메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

Observation weights unlock bulk RNA-seq tools for zero inflation and single-cell applications

Author keywords

Differential expression; Single cell RNA sequencing; Weights; Zero inflated negative binomial

Indexed keywords

ARTICLE; BODY WEIGHT; GENE EXPRESSION; GENETIC TRANSCRIPTION; PIPELINE; RNA SEQUENCE; GENE EXPRESSION PROFILING; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; SOFTWARE;

EID: 85042612161     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-018-1406-4     Document Type: Article
Times cited : (153)

References (67)
  • 1
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. http://genomebiology.com/2014/15/12/550.
    • (2014) Genome Biol. , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 2
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40. http://www.ncbi.nlm.nih.gov/pubmed/19910308. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2796818.
    • (2010) Bioinformatics. , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 3
    • 84896735766 scopus 로고    scopus 로고
    • voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):R29. http://www.pubmedcentral.nih.gov/articlerender.fcgi%3Fartid=4053721%26tool=pmcentrez%26rendertype=abstract.
    • (2014) Genome Biol. , vol.15 , Issue.2
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 4
    • 57749195712 scopus 로고    scopus 로고
    • RNA-seq: a revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57-63. http://www.nature.com/doifinder/10.1038/nrg2484.
    • (2009) Nat Rev Genet. , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 5
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: ten years of next-generation sequencing technologies
    • Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333-51. http://www.nature.com/doifinder/10.1038/nrg.2016.49.
    • (2016) Nat Rev Genet. , vol.17 , Issue.6 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    McCombie, W.R.3
  • 6
    • 85040750667 scopus 로고    scopus 로고
    • Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
    • Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol. 2017; 2(9). http://www.ncbi.nlm.nih.gov/pubmed/28345074. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5365145.
    • (2017) Sci Immunol , vol.2 , Issue.9
    • Lönnberg, T.1    Svensson, V.2    James, K.R.3    Fernandez-Ruiz, D.4    Sebina, I.5    Montandon, R.6
  • 7
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-60. http://www.ncbi.nlm.nih.gov/pubmed/25599176. http://www.nature.com/doifinder/10.1038/nbt.3102.
    • (2015) Nat Biotechnol , vol.33 , Issue.2 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 8
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190). http://science.sciencemag.org/content/344/6190/1396.
    • (2014) Science , vol.344 , Issue.6190
    • Patel, A.P.1    Tirosh, I.2    Trombetta, J.J.3    Shalek, A.K.4    Gillespie, S.M.5    Wakimoto, H.6
  • 9
    • 84947748539 scopus 로고    scopus 로고
    • Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
    • Kolodziejczyk AA, Kim JK, Tsang JCH, Ilicic T, Henriksson J, Natarajan KN, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 2015; 17(4):471-85. http://www.ncbi.nlm.nih.gov/pubmed/26431182. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4595712.
    • (2015) Cell Stem Cell. , vol.17 , Issue.4 , pp. 471-485
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Tsang, J.C.H.3    Ilicic, T.4    Henriksson, J.5    Natarajan, K.N.6
  • 10
    • 85018187726 scopus 로고    scopus 로고
    • Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions
    • Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell. 2017; 20(6):858-73.e4. http://www.ncbi.nlm.nih.gov/pubmed/28457750. http://linkinghub.elsevier.com/retrieve/pii/S1934590917300784.
    • (2017) Cell Stem Cell. , vol.20 , Issue.6 , pp. 858-873
    • Li, L.1    Dong, J.2    Yan, L.3    Yong, J.4    Liu, X.5    Hu, Y.6
  • 11
    • 84921466417 scopus 로고    scopus 로고
    • Unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing
    • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing. Nat Neurosci. 2014; 18(1):145-53. http://www.nature.com/doifinder/10.1038/nn.3881.
    • (2014) Nat Neurosci. , vol.18 , Issue.1 , pp. 145-153
    • Usoskin, D.1    Furlan, A.2    Islam, S.3    Abdo, H.4    Lönnerberg, P.5    Lou, D.6
  • 12
    • 84929687805 scopus 로고    scopus 로고
    • The technology and biology of single-cell RNA-sequencing
    • Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA-sequencing. Mol Cell. 2015; 58(4):610-20. http://linkinghub.elsevier.com/retrieve/pii/S1097276515002610.
