-
1
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
2
-
-
84960980241
-
Faster r-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, J. Sun, "Faster r-CNN: Towards real-time object detection with region proposal networks, " in Proc. Advances Neural Inf. Process. Syst., 2015, vol. 28, pp. 91-99.
-
(2015)
Proc. Advances Neural Inf. Process. Syst.
, vol.28
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
3
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Sci., vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Sci
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
7
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, "Generative adversarial nets, " in Proc. Advances Neural Inf. Process. Syst., 2014, pp. 2672-2680.
-
(2014)
Proc. Advances Neural Inf. Process. Syst
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
85041919547
-
Plug & play generative networks: Conditional iterative generation of images in latent space
-
A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, J. Clune, "Plug & play generative networks: Conditional iterative generation of images in latent space, " in Proc. Comput. Vis. Pattern Recognit., 2017, pp. 4467-4477.
-
(2017)
Proc. Comput. Vis. Pattern Recognit
, pp. 4467-4477
-
-
Nguyen, A.1
Yosinski, J.2
Bengio, Y.3
Dosovitskiy, A.4
Clune, J.5
-
10
-
-
85019228440
-
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
-
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel, "Infogan: Interpretable representation learning by information maximizing generative adversarial nets, " in Proc. Advances Neural Inf. Process. Syst., 2016, pp. 2172-2180.
-
(2016)
Proc. Advances Neural Inf. Process. Syst
, pp. 2172-2180
-
-
Chen, X.1
Duan, Y.2
Houthooft, R.3
Schulman, J.4
Sutskever, I.5
Abbeel, P.6
-
11
-
-
85035231525
-
Photo-realistic single image super-resolution using a generative adversarial network
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, "Photo-realistic single image super-resolution using a generative adversarial network, " in Proc. Comput. Vis. Pattern Recognit., 2017, pp. 4681-4690.
-
(2017)
Proc. Comput. Vis. Pattern Recognit
, pp. 4681-4690
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
Shi, W.11
-
12
-
-
85018875486
-
Improved techniques for training gans
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, X. Chen, "Improved techniques for training gans, " in Proc. Advances Neural Inf. Process. Syst., 2016, pp. 2226-2234.
-
(2016)
Proc. Advances Neural Inf. Process. Syst
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
Chen, X.7
-
13
-
-
84978298377
-
-
CoRR, vol. abs/1511.06434
-
A. Radford, L. Metz, S. Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks, " CoRR, vol. abs/1511.06434, 2015. [Online]. Available: Http://arxiv.org/abs/1511.06434.
-
(2015)
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
14
-
-
85032877289
-
-
CoRR, vol. abs/1611.02163
-
L. Metz, B. Poole, D. Pfau, J. Sohl-Dickstein, "Unrolled generative adversarial networks, " CoRR, vol. abs/1611.02163, 2016. [Online]. Available: Http://arxiv.org/abs/1611.02163
-
(2016)
Unrolled Generative Adversarial Networks
-
-
Metz, L.1
Poole, B.2
Pfau, D.3
Sohl-Dickstein, J.4
-
15
-
-
85035363407
-
Wasserstein gan
-
M. Arjovsky, S. Chintala, L. Bottou, "Wasserstein gan, " in Proc. 33rd Int. Conf. Mach. Learn., 2017, pp. 214-223.
-
(2017)
Proc. 33rd Int. Conf. Mach. Learn
, pp. 214-223
-
-
Arjovsky, M.1
Chintala, S.2
Bottou, L.3
-
18
-
-
85047561154
-
-
CoRR, vol. abs/1705.07215
-
N. Kodali, J. D. Abernethy, J. Hays, Z. Kira, "On convergence and stability of gans, " CoRR, vol. abs/1705.07215, 2017. [Online]. Available: Http://arxiv.org/abs/1705.07215
-
(2017)
On Convergence and Stability of Gans
-
-
Kodali, N.1
Abernethy, J.D.2
Hays, J.3
Kira, Z.4
-
19
-
-
85047004943
-
Improved training of wasserstein gans
-
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, "Improved training of wasserstein gans, " in Adv. Neural Inf. Process. Syst. (NIPS), 2017, pp. 5767-5777.
