-
1
-
-
85044146651
-
A brief review of single-cell transcriptomic technologies
-
Kalisky T, Oriel S, Bar-Lev TH, Ben-Haim N, Trink A, Wineberg Y, Kanter I, Gilad S, Pyne S. A brief review of single-cell transcriptomic technologies. Brief Funct Genom. 2018; 17(1):64-76. https://doi.org/10.1093/bfgp/elx019.
-
(2017)
Briefings in Functional Genomics
, vol.17
, Issue.1
, pp. 64-76
-
-
Kalisky, T.1
Oriel, S.2
Bar-Lev, T.H.3
Ben-Haim, N.4
Trink, A.5
Wineberg, Y.6
Kanter, I.7
Gilad, S.8
Pyne, S.9
-
2
-
-
85044252958
-
Exponential scaling of single-cell RNA-seq in the past decade
-
1:CAS:528:DC%2BC1cXjs1agu74%3D
-
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018; 13(4):599-604. https://doi.org/10.1038/nprot.2017.149.
-
(2018)
Nature Protocols
, vol.13
, Issue.4
, pp. 599-604
-
-
Svensson, V.1
Vento-Tormo, R.2
Teichmann, S.A.3
-
3
-
-
84929684999
-
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
-
1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
-
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas A. R, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells Using nanoliter droplets. Cell. 2015; 161(5):1202-14. https://doi.org/10.1016/j.cell.2015.05.002.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
Nemesh, J.4
Shekhar, K.5
Goldman, M.6
Tirosh, I.7
Bialas, A.R.8
Kamitaki, N.9
Martersteck, E.M.10
Trombetta, J.J.11
Weitz, D.A.12
Sanes, J.R.13
Shalek, A.K.14
Regev, A.15
McCarroll, S.A.16
-
4
-
-
84929684998
-
Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells
-
1:CAS:528:DC%2BC2MXpt1SgtL0%3D
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet aarcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-201. https://doi.org/10.1016/j.cell.2015.04.044.
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
Peshkin, L.7
Weitz, D.A.8
Kirschner, M.W.9
-
5
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. https://doi.org/10.1038/ncomms14049.
-
(2017)
Nat Commun.
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
Terry, J.M.2
Belgrader, P.3
Ryvkin, P.4
Bent, Z.W.5
Wilson, R.6
Ziraldo, S.B.7
Wheeler, T.D.8
McDermott, G.P.9
Zhu, J.10
Gregory, M.T.11
Shuga, J.12
Montesclaros, L.13
Underwood, J.G.14
Masquelier, D.A.15
Nishimura, S.Y.16
Schnall-Levin, M.17
Wyatt, P.W.18
Hindson, C.M.19
Bharadwaj, R.20
Wong, A.21
Ness, K.D.22
Beppu, L.W.23
Deeg, H.J.24
McFarland, C.25
Loeb, K.R.26
Valente, W.J.27
Ericson, N.G.28
Stevens, E.A.29
Radich, J.P.30
Mikkelsen, T.S.31
Hindson, B.J.32
Bielas, J.H.33
more..
-
6
-
-
85072991191
-
How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives
-
Dal Molin A, Di Camillo B. How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives. Brief Bioinform. 2018. https://doi.org/10.1093/bib/bby007.
-
(2018)
Briefings in Bioinformatics
, vol.20
, Issue.4
, pp. 1384-1394
-
-
Dal Molin, A.1
Di Camillo, B.2
-
7
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
1:CAS:528:DC%2BC2sXhtlKjsro%3D
-
Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3):309-15. https://doi.org/10.1038/nmeth.4150.
-
(2017)
Nature Methods
, vol.14
, Issue.3
, pp. 309-315
-
-
Qiu, X.1
Hill, A.2
Packer, J.3
Lin, D.4
Ma, Yi.-An.5
Trapnell, C.6
-
8
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
1:CAS:528:DC%2BC3sXhsVyqtb%2FM
-
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013; 10(11):1096-8. https://doi.org/10.1038/nmeth.2639.
-
(2013)
Nature Methods
, vol.10
, Issue.11
, pp. 1096-1098
-
-
Picelli, S.1
Björklund, Å.K.2
Faridani, O.R.3
Sagasser, S.4
Winberg, G.5
Sandberg, R.6
-
9
-
-
84929687805
-
The Technology and Biology of Single-Cell RNA Sequencing
-
1:CAS:528:DC%2BC2MXpt1Sns78%3D
-
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58(4):610-20. https://doi.org/10.1016/j.molcel.2015.04.005.
