메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 5707-5715

Semantic Image Synthesis via Adversarial Learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; SEMANTICS;

EID: 85041901593     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.608     Document Type: Conference Paper
Times cited : (299)

References (42)
  • 1
    • 85088232940 scopus 로고    scopus 로고
    • Neural photo editing with introspective adversarial networks
    • A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Neural Photo Editing with Introspective Adversarial Networks. In ICLR, 2017.
    • (2017) ICLR
    • Brock, A.1    Lim, T.2    Ritchie, J.M.3    Weston, N.4
  • 2
    • 85019228440 scopus 로고    scopus 로고
    • InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
    • X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. In NIPS, 2016.
    • (2016) NIPS
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6
  • 3
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 5
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learning to Generate Chairs with Convolutional Neural Networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Tobias Springenberg, J.2    Brox, T.3
  • 8
    • 85041929648 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In ICML, 2015.
    • (2015) ICML
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Rezende, D.J.4    Wierstra, D.5
  • 9
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 10
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 11
    • 85030759098 scopus 로고    scopus 로고
    • Image-to-image translation with conditional adversarial networks
    • P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. In CVPR, 2017.
    • (2017) CVPR
    • Isola, P.1    Zhu, J.-Y.2    Zhou, T.3    Efros, A.A.4
  • 12
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-Time Style Transfer and Super-Resolution. In ECCV, 2016.
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 13
    • 85035229171 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.1    Ba, J.2
  • 14
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational bayes
    • D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 15
    • 84952349298 scopus 로고    scopus 로고
    • Unifying visual-semantic embeddings with multimodal neural language models
    • R. Kiros, R. Salakhutdinov, and R. Zemel. Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. In TACL, 2015.
    • (2015) TACL
    • Kiros, R.1    Salakhutdinov, R.2    Zemel, R.3
  • 18
    • 84990854650 scopus 로고    scopus 로고
    • Precomputed real-time texture synthesis with markovian generative adversarial networks
    • C. Li and M. Wand. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. In ECCV, 2016.
    • (2016) ECCV
    • Li, C.1    Wand, M.2
  • 22
    • 65249121810 scopus 로고    scopus 로고
    • Automated flower classification over a large number of classes
    • M.-E. Nilsback and A. Zisserman. Automated Flower Classification over a Large Number of Classes. In ICCVGIP, 2008.
    • (2008) ICCVGIP
    • Nilsback, M.-E.1    Zisserman, A.2
  • 26
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 27
    • 84986250442 scopus 로고    scopus 로고
    • Learning deep representations of fine-grained visual descriptions
    • S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning Deep Representations of Fine-Grained Visual Descriptions. In CVPR, 2016.
    • (2016) CVPR
    • Reed, S.1    Akata, Z.2    Lee, H.3    Schiele, B.4
  • 31
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 34
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 35
    • 85088231360 scopus 로고    scopus 로고
    • Unsupervised cross-domain image generation
    • Y. Taigman, A. Polyak, and L. Wolf. Unsupervised Cross-Domain Image Generation. In ICLR, 2017.
    • (2017) ICLR
    • Taigman, Y.1    Polyak, A.2    Wolf, L.3
  • 37
    • 84990022453 scopus 로고    scopus 로고
    • Generative image modeling using style and structure adversarial networks
    • X. Wang and A. Gupta. Generative Image Modeling Using Style and Structure Adversarial Networks. In ECCV, 2016.
    • (2016) ECCV
    • Wang, X.1    Gupta, A.2
  • 38
    • 85018933379 scopus 로고    scopus 로고
    • Attribute2image: Conditional image generation from visual attributes
    • X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2Image: Conditional Image Generation from Visual Attributes. In ECCV, 2016.
    • (2016) ECCV
    • Yan, X.1    Yang, J.2    Sohn, K.3    Lee, H.4
  • 39
    • 84965161391 scopus 로고    scopus 로고
    • Weaklysupervised disentangling with recurrent transformations for 3d view synthesis
    • J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weaklysupervised Disentangling with Recurrent Transformations for 3D View Synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.2    Yang, M.-H.3    Lee, H.4
  • 42
    • 85030465393 scopus 로고    scopus 로고
    • Generative visual manipulation on the natural image manifold
    • J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative Visual Manipulation on the Natural Image Manifold. In ECCV, 2016.
    • (2016) ECCV
    • Zhu, J.-Y.1    Krähenbühl, P.2    Shechtman, E.3    Efros, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.