-
(2017)
Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 5767-5777
-
-
Gulrajani, I.1
Ahmed, F.2
Arjovsky, M.3
Dumoulin, V.4
Courville, A.5
-
20
-
-
85041908569
-
Least squares generative adversarial networks
-
X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, S. P. Smolley, "Least squares generative adversarial networks, " in Proc. Int. Conf. Comput. Vis., 2017, pp. 2813-2821.
-
(2017)
Proc. Int. Conf. Comput. Vis
, pp. 2813-2821
-
-
Mao, X.1
Li, Q.2
Xie, H.3
Lau, R.Y.4
Wang, Z.5
Smolley, S.P.6
-
21
-
-
78149336740
-
Convolutional learning of spatio-temporal features
-
G. W. Taylor, R. Fergus, Y. LeCun, C. Bregler, "Convolutional learning of spatio-temporal features, " in Proc. Eur. Conf. Comput. Vis., 2010, pp. 140-153.
-
(2010)
Proc. Eur. Conf. Comput. Vis
, pp. 140-153
-
-
Taylor, G.W.1
Fergus, R.2
LeCun, Y.3
Bregler, C.4
-
23
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul
-
G. E. Hinton, S. Osindero, Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
24
-
-
84979887690
-
Domain-adversarial training of neural networks
-
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, "Domain-adversarial training of neural networks, " J. Mach. Learn. Res., vol. 17, no. 1, pp. 2096-2030, 2016.
-
(2016)
J. Mach. Learn. Res
, vol.17
, Issue.1
, pp. 2030-2096
-
-
Ganin, Y.1
Ustinova, E.2
Ajakan, H.3
Germain, P.4
Larochelle, H.5
Laviolette, F.6
Marchand, M.7
Lempitsky, V.8
-
25
-
-
84998636515
-
Generative adversarial text-to-image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, "Generative adversarial text-to-image synthesis, " in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1060-1069.
-
(2016)
Proc. 33rd Int. Conf. Mach. Learn
, pp. 1060-1069
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
26
-
-
85030759098
-
Image-to-image translation with conditional adversarial networks
-
P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, "Image-to-image translation with conditional adversarial networks, " in Comput. Vis. Pattern Recognit., 2017, pp. 5967-5976.
-
(2017)
Comput. Vis. Pattern Recognit
, pp. 5967-5976
-
-
Isola, P.1
Zhu, J.-Y.2
Zhou, T.3
Efros, A.A.4
-
28
-
-
84990042746
-
-
CoRR, vol. abs/1605.09782
-
J. Donahue, P. Krahenbuhl, T. Darrell, "Adversarial feature learning, " CoRR, vol. abs/1605.09782, 2016. [Online]. Available: Http://arxiv.org/abs/1605.09782.
-
(2016)
Adversarial Feature Learning
-
-
Donahue, J.1
Krahenbuhl, P.2
Darrell, T.3
-
29
-
-
85018872904
-
-
CoRR, vol. abs/1606.00704
-
V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, A. Courville, "Adversarially learned inference, " CoRR, vol. abs/1606.00704, 2016. [Online]. Available: Http://arxiv.org/abs/1606.00704.
-
(2016)
Adversarially Learned Inference
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Mastropietro, O.4
Lamb, A.5
Arjovsky, M.6
Courville, A.7
-
30
-
-
85040657945
-
Alice: Towards understanding adversarial learning for joint distribution matching
-
C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, L. Carin, "Alice: Towards understanding adversarial learning for joint distribution matching, " in Adv. Neural Inf. Process. Syst. (NIPS), 2017, pp. 5495-5503.
