-
1
-
-
85072645074
-
Maskconnect-connectivity learning by gradient descent
-
Karim Ahmed and Lorenzo Torresani. MaskConnect-Connectivity Learning by Gradient Descent. ECCV, cs. CV, 2018.
-
(2018)
ECCV, Cs. CV
-
-
Ahmed, K.1
Torresani, L.2
-
7
-
-
85064827063
-
Searching for efficient multi-scale architectures for dense image prediction
-
Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for dense image prediction. In Advances in Neural Information Processing Systems, pages 8713-8724, 2018.
-
(2018)
Advances in Neural Information Processing Systems
, pp. 8713-8724
-
-
Chen, L.1
Collins, M.2
Zhu, Y.3
Papandreou, G.4
Zoph, B.5
Schroff, F.6
Adam, H.7
Shlens, J.8
-
8
-
-
85042712042
-
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
-
Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834-848, 2018.
-
(2018)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.40
, Issue.4
, pp. 834-848
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
11
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
13
-
-
85047004943
-
Improved training of wasserstein gans
-
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. In Advances in Neural Information Processing Systems, pages 5767-5777, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 5767-5777
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.C.5
-
14
-
-
85083954418
-
Probgan: Towards probabilistic gan with theoretical guarantees
-
Guang-He Lee Yonglong Tian Hao He, Hao Wang. Probgan: Towards probabilistic gan with theoretical guarantees. In ICLR, 2019.
-
(2019)
ICLR
-
-
Lee, G.1
Tian, Y.2
He, H.3
Wang, H.4
-
15
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84990050094
-
Identity mappings in deep residual networks
-
Springer
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In European conference on computer vision, pages 630-645. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 630-645
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
85055134446
-
Amc: Automl for model compression and acceleration on mobile devices
-
Springer
-
Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model compression and acceleration on mobile devices. In European Conference on Computer Vision, pages 815-832. Springer, 2018.
-
(2018)
European Conference on Computer Vision
, pp. 815-832
-
-
He, Y.1
Lin, J.2
Liu, Z.3
Wang, H.4
Li, L.5
Han, S.6
-
18
-
-
85049562159
-
-
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a nash equilibrium. arXiv preprint arXiv:1706. 08500, 12(1), 2017.
-
(2017)
Gans Trained by A Two Time-scale Update Rule Converge to A Nash Equilibrium
, vol.12
, Issue.1
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Klambauer, G.5
Hochreiter, S.6
-
22
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
IEEE
-
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5967-5976. IEEE, 2017.
-
(2017)
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 5967-5976
-
-
Isola, P.1
Zhu, J.2
Zhou, T.3
Efros, A.A.4
-
23
-
-
85080962293
-
-
Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, and Zhangyang Wang. Enlightengan: Deep light enhancement without paired supervision. arXiv preprint arXiv:1906. 06972, 2019.
-
(2019)
Enlightengan: Deep Light Enhancement Without Paired Supervision
-
-
Jiang, Y.1
Gong, X.2
Liu, D.3
Cheng, Y.4
Fang, C.5
Shen, X.6
Yang, J.7
Zhou, P.8
Wang, Z.9
-
26
-
-
85083950495
-
Progressive growing of gans for improved quality, stability, and variation
-
Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. ICLR, 2018.
-
(2018)
ICLR
-
-
Karras, T.1
Aila, T.2
Laine, S.3
Lehtinen, J.4
-
31
-
-
85056760291
-
Deblurgan: Blind motion deblurring using conditional adversarial networks
-
Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Ji?rí Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8183-8192, 2018.
-
(2018)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 8183-8192
-
-
Kupyn, O.1
Budzan, V.2
Mykhailych, M.3
Mishkin, D.4
Matas, J.5
-
32
-
-
85064804117
-
-
Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. The gan landscape: Losses, archi-tectures, regularization, and normalization. arXiv preprint arXiv:1807. 04720, 2018.