    • (2015) Mol Cell. , vol.58 , Issue.4 , pp. 610-620
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Svensson, V.3    Marioni, J.C.4    Teichmann, S.A.5
  • 13
    • 84929701097 scopus 로고    scopus 로고
    • SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression
    • Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015; 43(9):e60. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv134.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.9
    • Nakamura, T.1    Yabuta, Y.2    Okamoto, I.3    Aramaki, S.4    Yokobayashi, S.5    Kurimoto, K.6
  • 14
    • 84893910301 scopus 로고    scopus 로고
    • Quantitative assessment of single-cell RNA-sequencing methods
    • Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2013; 11(1):41-6. http://www.ncbi.nlm.nih.gov/pubmed/24141493. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4022966. http://www.nature.com/doifinder/10.1038/nmeth.2694.
    • (2013) Nat Methods. , vol.11 , Issue.1 , pp. 41-46
    • Wu, A.R.1    Neff, N.F.2    Kalisky, T.3    Dalerba, P.4    Treutlein, B.5    Rothenberg, M.E.6
  • 15
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2013; 11(2):163-6. http://www.ncbi.nlm.nih.gov/pubmed/24363023. http://www.nature.com/doifinder/10.1038/nmeth.2772.
    • (2013) Nat Methods. , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    La Manno, G.4    Zajac, P.5    Kasper, M.6
  • 16
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011; 21(7):1160-7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3129258%26tool=pmcentrez%26rendertype=abstract.
    • (2011) Genome Res. , vol.21 , Issue.7 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.B.5    Lönnerberg, P.6
  • 17
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-Seq2
    • Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-Seq2. Nat Protoc. 2014; 9(1):171-81. http://www.ncbi.nlm.nih.gov/pubmed/24385147. http://www.nature.com/doifinder/10.1038/nprot.2014.006.
    • (2014) Nat Protoc. , vol.9 , Issue.1 , pp. 171-181
    • Picelli, S.1    Faridani, O.R.2    Björklund, ÅK.3    Winberg, G.4    Sagasser, S.5    Sandberg, R.6
  • 18
    • 84964452502 scopus 로고    scopus 로고
    • CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq
    • Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 2016; 17:77. http://www.ncbi.nlm.nih.gov/pubmed/27121950. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848782.
    • (2016) Genome Biol , vol.17 , pp. 77
    • Hashimshony, T.1    Senderovich, N.2    Avital, G.3    Klochendler, A.4    De Leeuw, Y.5    Anavy, L.6
  • 19
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA-sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA-sequencing data. Genome Biol. 2015; 16(1):278. http://genomebiology.com/2015/16/1/278.
    • (2015) Genome Biol. , vol.16 , Issue.1 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 20
    • 53549123008 scopus 로고    scopus 로고
    • Nature, nurture, or chance: stochastic gene expression and its consequences
    • Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008; 135(2):216-26. http://www.ncbi.nlm.nih.gov/pubmed/18957198. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3118044.
    • (2008) Cell. , vol.135 , Issue.2 , pp. 216-226
    • Raj, A.1    Van Oudenaarden, A.2
  • 21
    • 33748994704 scopus 로고    scopus 로고
    • Stochastic mRNA synthesis in mammalian cells
    • Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 2006; 4(10):e309. http://www.ncbi.nlm.nih.gov/pubmed/17048983.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1563489.http://dx.plos.org/10.1371/journal.pbio.0040309.
    • (2006) PLoS Biol. , vol.4 , Issue.10
    • Raj, A.1    Peskin, C.S.2    Tranchina, D.3    Vargas, D.Y.4    Tyagi, S.5
  • 22
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16(1):241. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0805-z.
    • (2015) Genome Biol. , vol.16 , Issue.1 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 23
    • 85040785722 scopus 로고    scopus 로고
    • A general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert JP. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):284. http://www.nature.com/articles/s41467-017-02554-5.
    • (2018) Nat Commun. , vol.9 , Issue.1 , pp. 284
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4    Vert, J.P.5
  • 24
    • 84974587998 scopus 로고    scopus 로고
    • Wishbone identifies bifurcating developmental trajectories from single-cell data
    • Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, et al.Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016; 34(6):637-45. http://www.ncbi.nlm.nih.gov/pubmed/27136076. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4900897.