-
(2017)
Adv. Neural Inf. Process. Syst. (NIPS)
, pp. 5495-5503
-
-
Li, C.1
Liu, H.2
Chen, C.3
Pu, Y.4
Chen, L.5
Henao, R.6
Carin, L.7
-
31
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E. Denton, S. Chintala, A. Szlam, R. Fergus, "Deep generative image models using a laplacian pyramid of adversarial networks, " in Proc. Advances Neural Inf. Process. Syst., 2015, pp. 1486-1494.
-
(2015)
Proc. Advances Neural Inf. Process. Syst
, pp. 1486-1494
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
32
-
-
85041903901
-
Stacked generative adversarial networks
-
X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, S. Belongie, "Stacked generative adversarial networks, " in Proc. Comput. Vis. Pattern Recognit., 2017, pp. 5077-5086.
-
(2017)
Proc. Comput. Vis. Pattern Recognit
, pp. 5077-5086
-
-
Huang, X.1
Li, Y.2
Poursaeed, O.3
Hopcroft, J.4
Belongie, S.5
-
33
-
-
85041920050
-
-
CoRR, vol. abs/1612.02136
-
T. Che, Y. Li, A. P. Jacob, Y. Bengio, W. Li, "Mode regularized generative adversarial networks, " CoRR, vol. abs/1612.02136, 2016. [Online]. Available: Http://arxiv.org/abs/1612.02136
-
(2016)
Mode Regularized Generative Adversarial Networks
-
-
Che, T.1
Li, Y.2
Jacob, A.P.3
Bengio, Y.4
Li, W.5
-
34
-
-
85018914753
-
F-GAN: Training generative neural samplers using variational divergence minimization
-
S. Nowozin, B. Cseke, R. Tomioka, "f-GAN: Training generative neural samplers using variational divergence minimization, " in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 271-279.
-
(2016)
Proc. Adv. Neural Inf. Process. Syst
, pp. 271-279
-
-
Nowozin, S.1
Cseke, B.2
Tomioka, R.3
-
35
-
-
85032878439
-
-
CoRR, vol. abs/1609.03126
-
J. Zhao, M. Mathieu, Y. LeCun, "Energy-based Generative Adversarial Network, " CoRR, vol. abs/1609.03126, 2016. [Online]. Available: Http://arxiv.org/abs/1609.03126
-
(2016)
Energy-based Generative Adversarial Network
-
-
Zhao, J.1
Mathieu, M.2
LeCun, Y.3
-
36
-
-
85069005177
-
-
CoRR, vol. abs/1702.01691
-
Z. Dai, A. Almahairi, P. Bachman, E. Hovy, A. Courville, "Calibrating energy-based generative adversarial networks, " CoRR, vol. abs/1702.01691, 2017. [Online]. Available: Http://arxiv.org/abs/1702.01691.
-
(2017)
Calibrating Energy-based Generative Adversarial Networks
-
-
Dai, Z.1
Almahairi, A.2
Bachman, P.3
Hovy, E.4
Courville, A.5
-
37
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
Nov.
-
X. Nguyen, M. J. Wainwright, M. I. Jordan, "Estimating divergence functionals and the likelihood ratio by convex risk minimization, " IEEE Trans. Inform. Theory, vol. 56, no. 11, pp. 5847-5861, Nov. 2010.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
38
-
-
85040674875
-
The numerics ofGANs
-
L. Mescheder, S.Nowozin, A. Geiger, "The numerics ofGANs, " in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 1825-1835.
-
(2017)
Proc. Advances Neural Inf. Process. Syst
, pp. 1825-1835
-
-
Mescheder, L.1
Nowozin, S.2
Geiger, A.3
-
39
-
-
85047000798
-
Stabilizing training of generative adversarial networks through regularization
-
K. Roth, A. Lucchi, S. Nowozin, T. Hofmann, "Stabilizing training of generative adversarial networks through regularization, " in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 2018-2028.