-
(2018)
The Gan Landscape: Losses, Archi-tectures, Regularization, and Normalization
-
-
Kurach, K.1
Lucic, M.2
Zhai, X.3
Michalski, M.4
Gelly, S.5
-
33
-
-
85035231525
-
Photorealistic single image super-resolution using a generative adversarial network
-
IEEE
-
Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photorealistic single image super-resolution using a generative adversarial network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 105-114. IEEE, 2017.
-
(2017)
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 105-114
-
-
Ledig, C.1
Theis, L.2
Huszár, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
-
35
-
-
85021807435
-
Feature pyramid networks for object detection
-
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In CVPR, volume 1, page 4, 2017.
-
(2017)
CVPR
, vol.1
, pp. 4
-
-
Lin, T.1
Dollár, P.2
Girshick, R.3
He, K.4
Hariharan, B.5
Belongie, S.6
-
36
-
-
85063918828
-
-
Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation. arXiv preprint arXiv:1901. 02985, 2019.
-
(2019)
Auto-deeplab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
-
-
Liu, C.1
Chen, L.2
Schroff, F.3
Adam, H.4
Hua, W.5
Yuille, A.6
Fei-Fei, L.7
-
37
-
-
85055130643
-
-
Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive Neural Architecture Search. pages 19-34, 2018.
-
(2018)
Progressive Neural Architecture Search
, pp. 19-34
-
-
Liu, C.1
Zoph, B.2
Neumann, M.3
Shlens, J.4
Hua, W.5
Li, L.6
Fei-Fei, L.7
Yuille, A.8
Huang, J.9
Murphy, K.10
-
39
-
-
85063266387
-
Are gans created equal? A large-scale study
-
Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans created equal? A large-scale study. In Advances in neural information processing systems, pages 700-709, 2018.
-
(2018)
Advances in Neural Information Processing Systems
, pp. 700-709
-
-
Lucic, M.1
Kurach, K.2
Michalski, M.3
Gelly, S.4
Bousquet, O.5
-
40
-
-
84994145330
-
-
Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-task sequence to sequence learning. arXiv preprint arXiv:1511. 06114, 2015.
-
(2015)
Multi-task Sequence to Sequence Learning
-
-
Luong, M.1
Le, Q.V.2
Sutskever, I.3
Vinyals, O.4
Kaiser, L.5
-
43
-
-
84990052811
-
Stacked hourglass networks for human pose estimation
-
Springer
-
Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In European Conference on Computer Vision, pages 483-499. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 483-499
-
-
Newell, A.1
Yang, K.2
Deng, J.3
-
44
-
-
85046995530
-
Dual discriminator generative adversarial nets
-
Tu Nguyen, Trung Le, Hung Vu, and Dinh Phung. Dual discriminator generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2670-2680, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 2670-2680
-
-
Nguyen, T.1
Le, T.2
Vu, H.3
Phung, D.4
-
45
-
-
85029586812
-
Deconvolution and checkerboard artifacts
-
Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts. Distill, 1(10):e3, 2016.
-
(2016)
Distill
, vol.1
, Issue.10
, pp. e3
-
-
Odena, A.1
Dumoulin, V.2
Olah, C.3
-
46
-
-
85052977250
-
-
H Pham, M Y Guan, B Zoph, Q V Le, J Dean arXiv preprint arXiv, and 2018. Efficient Neural Architecture Search via Parameter Sharing. arxiv. org.
-
(2018)
Efficient Neural Architecture Search Via Parameter Sharing
-
-
Pham, H.1
Guan, M.Y.2
Zoph, B.3
Le, Q.V.4
Dean, J.5
-
48
-
-
85006947809
-
-
arXiv preprint arXiv, and jmlr. org 2016
-
S Reed, Z Akata, X Yan, L Logeswaran arXiv preprint arXiv, and 2016. Generative adversarial text to image synthesis. jmlr. org, 2016.
-
(2016)
Generative Adversarial Text to Image Synthesis
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
-
50
-
-
85018875486
-
Improved techniques for training gans
-
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems, pages 2234-2242, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2234-2242
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
-
51
-
-
84937522268
-
Going deeper with convolutions
-
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1-9, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
52
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and ZbigniewWojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818-2826, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2818-2826
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
53
-
-
85081909119
-
Deep and hierarchical implicit models
-
abs/1702. 08896
-
Dustin Tran, Rajesh Ranganath, and DavidMBlei. Deep and hierarchical implicit models. CoRR, abs/1702. 08896, 2017.