-
(2015)
Molecular Cell
, vol.58
, Issue.4
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
10
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-6. https://doi.org/10.1038/nmeth.2772.
-
(2013)
Nature Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
La Manno, G.4
Zajac, P.5
Kasper, M.6
Lönnerberg, P.7
Linnarsson, S.8
-
11
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11(6):637-40. https://doi.org/10.1038/nmeth.2930.
-
(2014)
Nature Methods
, vol.11
, Issue.6
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Van Oudenaarden, A.3
-
12
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
-
27909575 5112579
-
Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. 2016; 5:2122. https://doi.org/10.12688/f1000research.9501.2.
-
(2016)
F1000Research
, vol.5
, pp. 2122
-
-
Lun, A.T.L.1
McCarthy, D.J.2
Marioni, J.C.3
-
13
-
-
85019072518
-
Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017; 33(8):1179-86. https://doi.org/10.1093/bioinformatics/btw777.
-
(2017)
Bioinformatics
, vol.33
, Issue.8
, pp. 1179-86
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
14
-
-
85025649872
-
Identifying cell populations with scRNASeq
-
1:CAS:528:DC%2BC2sXht1equ7fL
-
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Asp Med. 2017. https://doi.org/10.1016/j.mam.2017.07.002.
-
(2018)
Molecular Aspects of Medicine
, vol.59
, pp. 114-122
-
-
Andrews, T.S.1
Hemberg, M.2
-
15
-
-
85089317715
-
A systematic performance evaluation of clustering methods for single-cell RNA-seq data
-
Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Research. 2018; 7:1141. https://doi.org/10.12688/f1000research.15666.1.
-
(2018)
F1000Research
, vol.7
, pp. 1141
-
-
Duò, A.1
Robinson, M.D.2
Soneson, C.3
-
16
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
1:CAS:528:DC%2BC3sXhsVyqtb3L
-
Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013; 10(11):1093-5. https://doi.org/10.1038/nmeth.2645.
-
(2013)
Nature Methods
, vol.10
, Issue.11
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Kołodziejczyk, A.A.4
Zhang, X.5
Proserpio, V.6
Baying, B.7
Benes, V.8
Teichmann, S.A.9
Marioni, J.C.10
Heisler, M.G.11
-
17
-
-
85046298440
-
Integrating single-cell transcriptomic data across different conditions, technologies, and species
-
1:CAS:528:DC%2BC1cXmslKrtL0%3D
-
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4096.
-
(2018)
Nature Biotechnology
, vol.36
, Issue.5
, pp. 411-420
-
-
Butler, A.1
Hoffman, P.2
Smibert, P.3
Papalexi, E.4
Satija, R.5
-
18
-
-
85065838422
-
M3Drop: Dropout-based feature selection for scRNASeq
-
Andrews TS, Hemberg M. M3Drop: Dropout-based feature selection for scRNASeq. Bioinformatics. 2019; 35(16):2865-7. https://doi.org/10.1093/bioinformatics/bty1044.
-
(2018)
Bioinformatics
, vol.35
, Issue.16
, pp. 2865-2867
-
-
Andrews, T.S.1
Hemberg, M.2
-
19
-
-
58149421595
-
Analysis of a complex of statistical variables into principal components
-
Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933; 24(6):417-41. https://doi.org/10.1037/h0071325.
-
(1933)
Journal of Educational Psychology
, vol.24
, Issue.6
, pp. 417-441
-
-
Hotelling, H.1
-
20
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17:75. https://doi.org/10.1186/s13059-016-0947-7.
-
(2016)
Genome Biol.
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
21
-
-
85067850669
-
Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data
-
Lun A. Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data. bioRxiv. 2018:404962. https://doi.org/10.1101/404962.
-
(2018)
bioRxiv.
, pp. 404962
-
-
Lun, A.1
-
22
-
-
85019229996
-
Why you cannot transform your way out of trouble for small counts
-
Warton DI. Why you cannot transform your way out of trouble for small counts. Biometrics. 2018; 74(1):362-8. https://doi.org/10.1111/biom.12728.
