메뉴 건너뛰기




Volumn 41, Issue 12, 2019, Pages 2947-2960

On the Effectiveness of Least Squares Generative Adversarial Networks

Author keywords

generative model; image generation; Least squares GANs; 2 divergence

Indexed keywords

GALLIUM NITRIDE; GAS GENERATORS; III-V SEMICONDUCTORS; JOB ANALYSIS; LEARNING SYSTEMS; PERSONNEL TRAINING;

EID: 85054646594     PISSN: 01628828     EISSN: 19393539     Source Type: Journal    
DOI: 10.1109/TPAMI.2018.2872043     Document Type: Article
Times cited : (155)

References (48)
  • 2
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, J. Sun, "Faster r-CNN: Towards real-time object detection with region proposal networks, " in Proc. Advances Neural Inf. Process. Syst., 2015, vol. 28, pp. 91-99.
    • (2015) Proc. Advances Neural Inf. Process. Syst. , vol.28 , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 4
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Sci., vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Sci , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 23
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul
    • G. E. Hinton, S. Osindero, Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 26
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • P. Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, "Image-to-image translation with conditional adversarial networks, " in Comput. Vis. Pattern Recognit., 2017, pp. 5967-5976.
    • (2017) Comput. Vis. Pattern Recognit , pp. 5967-5976
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 34
    • 85018914753 scopus 로고    scopus 로고
    • F-GAN: Training generative neural samplers using variational divergence minimization
    • S. Nowozin, B. Cseke, R. Tomioka, "f-GAN: Training generative neural samplers using variational divergence minimization, " in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 271-279.
    • (2016) Proc. Adv. Neural Inf. Process. Syst , pp. 271-279
    • Nowozin, S.1    Cseke, B.2    Tomioka, R.3
  • 37
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization
    • Nov.
    • X. Nguyen, M. J. Wainwright, M. I. Jordan, "Estimating divergence functionals and the likelihood ratio by convex risk minimization, " IEEE Trans. Inform. Theory, vol. 56, no. 11, pp. 5847-5861, Nov. 2010.
    • (2010) IEEE Trans. Inform. Theory , vol.56 , Issue.11 , pp. 5847-5861
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 44
    • 56749153951 scopus 로고    scopus 로고
    • Cat head detection-how to effectively exploit shape and texture features
    • W. Zhang, J. Sun, X. Tang, "Cat head detection-how to effectively exploit shape and texture features, " in Proc. Eur. Conf. Comput. Vis., 2008, pp. 802-816.
    • (2008) Proc. Eur. Conf. Comput. Vis , pp. 802-816
    • Zhang, W.1    Sun, J.2    Tang, X.3
  • 47
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5|RMSProp: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton, "Lecture 6.5|RMSProp: Divide the gradient by a running average of its recent magnitude, " COURSERA: Neural Netw. Mach. Learn., vol. 4, pp. 26-30, 2012.
    • (2012) COURSERA: Neural Netw. Mach. Learn , vol.4 , pp. 26-30
    • Tieleman, T.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.