-
(2017)
Proc. Advances Neural Inf. Process. Syst
, pp. 2018-2028
-
-
Roth, K.1
Lucchi, A.2
Nowozin, S.3
Hofmann, T.4
-
40
-
-
85052614570
-
-
CoRR, vol. abs/1710.08446
-
W. Fedus, M. Rosca, B. Lakshminarayanan, A.M. Dai, S.Mohamed, I. Goodfellow, "Many paths to equilibrium: Gans do not need to decrease a divergence at every step, " in CoRR, vol. abs/1710.08446, 2017. [Online]. Available: Http://arxiv.org/abs/1710.08446
-
(2017)
Many Paths to Equilibrium: Gans Do Not Need to Decrease a Divergence at Every Step
-
-
Fedus, W.1
Rosca, M.2
Lakshminarayanan, B.3
Dai, A.M.4
Mohamed, S.5
Goodfellow, I.6
-
42
-
-
85077668062
-
Variational inference via x upper bound minimization
-
A. B. Dieng, D. Tran, R. Ranganath, J. Paisley, D. M. Blei, "Variational inference via x upper bound minimization, " in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 2732-2741.
-
(2017)
Proc. Advances Neural Inf. Process. Syst
, pp. 2732-2741
-
-
Dieng, A.B.1
Tran, D.2
Ranganath, R.3
Paisley, J.4
Blei, D.M.5
-
43
-
-
84958264664
-
-
CoRR, vol. abs/1603.04467
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. J_ozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man_e, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Vi_egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous systems, " CoRR, vol. abs/1603.04467, 2016. [Online]. Available: Http://arxiv.org/abs/1603.04467
-
(2016)
TensorFlow: Large-scale Machine Learning on Heterogeneous Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
Ghemawat, S.11
Goodfellow, I.J.12
Harp, A.13
Irving, G.14
Isard, M.15
Jia, Y.16
Jozefowicz, R.17
Kaiser, L.18
Kudlur, M.19
Levenberg, J.20
Man-e, D.21
Monga, R.22
Moore, S.23
Murray, D.G.24
Olah, C.25
Schuster, M.26
Shlens, J.27
Steiner, B.28
Sutskever, I.29
Talwar, K.30
Tucker, P.A.31
Vanhoucke, V.32
Vasudevan, V.33
Viegas, F.B.34
Vinyals, O.35
Warden, P.36
Wattenberg, M.37
Wicke, M.38
Yu, Y.39
Zheng, X.40
more..
-
44
-
-
56749153951
-
Cat head detection-how to effectively exploit shape and texture features
-
W. Zhang, J. Sun, X. Tang, "Cat head detection-how to effectively exploit shape and texture features, " in Proc. Eur. Conf. Comput. Vis., 2008, pp. 802-816.
-
(2008)
Proc. Eur. Conf. Comput. Vis
, pp. 802-816
-
-
Zhang, W.1
Sun, J.2
Tang, X.3
-
45
-
-
85041020882
-
Gans trained by a two time-scale update rule converge to a local nash equilibrium
-
M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, "Gans trained by a two time-scale update rule converge to a local nash equilibrium, " in Proc. Advances Neural Inf. Process. Syst., 2017, pp. 6626-6637.
-
(2017)
Proc. Advances Neural Inf. Process. Syst
, pp. 6626-6637
-
-
Heusel, M.1
Ramsauer, H.2
Unterthiner, T.3
Nessler, B.4
Hochreiter, S.5
-
47
-
-
84893343292
-
Lecture 6.5|RMSProp: Divide the gradient by a running average of its recent magnitude
-
T. Tieleman and G. Hinton, "Lecture 6.5|RMSProp: Divide the gradient by a running average of its recent magnitude, " COURSERA: Neural Netw. Mach. Learn., vol. 4, pp. 26-30, 2012.
-
(2012)
COURSERA: Neural Netw. Mach. Learn
, vol.4
, pp. 26-30
-
-
Tieleman, T.1
Hinton, G.2
-
48
-
-
84865114495
-
Reading digits in natural images with unsupervised feature learning
-
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, "Reading digits in natural images with unsupervised feature learning, " in Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn., 2011.
-
(2011)
Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
|