-
(2017)
CoRR
-
-
Tran, D.1
Ranganath, R.2
Blei, D.M.3
-
57
-
-
84986331470
-
Studying very low resolution recognition using deep networks
-
Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu, and Thomas S Huang. Studying very low resolution recognition using deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4792-4800, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4792-4800
-
-
Wang, Z.1
Chang, S.2
Yang, Y.3
Liu, D.4
Huang, T.S.5
-
58
-
-
85048385339
-
Improving generative adversarial networks with denoising feature matching
-
David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with denoising feature matching. ( 2017). In ICLR, 2017.
-
(2017)
ICLR
-
-
Warde-Farley, D.1
Bengio, Y.2
-
59
-
-
0000337576
-
Simple statistical gradient-following algorithms for connectionist reinforcement learning
-
Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229-256, 1992.
-
(1992)
Machine Learning
, vol.8
, Issue.3-4
, pp. 229-256
-
-
Williams, R.J.1
-
61
-
-
85051630893
-
-
arXiv preprint
-
Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Finegrained text to image generation with attentional generative adversarial networks. arXiv preprint, 2017.
-
(2017)
Attngan: Finegrained Text to Image Generation with Attentional Generative Adversarial Networks
-
-
Xu, T.1
Zhang, P.2
Huang, Q.3
Zhang, H.4
Gan, Z.5
Huang, X.6
He, X.7
-
63
-
-
85081897367
-
-
Shuai Yang, Zhangyang Wang, Zhaowen Wang, Ning Xu, Jiaying Liu, and Zongming Guo. Controllable artistic text style transfer via shape-matching gan. arXiv preprint arXiv:1905. 01354, 2019.
-
(2019)
Controllable Artistic Text Style Transfer Via Shape-matching Gan
-
-
Yang, S.1
Wang, Z.2
Wang, Z.3
Xu, N.4
Liu, J.5
Guo, Z.6
-
65
-
-
85021798436
-
-
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas. Stackgan++: Realistic image synthesis with stacked generative adversarial networks. arXiv preprint arXiv:1710. 10916, 2017.
-
(2017)
Stackgan++: Realistic Image Synthesis with Stacked Generative Adversarial Networks
-
-
Zhang, H.1
Xu, T.2
Li, H.3
Zhang, S.4
Wang, X.5
Huang, X.6
Metaxas, D.7
-
66
-
-
85040306596
-
Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
-
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, pages 5907-5915, 2017.
-
(2017)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 5907-5915
-
-
Zhang, H.1
Xu, T.2
Li, H.3
Zhang, S.4
Wang, X.5
Huang, X.6
Metaxas, D.N.7
-
67
-
-
85068959393
-
Dada: Deep adversarial data augmentation for extremely low data regime classification
-
IEEE
-
Xiaofeng Zhang, Zhangyang Wang, Dong Liu, and Qing Ling. Dada: Deep adversarial data augmentation for extremely low data regime classification. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2807-2811. IEEE, 2019.
-
(2019)
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 2807-2811
-
-
Zhang, X.1
Wang, Z.2
Liu, D.3
Ling, Q.4
-
69
-
-
85062863340
-
Practical block-wise neural network architecture generation
-
Zhao Zhong, Junjie Yan, WeiWu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural network architecture generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2423-2432, 2018.
-
(2018)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2423-2432
-
-
Zhong, Z.1
Yan, J.2
Wu, W.3
Shao, J.4
Liu, C.5
-
72
-
-
85062864819
-
Learning transferable architectures for scalable image recognition
-
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning Transferable Architectures for Scalable Image Recognition. CVPR, 2018.
-
(2018)
CVPR
-
-
Zoph, B.1
Vasudevan, V.2
Shlens, J.3
Le, Q.V.4
|