    • (2016) Nat Biotechnol , vol.34 , Issue.6 , pp. 637-645
    • Setty, M.1    Tadmor, M.D.2    Reich-Zeliger, S.3    Angel, O.4    Salame, T.M.5    Kathail, P.6
  • 25
    • 85031017685 scopus 로고    scopus 로고
    • Reversed graph embedding resolves complex single-cell trajectories
    • Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017. https://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4402.html.
    • (2017) Nat Methods
    • Qiu, X.1    Mao, Q.2    Tang, Y.3    Wang, L.4    Chawla, R.5    Pliner, H.A.6
  • 26
    • 85027990252 scopus 로고    scopus 로고
    • Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
    • Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. 2017:128843. http://www.biorxiv.org/content/early/2017/04/19/128843.
    • (2017) , pp. 128843
    • Street, K.1    Risso, D.2    Fletcher, R.B.3    Das, D.4    Ngai, J.5    Yosef, N.6
  • 27
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
    • Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. 2016; 5:2122. https://f1000research.com/articles/5-2122/v2.
    • (2016) F1000Research , vol.5 , pp. 2122
    • Lun, A.T.L.1    McCarthy, D.J.2    Marioni, J.C.3
  • 28
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2. http://www.ncbi.nlm.nih.gov/pubmed/24836921. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4112276.
    • (2014) Nat Methods. , vol.11 , Issue.7 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 29
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2016:bbw057. http://www.ncbi.nlm.nih.gov/pubmed/27373736. http://bib.oxfordjournals.org/lookup/doi/10.1093/bib/bbw057.
    • (2016) Brief Bioinform
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 30
    • 85042148811 scopus 로고    scopus 로고
    • Bias, robustness and scalability in differential expression analysis of single-cell RNA-seq data
    • Soneson C, Robinson MD. Bias, robustness and scalability in differential expression analysis of single-cell RNA-seq data. 2017. http://biorxiv.org/content/early/2017/05/28/143289.
    • (2017)
    • Soneson, C.1    Robinson, M.D.2
  • 31
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3378882%26tool=pmcentrez%26rendertype=abstract.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 32
    • 85042596015 scopus 로고    scopus 로고
    • In: Regression Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press
    • Colin Cameron A, Trivedi PK. Zero-Inflated Count Models. In: Regression Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press: 2013.
    • (2013) Zero-Inflated Count Models
    • Colin Cameron, A.1    Trivedi, P.K.2
  • 33
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch Ja, Speed TP. Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2012; 13(3):539-52. http://www.ncbi.nlm.nih.gov/pubmed/22101192.
    • (2012) Biostatistics. , vol.13 , Issue.3 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 34
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotech. 2014; 32(9):896-902. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4404308%26tool=pmcentrez%26rendertype=abstract.
    • (2014) Nat Biotech. , vol.32 , Issue.9 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 35
    • 85042621148 scopus 로고    scopus 로고
    • Data sets: characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • accession GSE29087
    • Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Data sets: characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. 2011. Gene expression Omnibus, accession GSE29087. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29087.
    • (2011) Gene expression Omnibus
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.B.5    Lönnerberg, P.6
  • 36
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381-6. http://www.ncbi.nlm.nih.gov/pubmed/24658644. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4122333. http://www.nature.com/articles/nbt.2859.
    • (2014) Nat Biotechnol. , vol.32 , Issue.4 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 37
    • 85042546527 scopus 로고    scopus 로고
    • Towards unified quality verification of synthetic count data with countsimQC
    • Soneson C, Robinson MD. Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics. 2017. http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/4345646/Towards-unified-quality-verification-of-synthetic.
    • (2017) Bioinformatics
    • Soneson, C.1    Robinson, M.D.2
  • 38
    • 84962641396 scopus 로고    scopus 로고
    • On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data
    • Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data. 2015. http://biorxiv.org/content/early/2015/12/27/025528.
    • (2015)
    • Hicks, S.C.1    Teng, M.2    Irizarry, R.A.3
  • 39
    • 85041108250 scopus 로고    scopus 로고
    • Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
    • Butler A, Satija R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. 2017:164889. https://www.biorxiv.org/content/early/2017/07/18/164889.
    • (2017) , pp. 164889
    • Butler, A.1    Satija, R.2
  • 40
    • 85037330563 scopus 로고    scopus 로고
    • An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
    • Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. 2016:060012. https://www.biorxiv.org/content/early/2016/06/20/060012.
