메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2180-2188

InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets

Author keywords

[No Author keywords available]

Indexed keywords

ADVERSARIAL NETWORKS; INTERPRETABLE REPRESENTATION; LATENT VARIABLE; MUTUAL INFORMATIONS; PRESENCE/ABSENCE; RENDERED IMAGES; SUPERVISED METHODS; VISUAL CONCEPT;

EID: 85019228440     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4305)

References (31)
  • 5
    • 84930643107 scopus 로고    scopus 로고
    • Semi-supervised learning with deep generative models
    • D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, "Semi-supervised learning with deep generative models," in NIPS, 2014, pp. 3581-3589.
    • (2014) NIPS , pp. 3581-3589
    • Kingma, D.P.1    Mohamed, S.2    Rezende, D.J.3    Welling, M.4
  • 7
    • 84965156877 scopus 로고    scopus 로고
    • Deep convolutional inverse graphics network
    • T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, "Deep convolutional inverse graphics network," in NIPS, 2015, pp. 2530-2538.
    • (2015) NIPS , pp. 2530-2538
    • Kulkarni, T.D.1    Whitney, W.F.2    Kohli, P.3    Tenenbaum, J.4
  • 10
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in ICLR, 2008, pp. 1096-1103.
    • (2008) ICLR , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 14
  • 15
    • 84997812859 scopus 로고    scopus 로고
    • Improving semi-supervised learning with auxiliary deep generative models
    • L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther, "Improving semi-supervised learning with auxiliary deep generative models," in ICML, 2016.
    • (2016) ICML
    • Maaløe, L.1    Sønderby, C.K.2    Sønderby, S.K.3    Winther, O.4
  • 17
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, "Human-level concept learning through probabilistic program induction," Science, vol. 350, no. 6266, pp. 1332-1338, 2015.
    • (2015) Science , vol.350 , Issue.6266 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 18
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • J. B. Tenenbaum and W. T. Freeman, "Separating style and content with bilinear models," Neural computation, vol. 12, no. 6, pp. 1247-1283, 2000.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 19
    • 84937885357 scopus 로고    scopus 로고
    • Multi-view perceptron: A deep model for learning face identity and view representations
    • Z. Zhu, P. Luo, X. Wang, and X. Tang, "Multi-view perceptron: A deep model for learning face identity and view representations," in NIPS, 2014, pp. 217-225.
    • (2014) NIPS , pp. 217-225
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 20
    • 84965161391 scopus 로고    scopus 로고
    • Weakly-supervised disentangling with recurrent transformations for 3d view synthesis
    • J. Yang, S. E. Reed, M.-H. Yang, and H. Lee, "Weakly-supervised disentangling with recurrent transformations for 3d view synthesis," in NIPS, 2015, pp. 1099-1107.
    • (2015) NIPS , pp. 1099-1107
    • Yang, J.1    Reed, S.E.2    Yang, M.-H.3    Lee, H.4
  • 21
    • 84919832734 scopus 로고    scopus 로고
    • Learning to disentangle factors of variation with manifold interaction
    • S. Reed, K. Sohn, Y. Zhang, and H. Lee, "Learning to disentangle factors of variation with manifold interaction," in ICML, 2014, pp. 1431-1439.
    • (2014) ICML , pp. 1431-1439
    • Reed, S.1    Sohn, K.2    Zhang, Y.3    Lee, H.4
  • 23
    • 0347070452 scopus 로고
    • Unsupervised classifiers, mutual information and 'phantom targets
    • J. S. Bridle, A. J. Heading, and D. J. MacKay, "Unsupervised classifiers, mutual information and 'phantom targets'," in NIPS, 1992.
    • (1992) NIPS
    • Bridle, J.S.1    Heading, A.J.2    MacKay, D.J.3
  • 24
    • 84864053268 scopus 로고    scopus 로고
    • Kernelized infomax clustering
    • D. Barber and F. V. Agakov, "Kernelized infomax clustering," in NIPS, 2005, pp. 17-24.
    • (2005) NIPS , pp. 17-24
    • Barber, D.1    Agakov, F.V.2
  • 25
    • 85161986160 scopus 로고    scopus 로고
    • Discriminative clustering by regularized information maximization
    • A. Krause, P. Perona, and R. G. Gomes, "Discriminative clustering by regularized information maximization," in NIPS, 2010, pp. 775-783.
    • (2010) NIPS , pp. 775-783
    • Krause, A.1    Perona, P.2    Gomes, R.G.3
  • 26
    • 35048888249 scopus 로고    scopus 로고
    • The IM algorithm: A variational approach to information maximization
    • D. Barber and F. V. Agakov, "The IM algorithm: A variational approach to information maximization," in NIPS, 2003.
    • (2003) NIPS
    • Barber, D.1    Agakov, F.V.2
  • 27
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, "The "wake-sleep" algorithm for unsupervised neural networks," Science, vol. 268, no. 5214, pp. 1158-1161, 1995.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 28
    • 72349091918 scopus 로고    scopus 로고
    • A 3d face model for pose and illumination invariant face recognition
    • P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, "A 3d face model for pose and illumination invariant face recognition," in AVSS, 2009, pp. 296-301.
    • (2009) AVSS , pp. 296-301
    • Paysan, P.1    Knothe, R.2    Amberg, B.3    Romdhani, S.4    Vetter, T.5
  • 29
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic, "Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models," in CVPR, 2014, pp. 3762-3769.
    • (2014) CVPR , pp. 3762-3769
    • Aubry, M.1    Maturana, D.2    Efros, A.3    Russell, B.4    Sivic, J.5
  • 30
    • 84973917446 scopus 로고    scopus 로고
    • Deep learning face attributes in the wild
    • Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep learning face attributes in the wild," in ICCV, 2015.
    • (2015) ICCV
    • Liu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.