-
(2017)
Biometrics
, vol.74
, Issue.1
, pp. 362-368
-
-
Warton, D.I.1
-
23
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: Challenges and opportunities
-
1:CAS:528:DC%2BC2sXnslKkt7o%3D
-
Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat Methods. 2017; 14(6):565-71. https://doi.org/10.1038/nmeth.4292.
-
(2017)
Nature Methods
, vol.14
, Issue.6
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
24
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16:278. https://doi.org/10.1186/s13059-015-0844-5.
-
(2015)
Genome Biol.
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
Slichter, C.K.7
Miller, H.W.8
McElrath, M.J.9
Prlic, M.10
Linsley, P.S.11
Gottardo, R.12
-
25
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16:241. https://doi.org/10.1186/s13059-015-0805-z.
-
(2015)
Genome Biol.
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
26
-
-
84964545059
-
Single-cell transcriptome sequencing: Recent advances and remaining challenges
-
Liu S, Trapnell C. Single-cell transcriptome sequencing: Recent advances and remaining challenges. F1000Research. 2016; 5:182. https://doi.org/10.12688/f1000research.7223.1.
-
(2016)
F1000Research
, vol.5
, pp. 182
-
-
Liu, S.1
Trapnell, C.2
-
27
-
-
85016502564
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
-
Lin P, Troup M, Ho JWK. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017; 18:59. https://doi.org/10.1186/s13059-017-1188-0.
-
(2017)
Genome Biol.
, vol.18
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.K.3
-
28
-
-
85040785722
-
A general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):1-17. https://doi.org/10.1038/s41467-017-02554-5.
-
(2018)
Nat Commun.
, vol.9
, Issue.1
, pp. 1-17
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.-P.5
-
29
-
-
85074745558
-
Droplet scRNA-seq is not zero-inflated
-
Svensson V. Droplet scRNA-seq is not zero-inflated. bioRxiv. 2019:582064. https://doi.org/10.1101/582064.
-
(2019)
bioRxiv.
, pp. 582064
-
-
Svensson, V.1
-
30
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2018; 19(4):562-78. https://doi.org/10.1093/biostatistics/kxx053.
-
(2017)
Biostatistics
, vol.19
, Issue.4
, pp. 562-578
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
Irizarry, R.A.4
-
31
-
-
84899014910
-
A generalization of principal components analysis to the exponential family
-
T.G. Dietterich S. Becker Z. Ghahramani (eds) MIT Press Cambridge
-
Collins M, Dasgupta S, Schapire RE. A generalization of principal components analysis to the exponential family In: Dietterich TG, Becker S, Ghahramani Z, editors. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press: 2002. p. 617-24.
-
(2002)
Advances in Neural Information Processing Systems 14
-
-
Collins, M.1
Dasgupta, S.2
Schapire, R.E.3
-
32
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung P-Y, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, Gilad Y. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017; 7:39921. https://doi.org/10.1038/srep39921.
-
(2017)
Sci Rep.
, vol.7
, pp. 39921
-
-
Tung, P.-Y.1
Blischak, J.D.2
Hsiao, C.J.3
Knowles, D.A.4
Burnett, J.E.5
Pritchard, J.K.6
Gilad, Y.7
-
33
-
-
85034439213
-
A single-cell survey of the small intestinal epithelium
-
1:CAS:528:DC%2BC2sXhslygtLjK
-
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y, Tirosh I, Beyaz S, Dionne D, Zhang M, Raychowdhury R, Garrett WS, Rozenblatt-Rosen O, Shi HN, Yilmaz O, Xavier RJ, Regev A. A single-cell survey of the small intestinal epithelium. Nature. 2017; 551(7680):333-9. https://doi.org/10.1038/nature24489.
-
(2017)
Nature
, vol.551
, Issue.7680
, pp. 333-339
-
-
Haber, A.L.1
Biton, M.2
Rogel, N.3
Herbst, R.H.4
Shekhar, K.5
Smillie, C.6
Burgin, G.7
Delorey, T.M.8
Howitt, M.R.9
Katz, Y.10
Tirosh, I.11
Beyaz, S.12
Dionne, D.13
Zhang, M.14
Raychowdhury, R.15
Garrett, W.S.16
Rozenblatt-Rosen, O.17
Shi, H.N.18
Yilmaz, O.19
Xavier, R.J.20
Regev, A.21
more..
-
34
-
-
84994589771
-
A Single-Cell Transcriptome Atlas of the Human Pancreas
-
Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJP, van Oudenaarden A. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016; 3(4):385-3943. https://doi.org/10.1016/j.cels.2016.09.002.
