메뉴 건너뛰기




Volumn 20, Issue 1, 2019, Pages

Erratum: Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model (Genome Biology (2019) 20 (295) DOI: 10.1186/s13059-019-1861-6);Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model

Author keywords

Dimension reduction; Gene expression; GLM PCA; Principal component analysis; RNA Seq; Single cell; Variable genes

Indexed keywords

ARTICLE; FEATURE SELECTION; PRINCIPAL COMPONENT ANALYSIS; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; STATISTICAL MODEL;

EID: 85077004431     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-020-02109-w     Document Type: Erratum
Times cited : (295)

References (62)
  • 2
    • 85044252958 scopus 로고    scopus 로고
    • Exponential scaling of single-cell RNA-seq in the past decade
    • 1:CAS:528:DC%2BC1cXjs1agu74%3D
    • Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018; 13(4):599-604. https://doi.org/10.1038/nprot.2017.149.
    • (2018) Nature Protocols , vol.13 , Issue.4 , pp. 599-604
    • Svensson, V.1    Vento-Tormo, R.2    Teichmann, S.A.3
  • 4
    • 84929684998 scopus 로고    scopus 로고
    • Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells
    • 1:CAS:528:DC%2BC2MXpt1SgtL0%3D
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet aarcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-201. https://doi.org/10.1016/j.cell.2015.04.044.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6    Peshkin, L.7    Weitz, D.A.8    Kirschner, M.W.9
  • 6
    • 85072991191 scopus 로고    scopus 로고
    • How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives
    • Dal Molin A, Di Camillo B. How to design a single-cell RNA-sequencing experiment: Pitfalls, challenges and perspectives. Brief Bioinform. 2018. https://doi.org/10.1093/bib/bby007.
    • (2018) Briefings in Bioinformatics , vol.20 , Issue.4 , pp. 1384-1394
    • Dal Molin, A.1    Di Camillo, B.2
  • 7
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • 1:CAS:528:DC%2BC2sXhtlKjsro%3D
    • Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3):309-15. https://doi.org/10.1038/nmeth.4150.
    • (2017) Nature Methods , vol.14 , Issue.3 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Yi.-An.5    Trapnell, C.6
  • 8
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • 1:CAS:528:DC%2BC3sXhsVyqtb%2FM
    • Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013; 10(11):1096-8. https://doi.org/10.1038/nmeth.2639.
    • (2013) Nature Methods , vol.10 , Issue.11 , pp. 1096-1098
    • Picelli, S.1    Björklund, Å.K.2    Faridani, O.R.3    Sagasser, S.4    Winberg, G.5    Sandberg, R.6
  • 9
    • 84929687805 scopus 로고    scopus 로고
    • The Technology and Biology of Single-Cell RNA Sequencing
    • 1:CAS:528:DC%2BC2MXpt1Sns78%3D
    • Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015; 58(4):610-20. https://doi.org/10.1016/j.molcel.2015.04.005.
    • (2015) Molecular Cell , vol.58 , Issue.4 , pp. 610-620
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Svensson, V.3    Marioni, J.C.4    Teichmann, S.A.5
  • 11
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11(6):637-40. https://doi.org/10.1038/nmeth.2930.
    • (2014) Nature Methods , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 12
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
    • 27909575 5112579
    • Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. 2016; 5:2122. https://doi.org/10.12688/f1000research.9501.2.
    • (2016) F1000Research , vol.5 , pp. 2122
    • Lun, A.T.L.1    McCarthy, D.J.2    Marioni, J.C.3
  • 13
    • 85019072518 scopus 로고    scopus 로고
    • Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017; 33(8):1179-86. https://doi.org/10.1093/bioinformatics/btw777.
    • (2017) Bioinformatics , vol.33 , Issue.8 , pp. 1179-86
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3    Wills, Q.F.4
  • 14
    • 85025649872 scopus 로고    scopus 로고
    • Identifying cell populations with scRNASeq