    • (2016)
    • Sergushichev, A.1
  • 42
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57(1):289-300. https://www.jstor.org/stable/2346101?seq=1%23page_scan_tab_contents.
    • (1995) J R Stat Soc Ser B Methodol. , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 43
    • 85040765488 scopus 로고    scopus 로고
    • zingeR. unlocking RNA-seq tools for zero-inflation and single cell applications
    • Van den Berge K, Soneson C, Love MI, Robinson MD, Clement L. zingeR: unlocking RNA-seq tools for zero-inflation and single cell applications. 2017:157982. https://www.biorxiv.org/content/early/2017/06/30/157982.
    • , vol.2017 , pp. 157982
    • Van den Berge, K.1    Soneson, C.2    Love, M.I.3    Robinson, M.D.4    Clement, L.5
  • 44
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11(6):637-40. http://www.ncbi.nlm.nih.gov/pubmed/24747814. http://www.nature.com/doifinder/10.1038/nmeth.2930.
    • (2014) Nat Methods. , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 45
    • 85013200683 scopus 로고    scopus 로고
    • Comparative analysis of single-cell RNA-sequencing methods
    • Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA-sequencing methods. Mol Cell. 2017; 65(4):631-43. http://linkinghub.elsevier.com/retrieve/pii/S1097276517300497.
    • (2017) Mol Cell. , vol.65 , Issue.4 , pp. 631-643
    • Ziegenhain, C.1    Vieth, B.2    Parekh, S.3    Reinius, B.4    Guillaumet-Adkins, A.5    Smets, M.6
  • 46
    • 85034642667 scopus 로고    scopus 로고
    • Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling
    • Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017; 8(1):1627. http://www.nature.com/articles/s41467-017-01560-x.
    • (2017) Nat Commun. , vol.8 , Issue.1 , pp. 1627
    • Pal, B.1    Chen, Y.2    Vaillant, F.3    Jamieson, P.4    Gordon, L.5    Rios, A.C.6
  • 47
    • 85005943839 scopus 로고    scopus 로고
    • Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
    • Fujita K, Iwaki M, Yanagida T. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nat Commun. 2016; 7:13788. http://www.nature.com/doifinder/10.1038/ncomms13788.
    • (2016) Nat Commun , vol.7 , pp. 13788
    • Fujita, K.1    Iwaki, M.2    Yanagida, T.3
  • 48
    • 84888865593 scopus 로고    scopus 로고
    • Differential abundance analysis for microbial marker-gene surveys
    • Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12):1200-2. http://www.ncbi.nlm.nih.gov/pubmed/24076764. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4010126. http://www.nature.com/doifinder/10.1038/nmeth.2658. http://dx.doi.org/10.1038/nmeth.2658.
    • (2013) Nat Methods. , vol.10 , Issue.12 , pp. 1200-1202
    • Paulson, J.N.1    Stine, O.C.2    Bravo, H.C.3    Pop, M.4
  • 49
    • 84940398787 scopus 로고    scopus 로고
    • Assessment and selection of competing models for zero-inflated microbiome data
    • Xu L, Paterson AD, Turpin W, Xu W. Assessment and selection of competing models for zero-inflated microbiome data. PLoS ONE. 2015; 10(7):e0129606. http://www.ncbi.nlm.nih.gov/pubmed/26148172. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4493133.
    • (2015) PLoS ONE. , vol.10 , Issue.7
    • Xu, L.1    Paterson, A.D.2    Turpin, W.3    Xu, W.4
  • 50
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97. http://www.ncbi.nlm.nih.gov/pubmed/22287627. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3378882.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 51
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA-sequencing data: challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA-sequencing data: challenges and opportunities. Nat Methods. 2017; 14(6):565-71. https://doi.org/10.1038/nmeth.4292. http://www.nature.com/doifinder/10.1038/nmeth.4292.
    • (2017) Nat Methods. , vol.14 , Issue.6 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 52
    • 84876427223 scopus 로고    scopus 로고
    • phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data
    • McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013; 8(4):e61217. http://dx.plos.org/10.1371/journal.pone.0061217.
    • (2013) PLoS ONE. , vol.8 , Issue.4
    • McMurdie, P.J.1    Holmes, S.2
  • 53
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci. 2010; 107(21):9546-51. http://www.ncbi.nlm.nih.gov/pubmed/20460310. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2906865.