-
(2016)
Cell Systems
, vol.3
, Issue.4
, pp. 385-394e3
-
-
Muraro, M.J.1
Dharmadhikari, G.2
Grün, D.3
Groen, N.4
Dielen, T.5
Jansen, E.6
Van Gurp, L.7
Engelse, M.A.8
Carlotti, F.9
de Koning, E.J.P.10
Van Oudenaarden, A.11
-
35
-
-
84976337073
-
Synthetic evolutionary origin of a proofreading reverse transcriptase
-
1:CAS:528:DC%2BC28XhtVaitL3M
-
Ellefson JW, Gollihar J, Shroff R, Shivram H, Iyer VR, Ellington AD. Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 2016; 352(6293):1590-3. https://doi.org/10.1126/science.aaf5409.
-
(2016)
Science
, vol.352
, Issue.6293
, pp. 1590-1593
-
-
Ellefson, J.W.1
Gollihar, J.2
Shroff, R.3
Shivram, H.4
Iyer, V.R.5
Ellington, A.D.6
-
36
-
-
84882455458
-
Single-cell sequencing-based technologies will revolutionize whole-organism science
-
1:CAS:528:DC%2BC3sXhtFygsL3L
-
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013; 14(9):618-30. https://doi.org/10.1038/nrg3542.
-
(2013)
Nature Reviews Genetics
, vol.14
, Issue.9
, pp. 618-630
-
-
Shapiro, E.1
Biezuner, T.2
Linnarsson, S.3
-
37
-
-
85075232941
-
Naught all zeros in sequence count data are the same
-
Silverman JD, Roche K, Mukherjee S, David LA. Naught all zeros in sequence count data are the same. bioRxiv. 2018:477794. https://doi.org/10.1101/477794.
-
(2018)
bioRxiv.
, pp. 477794
-
-
Silverman, J.D.1
Roche, K.2
Mukherjee, S.3
David .LA.4
-
39
-
-
85052096647
-
K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data
-
Wagner F, Yan Y, Yanai I. K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data. bioRxiv. 2018:217737. https://doi.org/10.1101/217737.
-
(2018)
bioRxiv.
, pp. 217737
-
-
Wagner, F.1
Yan, Y.2
Yanai, I.3
-
40
-
-
85042612161
-
Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications
-
Van den Berge K, Perraudeau F, Soneson C, Love MI, Risso D, Vert J-P, Robinson MD, Dudoit S, Clement L. Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications. Genome Biol. 2018; 19:24. https://doi.org/10.1186/s13059-018-1406-4.
-
(2018)
Genome Biol.
, vol.19
, pp. 24
-
-
Van den Berge, K.1
Perraudeau, F.2
Soneson, C.3
Love, M.I.4
Risso, D.5
Vert, J.-P.6
Robinson, M.D.7
Dudoit, S.8
Clement, L.9
-
41
-
-
84867897914
-
Classification and clustering of sequencing data using a Poisson model
-
Witten DM. Classification and clustering of sequencing data using a Poisson model. Ann Appl Stat. 2011; 5(4):2493-518. https://doi.org/10.1214/11-AOAS493.
-
(2011)
The Annals of Applied Statistics
, vol.5
, Issue.4
, pp. 2493-2518
-
-
Witten, D.M.1
-
44
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
1:CAS:528:DC%2BC2cXks12ku7c%3D
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381-6. https://doi.org/10.1038/nbt.2859.
-
(2014)
Nature Biotechnology
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
Lennon, N.J.7
Livak, K.J.8
Mikkelsen, T.S.9
Rinn, J.L.10
-
45
-
-
85044944299
-
Bias, robustness and scalability in single-cell differential expression analysis
-
1:CAS:528:DC%2BC1cXjtlyhsbg%3D
-
Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018; 15(4):255-61. https://doi.org/10.1038/nmeth.4612.
-
(2018)
Nature Methods
, vol.15
, Issue.4
, pp. 255-261
-
-
Soneson, C.1
Robinson, M.D.2
-
46
-
-
85045478047
-
SpatialDE: Identification of spatially variable genes
-
1:CAS:528:DC%2BC1cXltVKnsL4%3D
-
Svensson V, Teichmann SA, Stegle O. SpatialDE: Identification of spatially variable genes. Nat Methods. 2018. https://doi.org/10.1038/nmeth.4636.
