-
3
-
-
85041920050
-
-
arXiv:1612. 02136
-
T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode regularized generative adversarial networks. arXiv:1612. 02136, 2016.
-
(2016)
Mode Regularized Generative Adversarial Networks
-
-
Che, T.1
Li, Y.2
Jacob, A.P.3
Bengio, Y.4
Li, W.5
-
4
-
-
85019228440
-
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
-
X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS), pages 2172-2180, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2172-2180
-
-
Chen, X.1
Duan, Y.2
Houthooft, R.3
Schulman, J.4
Sutskever, I.5
Abbeel, P.6
-
5
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems (NIPS), pages 1486-1494, 2015.
-
(2015)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1486-1494
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
6
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS), pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313 (5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
9
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
July
-
K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5):359-366, July 1989.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
10
-
-
85041923795
-
-
arXiv:1612. 04357
-
X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie. Stacked generative adversarial networks. arXiv:1612. 04357, 2016.
-
(2016)
Stacked Generative Adversarial Networks
-
-
Huang, X.1
Li, Y.2
Poursaeed, O.3
Hopcroft, J.4
Belongie, S.5
-
15
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.
-
(2009)
Tech Report
-
-
Krizhevsky, A.1
-
16
-
-
85019017178
-
-
arXiv:1609. 04802
-
C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv:1609. 04802, 2016.
-
(2016)
Photo-Realistic Single Image Super-Resolution Using A Generative Adversarial Network
-
-
Ledig, C.1
Theis, L.2
Huszar, F.3
Caballero, J.4
Cunningham, A.5
Acosta, A.6
Aitken, A.7
Tejani, A.8
Totz, J.9
Wang, Z.10
Shi, W.11
-
17
-
-
82355169298
-
Icdar 2011 Chinese handwriting recognition competition
-
C.-L. Liu, F. Yin, Q.-F. Wang, and D.-H. Wang. Icdar 2011 chinese handwriting recognition competition. In Proceedings of the 2011 International Conference on Document Analysis and Recognition (ICDAR), pages 1464-1469, 2011.
-
(2011)
Proceedings of the 2011 International Conference on Document Analysis and Recognition (ICDAR)
, pp. 1464-1469
-
-
Liu, C.-L.1
Yin, F.2
Wang, Q.-F.3
Wang, D.-H.4
-
21
-
-
85014057902
-
-
arXiv:1612. 00005
-
A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune. Plug & play generative networks: Conditional iterative generation of images in latent space. arXiv:1612. 00005, 2016.
-
(2016)
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
-
-
Nguyen, A.1
Yosinski, J.2
Bengio, Y.3
Dosovitskiy, A.4
Clune, J.5
-
22
-
-
77958588617
-
Estimating divergence functionals and the likelihood ratio by convex risk minimization
-
X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory, 56 (11):5847-5861, 2010.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.11
, pp. 5847-5861
-
-
Nguyen, X.1
Wainwright, M.J.2
Jordan, M.I.3
-
26
-
-
84998636515
-
Generative adversarial text-to-image synthesis
-
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text-to-image synthesis. In Proceedings of The 33rd International Conference on Machine Learning (ICML), 2016.
-
(2016)
Proceedings of the 33rd International Conference on Machine Learning (ICML)
-
-
Reed, S.1
Akata, Z.2
Yan, X.3
Logeswaran, L.4
Schiele, B.5
Lee, H.6
-
27
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 28, pages 91-99, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
29
-
-
85018875486
-
Improved techniques for training gans
-
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen. Improved techniques for training gans. In Advances in Neural Information Processing Systems (NIPS), pages 2226-2234, 2016.
-
(2016)
Advances in Neural Information Processing Systems (NIPS)
, pp. 2226-2234
-
-
Salimans, T.1
Goodfellow, I.2
Zaremba, W.3
Cheung, V.4
Radford, A.5
Chen, X.6
Chen, X.7
-
32
-
-
84979976120
-
-
arXiv:1506. 03365
-
F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv:1506. 03365, 2015.
-
(2015)
Lsun: Construction of A Large-scale Image Dataset Using Deep Learning with Humans in the Loop
-
-
Yu, F.1
Seff, A.2
Zhang, Y.3
Song, S.4
Funkhouser, T.5
Xiao, J.6
|