    • 1:CAS:528:DC%2BC2sXht1equ7fL
    • Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Asp Med. 2017. https://doi.org/10.1016/j.mam.2017.07.002.
    • (2018) Molecular Aspects of Medicine , vol.59 , pp. 114-122
    • Andrews, T.S.1    Hemberg, M.2
  • 15
    • 85089317715 scopus 로고    scopus 로고
    • A systematic performance evaluation of clustering methods for single-cell RNA-seq data
    • Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Research. 2018; 7:1141. https://doi.org/10.12688/f1000research.15666.1.
    • (2018) F1000Research , vol.7 , pp. 1141
    • Duò, A.1    Robinson, M.D.2    Soneson, C.3
  • 17
    • 85046298440 scopus 로고    scopus 로고
    • Integrating single-cell transcriptomic data across different conditions, technologies, and species
    • 1:CAS:528:DC%2BC1cXmslKrtL0%3D
    • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4096.
    • (2018) Nature Biotechnology , vol.36 , Issue.5 , pp. 411-420
    • Butler, A.1    Hoffman, P.2    Smibert, P.3    Papalexi, E.4    Satija, R.5
  • 18
    • 85065838422 scopus 로고    scopus 로고
    • M3Drop: Dropout-based feature selection for scRNASeq
    • Andrews TS, Hemberg M. M3Drop: Dropout-based feature selection for scRNASeq. Bioinformatics. 2019; 35(16):2865-7. https://doi.org/10.1093/bioinformatics/bty1044.
    • (2018) Bioinformatics , vol.35 , Issue.16 , pp. 2865-2867
    • Andrews, T.S.1    Hemberg, M.2
  • 19
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933; 24(6):417-41. https://doi.org/10.1037/h0071325.
    • (1933) Journal of Educational Psychology , vol.24 , Issue.6 , pp. 417-441
    • Hotelling, H.1
  • 20
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun AT, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17:75. https://doi.org/10.1186/s13059-016-0947-7.
    • (2016) Genome Biol. , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 21
    • 85067850669 scopus 로고    scopus 로고
    • Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data
    • Lun A. Overcoming systematic errors caused by log-transformation of normalized single-cell RNA sequencing data. bioRxiv. 2018:404962. https://doi.org/10.1101/404962.
    • (2018) bioRxiv. , pp. 404962
    • Lun, A.1
  • 22
    • 85019229996 scopus 로고    scopus 로고
    • Why you cannot transform your way out of trouble for small counts
    • Warton DI. Why you cannot transform your way out of trouble for small counts. Biometrics. 2018; 74(1):362-8. https://doi.org/10.1111/biom.12728.
    • (2017) Biometrics , vol.74 , Issue.1 , pp. 362-368
    • Warton, D.I.1
  • 23
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: Challenges and opportunities
    • 1:CAS:528:DC%2BC2sXnslKkt7o%3D
    • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: Challenges and opportunities. Nat Methods. 2017; 14(6):565-71. https://doi.org/10.1038/nmeth.4292.
    • (2017) Nature Methods , vol.14 , Issue.6 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 25
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16:241. https://doi.org/10.1186/s13059-015-0805-z.
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 26
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: Recent advances and remaining challenges
    • Liu S, Trapnell C. Single-cell transcriptome sequencing: Recent advances and remaining challenges. F1000Research. 2016; 5:182. https://doi.org/10.12688/f1000research.7223.1.
    • (2016) F1000Research , vol.5 , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 27
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • Lin P, Troup M, Ho JWK. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017; 18:59. https://doi.org/10.1186/s13059-017-1188-0.
    • (2017) Genome Biol. , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.K.3
  • 28
    • 85040785722 scopus 로고    scopus 로고
    • A general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):1-17. https://doi.org/10.1038/s41467-017-02554-5.