-
(2018)
Nature Methods
, vol.15
, Issue.5
, pp. 343-346
-
-
Svensson, V.1
Teichmann, S.A.2
Stegle, O.3
-
47
-
-
85057586270
-
Deep generative modeling for single-cell transcriptomics
-
1:CAS:528:DC%2BC1cXitl2hs77J
-
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053-8. https://doi.org/10.1038/s41592-018-0229-2.
-
(2018)
Nature Methods
, vol.15
, Issue.12
, pp. 1053-1058
-
-
Lopez, R.1
Regier, J.2
Cole, M.B.3
Jordan, M.I.4
Yosef, N.5
-
48
-
-
85076964020
-
A robust nonlinear low-dimensional manifold for single cell RNA-seq data
-
Verma A, Engelhardt B. A robust nonlinear low-dimensional manifold for single cell RNA-seq data. bioRxiv. 2018:443044. https://doi.org/10.1101/443044.
-
(2018)
bioRxiv.
, pp. 443044
-
-
Verma, A.1
Engelhardt, B.2
-
49
-
-
0742305770
-
-
Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric logratio transformations for compositional data analysis. Math Geol. 2003; 35(3):279-300. https://doi.org/10.1023/A:1023818214614.
-
(2003)
Mathematical Geology
, vol.35
, Issue.3
, pp. 279-300
-
-
Egozcue, J.J.1
-
50
-
-
84984331506
-
On the poisson approximation to the multinomial distribution
-
McDonald DR. On the poisson approximation to the multinomial distribution. Can J Stat/La Rev Can Stat. 1980; 8(1):115-8. https://doi.org/10.2307/3314676.
-
(1980)
Canadian Journal of Statistics
, vol.8
, Issue.1
, pp. 115-118
-
-
McDonald, D.R.1
-
51
-
-
0039477681
-
The Multinomial-Poisson Transformation
-
Baker SG. The Multinomial-Poisson transformation. J R Stat Soc Ser D (Stat). 1994; 43(4):495-504. https://doi.org/10.2307/2348134.
-
(1994)
The Statistician
, vol.43
, Issue.4
, pp. 495
-
-
Baker, S.G.1
-
53
-
-
84946595027
-
Distributed multinomial regression
-
Taddy M. Distributed multinomial regression. Ann Appl Stat. 2015; 9(3):1394-414. https://doi.org/10.1214/15-AOAS831.
-
(2015)
The Annals of Applied Statistics
, vol.9
, Issue.3
, pp. 1394-1414
-
-
Taddy, M.1
-
58
-
-
85053332408
-
A general framework for association analysis of heterogeneous data
-
Li G, Gaynanova I. A general framework for association analysis of heterogeneous data. Ann Appl Stat. 2018; 12(3):1700-26. https://doi.org/10.1214/17-AOAS1127.
-
(2018)
The Annals of Applied Statistics
, vol.12
, Issue.3
, pp. 1700-1726
-
-
Li, G.1
Gaynanova, I.2
-
59
-
-
84895057098
-
Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
-
Kim J, He Y, Park H. Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework. J Glob Optim. 2014; 58(2):285-319. https://doi.org/10.1007/s10898-013-0035-4.
-
(2013)
Journal of Global Optimization
, vol.58
, Issue.2
, pp. 285-319
-
-
Kim, J.1
He, Y.2
Park, H.3
-
60
-
-
85066928572
-
Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
-
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv. 2019:576827. https://doi.org/10.1101/576827.
-
(2019)
bioRxiv.
, pp. 576827
-
-
Hafemeister, C.1
Satija, R.2
-
61
-
-
0001138328
-
Algorithm AS 136: A K-Means Clustering Algorithm
-
Hartigan JA, Wong MA. J R Stat Soc Ser C (Appl Stat). 1979; 28(1):100-8. https://doi.org/10.2307/2346830.
-
(1979)
Applied Statistics
, vol.28
, Issue.1
, pp. 100
-
-
Hartigan, J.A.1
Wong, M.A.2
-
62
-
-
85076992903
-
Willtownes/Scrna 2019: Genome biology publication
-
Townes W, Pita-Juarez Y. Willtownes/Scrna2019: Genome Biology Publication. Zenodo. 2019. https://doi.org/10.5281/zenodo.3475535.
-
(2019)
Zenodo
-
-
Townes, W.1
Pita-Juarez, Y.2
|