메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 2813-2821

Least Squares Generative Adversarial Networks

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 85041908569     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.304     Document Type: Conference Paper
Times cited : (4440)

References (33)
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 9
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • July
    • K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5):359-366, July 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.
    • (2009) Tech Report
    • Krizhevsky, A.1
  • 22
    • 77958588617 scopus 로고    scopus 로고
    • Estimating divergence functionals and the likelihood ratio by convex risk minimization
    • X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56 (11):5847-5861, 2010.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.11 , pp. 5847-5861
    • Nguyen, X.1    Wainwright, M.J.2    Jordan, M.I.3
  • 31
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6. 5-RMSProp: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6. 5-RMSProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.