메뉴 건너뛰기




Volumn 97, Issue 1, 2010, Pages 254-259

The maximal data piling direction for discrimination

Author keywords

Classification; Fisher's linear discrimination; High dimension, low sample size; Maximal data piling; Support vector machine

Indexed keywords


EID: 77249090732     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asp084     Document Type: Article
Times cited : (73)

References (11)
  • 1
    • 34548536094 scopus 로고    scopus 로고
    • High dimension, low sample size geometric representation holds under mild conditions
    • AHN, J.,MARRON, J. S.,MULLER, K. E. & CHI, Y. Y. (2007). High dimension, low sample size geometric representation holds under mild conditions. Biometrika 3, 760-766
    • (2007) Biometrika , vol.3 , pp. 760-766
    • Ahn, J.1    Marron, J.S.2    Muller, K.E.3    Chi, Y.Y.4
  • 2
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher's linear discriminant function, 'naïve Bayes', and some alternatives when there are many more variables than observations
    • BICKEL, P. & LEVINA, E. (2004). Some theory for Fisher's linear discriminant function, 'naïve Bayes', and some alternatives when there are many more variables than observations. Bernoulli 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.1    Levina, E.2
  • 3
    • 0039596307 scopus 로고
    • Representation of the discriminant analysis statistics and asymptotic expansions when the space dimension is comparable with sample size
    • DEEV, A. D. (1970). Representation of the discriminant analysis statistics and asymptotic expansions when the space dimension is comparable with sample size. Rep. Acad. Sci. USSR 195, 756-762
    • (1970) Rep. Acad. Sci. USSR , vol.195 , pp. 756-762
    • Deev, A.D.1
  • 4
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • FISHER, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179-188
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 6
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension low sample size data
    • HALL, P., MARRON, J. S. & NEEMAN, A. (2005). Geometric representation of high dimension low sample size data. J. R. Statist. Soc. B 67, 427-444
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 7
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • LE CESSIE, S. & VAN HOUWELINGEN, J. C. (1992). Ridge estimators in logistic regression. Appl. Statist. 41, 191-201.
    • (1992) Appl. Statist. , vol.41 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 11
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • ZHAO, Y. & KARYPIS, G. (2005). Hierarchical clustering algorithms for document datasets. Data Mining Know. Disc. 10, 141-168
    • (2005) Data Mining Know. Disc. , vol.10 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.