    • (2018) Nat Commun. , vol.9 , Issue.1 , pp. 1-17
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4    Vert, J.-P.5
  • 29
    • 85074745558 scopus 로고    scopus 로고
    • Droplet scRNA-seq is not zero-inflated
    • Svensson V. Droplet scRNA-seq is not zero-inflated. bioRxiv. 2019:582064. https://doi.org/10.1101/582064.
    • (2019) bioRxiv. , pp. 582064
    • Svensson, V.1
  • 30
    • 85054726691 scopus 로고    scopus 로고
    • Missing data and technical variability in single-cell RNA-sequencing experiments
    • Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2018; 19(4):562-78. https://doi.org/10.1093/biostatistics/kxx053.
    • (2017) Biostatistics , vol.19 , Issue.4 , pp. 562-578
    • Hicks, S.C.1    Townes, F.W.2    Teng, M.3    Irizarry, R.A.4
  • 31
    • 84899014910 scopus 로고    scopus 로고
    • A generalization of principal components analysis to the exponential family
    • T.G. Dietterich S. Becker Z. Ghahramani (eds) MIT Press Cambridge
    • Collins M, Dasgupta S, Schapire RE. A generalization of principal components analysis to the exponential family In: Dietterich TG, Becker S, Ghahramani Z, editors. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press: 2002. p. 617-24.
    • (2002) Advances in Neural Information Processing Systems 14
    • Collins, M.1    Dasgupta, S.2    Schapire, R.E.3
  • 35
    • 84976337073 scopus 로고    scopus 로고
    • Synthetic evolutionary origin of a proofreading reverse transcriptase
    • 1:CAS:528:DC%2BC28XhtVaitL3M
    • Ellefson JW, Gollihar J, Shroff R, Shivram H, Iyer VR, Ellington AD. Synthetic evolutionary origin of a proofreading reverse transcriptase. Science. 2016; 352(6293):1590-3. https://doi.org/10.1126/science.aaf5409.
    • (2016) Science , vol.352 , Issue.6293 , pp. 1590-1593
    • Ellefson, J.W.1    Gollihar, J.2    Shroff, R.3    Shivram, H.4    Iyer, V.R.5    Ellington, A.D.6
  • 36
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • 1:CAS:528:DC%2BC3sXhtFygsL3L
    • Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013; 14(9):618-30. https://doi.org/10.1038/nrg3542.
    • (2013) Nature Reviews Genetics , vol.14 , Issue.9 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 37
    • 85075232941 scopus 로고    scopus 로고
    • Naught all zeros in sequence count data are the same
    • Silverman JD, Roche K, Mukherjee S, David LA. Naught all zeros in sequence count data are the same. bioRxiv. 2018:477794. https://doi.org/10.1101/477794.
    • (2018) bioRxiv. , pp. 477794
    • Silverman, J.D.1    Roche, K.2    Mukherjee, S.3    David .LA.4
  • 39
    • 85052096647 scopus 로고    scopus 로고
    • K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data
    • Wagner F, Yan Y, Yanai I. K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data. bioRxiv. 2018:217737. https://doi.org/10.1101/217737.
    • (2018) bioRxiv. , pp. 217737
    • Wagner, F.1    Yan, Y.2    Yanai, I.3
  • 41
    • 84867897914 scopus 로고    scopus 로고
    • Classification and clustering of sequencing data using a Poisson model
    • Witten DM. Classification and clustering of sequencing data using a Poisson model. Ann Appl Stat. 2011; 5(4):2493-518. https://doi.org/10.1214/11-AOAS493.
    • (2011) The Annals of Applied Statistics , vol.5 , Issue.4 , pp. 2493-2518
    • Witten, D.M.1
  • 45
    • 85044944299 scopus 로고    scopus 로고
    • Bias, robustness and scalability in single-cell differential expression analysis
    • 1:CAS:528:DC%2BC1cXjtlyhsbg%3D
    • Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018; 15(4):255-61. https://doi.org/10.1038/nmeth.4612.
    • (2018) Nature Methods , vol.15 , Issue.4 , pp. 255-261
    • Soneson, C.1    Robinson, M.D.2
  • 46
    • 85045478047 scopus 로고    scopus 로고
    • SpatialDE: Identification of spatially variable genes
    • 1:CAS:528:DC%2BC1cXltVKnsL4%3D
    • Svensson V, Teichmann SA, Stegle O. SpatialDE: Identification of spatially variable genes. Nat Methods. 2018. https://doi.org/10.1038/nmeth.4636.
