021256 scopus 로고    scopus 로고
    • Normalization propagation: A parametric technique for removing internal covariate shift in deep networks
    • Devansh Arpit, Yingbo Zhou, Bhargava U Kota, and Venu Govindaraju. Normalization propagation: A parametric technique for removing internal covariate shift in deep networks. In ICML, pp. 1168–1176, 2016.
    • (2016) ICML , pp. 1168-1176
    • Arpit, D.1    Zhou, Y.2    Kota, B.U.3    Govindaraju, V.4
  • 6
    • 84862283411 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature learning. In AISTATS, pp. 215–223, 2011.
    • (2011) AISTATS , pp. 215-223
    • Coates, A.1    Ng, A.2    Lee, H.3
  • 8
    • 0011024988 scopus 로고
    • The fréchet distance between multivariate normal distributions
    • DC Dowson and BV Landau. The fréchet distance between multivariate normal distributions. Journal of Multivariate Analysis, 12(3):450–455, 1982.
    • (1982) Journal of Multivariate Analysis , vol.12 , Issue.3 , pp. 450-455
    • Dowson, D.C.1    Landau, B.V.2
  • 9
    • 85088228106 scopus 로고    scopus 로고
    • A learned representation for artistic style
    • Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. In ICLR, 2017.
    • (2017) ICLR
    • Dumoulin, V.1    Shlens, J.2    Kudlur, M.3
  • 10
    • 84862294866 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In AISTATS, pp. 315–323, 2011.
    • (2011) AISTATS , pp. 315-323
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 14
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pp. 770–778, 2016.
    • (2016) CVPR , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 85018872345 scopus 로고    scopus 로고
    • Generative adversarial imitation learning
    • Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, pp. 4565–4573, 2016.
    • (2016) NIPS , pp. 4565-4573
    • Ho, J.1    Ermon, S.2
  • 17
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pp. 448–456, 2015.
    • (2015) ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 18
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In ICCV, pp. 2146–2153, 2009.
    • (2009) ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 19
    • 85044258638 scopus 로고    scopus 로고
    • Improving training of deep neural networks via singular value bounding
    • Kui Jia, Dacheng Tao, Shenghua Gao, and Xiangmin Xu. Improving training of deep neural networks via singular value bounding. In CVPR, 2017.
    • (2017) CVPR
    • Jia, K.1    Tao, D.2    Gao, S.3    Xu, X.4
  • 20
    • 85083951076 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 21
    • 85054729490 scopus 로고    scopus 로고
    • Adversarial learning for neural dialogue generation
    • Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural dialogue generation. In EMNLP, pp. 2147–2159, 2017.
    • (2017) EMNLP , pp. 2147-2159
    • Li, J.1    Monroe, W.2    Shi, T.3    Ritter, A.4    Jurafsky, D.5
  • 25
    • 85083951993 scopus 로고    scopus 로고
    • CGANs with projection discriminator
    • Takeru Miyato and Masanori Koyama. cGANs with projection discriminator. In ICLR, 2018.
    • (2018) ICLR
    • Miyato, T.1    Koyama, M.2
  • 27
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, pp. 807–814, 2010.
    • (2010) ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 28
    • 85018914753 scopus 로고    scopus 로고
    • F-GaN: Training generative neural samplers using variational divergence minimization
    • Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers using variational divergence minimization. In NIPS, pp. 271–279, 2016.
    • (2016) NIPS , pp. 271-279
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 29
    • 85019040819 scopus 로고    scopus 로고
    • Conditional image synthesis with auxiliary classifier GANs
    • Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier GANs. In ICML, pp. 2642–2651, 2017.
    • (2017) ICML , pp. 2642-2651
    • Odena, A.1    Olah, C.2    Shlens, J.3
  • 31
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 33
    • 85039461633 scopus 로고    scopus 로고
    • Temporal generative adversarial nets with singular value clipping
    • Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with singular value clipping. In ICCV, 2017.
    • (2017) ICCV
    • Saito, M.1    Matsumoto, E.2    Saito, S.3
  • 34
    • 85017457992 scopus 로고    scopus 로고
    • Weight normalization: A simple reparameterization to accelerate training of deep neural networks
    • Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In NIPS, pp. 901–909, 2016.
    • (2016) NIPS , pp. 901-909
    • Salimans, T.1    Kingma, D.P.2
  • 41
    • 85048385339 scopus 로고    scopus 로고
    • Improving generative adversarial networks with denoising feature matching
    • David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with denoising feature matching. In ICLR, 2017.
    • (2017) ICLR
    • Warde-Farley, D.1    Bengio, Y.2
  • 43
    • 85057231818 scopus 로고    scopus 로고
    • LR-GAN: Layered recursive generative adversarial networks for image generation
    • Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: Layered recursive generative adversarial networks for image generation. ICLR, 2017.
    • (2017) ICLR
    • Yang, J.1    Kannan, A.2    Batra, D.3    Parikh, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.