    • (2018) Nature Methods , vol.15 , Issue.5 , pp. 343-346
    • Svensson, V.1    Teichmann, S.A.2    Stegle, O.3
  • 47
    • 85057586270 scopus 로고    scopus 로고
    • Deep generative modeling for single-cell transcriptomics
    • 1:CAS:528:DC%2BC1cXitl2hs77J
    • Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053-8. https://doi.org/10.1038/s41592-018-0229-2.
    • (2018) Nature Methods , vol.15 , Issue.12 , pp. 1053-1058
    • Lopez, R.1    Regier, J.2    Cole, M.B.3    Jordan, M.I.4    Yosef, N.5
  • 48
    • 85076964020 scopus 로고    scopus 로고
    • A robust nonlinear low-dimensional manifold for single cell RNA-seq data
    • Verma A, Engelhardt B. A robust nonlinear low-dimensional manifold for single cell RNA-seq data. bioRxiv. 2018:443044. https://doi.org/10.1101/443044.
    • (2018) bioRxiv. , pp. 443044
    • Verma, A.1    Engelhardt, B.2
  • 49
    • 0742305770 scopus 로고    scopus 로고
    • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric logratio transformations for compositional data analysis. Math Geol. 2003; 35(3):279-300. https://doi.org/10.1023/A:1023818214614.
    • (2003) Mathematical Geology , vol.35 , Issue.3 , pp. 279-300
    • Egozcue, J.J.1
  • 50
    • 84984331506 scopus 로고
    • On the poisson approximation to the multinomial distribution
    • McDonald DR. On the poisson approximation to the multinomial distribution. Can J Stat/La Rev Can Stat. 1980; 8(1):115-8. https://doi.org/10.2307/3314676.
    • (1980) Canadian Journal of Statistics , vol.8 , Issue.1 , pp. 115-118
    • McDonald, D.R.1
  • 51
    • 0039477681 scopus 로고
    • The Multinomial-Poisson Transformation
    • Baker SG. The Multinomial-Poisson transformation. J R Stat Soc Ser D (Stat). 1994; 43(4):495-504. https://doi.org/10.2307/2348134.
    • (1994) The Statistician , vol.43 , Issue.4 , pp. 495
    • Baker, S.G.1
  • 53
    • 84946595027 scopus 로고    scopus 로고
    • Distributed multinomial regression
    • Taddy M. Distributed multinomial regression. Ann Appl Stat. 2015; 9(3):1394-414. https://doi.org/10.1214/15-AOAS831.
    • (2015) The Annals of Applied Statistics , vol.9 , Issue.3 , pp. 1394-1414
    • Taddy, M.1
  • 58
    • 85053332408 scopus 로고    scopus 로고
    • A general framework for association analysis of heterogeneous data
    • Li G, Gaynanova I. A general framework for association analysis of heterogeneous data. Ann Appl Stat. 2018; 12(3):1700-26. https://doi.org/10.1214/17-AOAS1127.
    • (2018) The Annals of Applied Statistics , vol.12 , Issue.3 , pp. 1700-1726
    • Li, G.1    Gaynanova, I.2
  • 59
    • 84895057098 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework
    • Kim J, He Y, Park H. Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework. J Glob Optim. 2014; 58(2):285-319. https://doi.org/10.1007/s10898-013-0035-4.
    • (2013) Journal of Global Optimization , vol.58 , Issue.2 , pp. 285-319
    • Kim, J.1    He, Y.2    Park, H.3
  • 60
    • 85066928572 scopus 로고    scopus 로고
    • Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
    • Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv. 2019:576827. https://doi.org/10.1101/576827.
    • (2019) bioRxiv. , pp. 576827
    • Hafemeister, C.1    Satija, R.2
  • 61
    • 0001138328 scopus 로고
    • Algorithm AS 136: A K-Means Clustering Algorithm
    • Hartigan JA, Wong MA. J R Stat Soc Ser C (Appl Stat). 1979; 28(1):100-8. https://doi.org/10.2307/2346830.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100
    • Hartigan, J.A.1    Wong, M.A.2
  • 62
    • 85076992903 scopus 로고    scopus 로고
    • Willtownes/Scrna 2019: Genome biology publication
    • Townes W, Pita-Juarez Y. Willtownes/Scrna2019: Genome Biology Publication. Zenodo. 2019. https://doi.org/10.5281/zenodo.3475535.
    • (2019) Zenodo
    • Townes, W.1    Pita-Juarez, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.