    • (2010) Proc Natl Acad Sci. , vol.107 , Issue.21 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 54
    • 84978699234 scopus 로고    scopus 로고
    • iCOBRA: open, reproducible, standardized and live method benchmarking
    • Soneson C, Robinson MD. iCOBRA: open, reproducible, standardized and live method benchmarking. Nat Methods. 2016; 13(4):283. http://www.nature.com/doifinder/10.1038/nmeth.3805.
    • (2016) Nat Methods , vol.13 , Issue.4 , pp. 283
    • Soneson, C.1    Robinson, M.D.2
  • 55
    • 85042592208 scopus 로고    scopus 로고
    • Fast, scalable and accurate differential expression analysis for single cells
    • Cold Spring Harbor Laboratory
    • Sengupta D, Rayan NA, Lim M, Lim B, Prabhakar S. Fast, scalable and accurate differential expression analysis for single cells. bioRxiv. 2016:049734. https://doi.org/10.1101/049734. https://www.biorxiv.org/content/early/2016/04/22/049734. Cold Spring Harbor Laboratory.
    • (2016) bioRxiv
    • Sengupta, D.1    Rayan, N.A.2    Lim, M.3    Lim, B.4    Prabhakar, S.5
  • 56
    • 84900391007 scopus 로고    scopus 로고
    • ShrinkBayes: a versatile R package for analysis of count-based sequencing data in complex study designs
    • van de Wiel MA, Neerincx M, Buffart TE, Sie D, Verheul HM. ShrinkBayes: a versatile R package for analysis of count-based sequencing data in complex study designs. BMC Bioinform. 2014; 15(1):116. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-116.
    • (2014) BMC Bioinform , vol.15 , Issue.1 , pp. 116
    • Van de Wiel, M.A.1    Neerincx, M.2    Buffart, T.E.3    Sie, D.4    Verheul, H.M.5
  • 57
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA-sequencing data using observation weights
    • Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA-sequencing data using observation weights. Nucleic Acids Res. 2014; 42(11):e91. http://www.ncbi.nlm.nih.gov/pubmed/24753412. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4066750.
    • (2014) Nucleic Acids Res , vol.42 , Issue.11
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 58
    • 0001622853 scopus 로고
    • Asymptotic properties of moment estimators for overdispersed counts and proportions
    • Moore DF. Asymptotic properties of moment estimators for overdispersed counts and proportions. Biometrika. 1986; 73(3):583. http://www.jstor.org/stable/2336522?origin=crossref.
    • (1986) Biometrika , vol.73 , Issue.3 , pp. 583
    • Moore, D.F.1
  • 59
    • 0003663926 scopus 로고
    • 2nd ed. New York: Chapman and Hall
    • McCullagh PP, Nelder JA. Generalized linear models. 2nd ed. New York: Chapman and Hall; 1989. https://www.crcpress.com/Generalized-Linear-Models-Second-Edition/McCullagh-Nelder/p/book/9780412317606.
    • (1989) Generalized linear models
    • McCullagh, P.P.1    Nelder, J.A.2
  • 60
    • 0141576514 scopus 로고    scopus 로고
    • Thin plate regression splines
    • Wood SN. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol. 2003; 65(1):95-114. http://doi.wiley.com/10.1111/1467-9868.00374.
    • (2003) J R Stat Soc Ser B Stat Methodol , vol.65 , Issue.1 , pp. 95-114
    • Wood, S.N.1
  • 61
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102(43):15545-50. http://www.pnas.org/cgi/doi/10.1073/pnas.0506580102.
    • (2005) Proc Natl Acad Sci , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3    Mukherjee, S.4    Ebert, B.L.5    Gillette, M.A.6
  • 62
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. http://www.nature.com/doifinder/10.1038/ncomms14049.
    • (2017) Nat Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1    Terry, J.M.Y.2    Belgrader, P.Y.3    Ryvkin, P.Y.4    Bent, Z.W.5    Wilson, R.6
  • 63
    • 85042627268 scopus 로고    scopus 로고
    • Data sets: the dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • accession GSE52529.
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. Data sets: the dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. 2014. Gene expression Omnibus, accession GSE52529. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529.
    • (2014) Gene expression Omnibus
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 64
    • 85042614404 scopus 로고    scopus 로고
    • Data sets: unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing
    • Linnarsson Lab Website
    • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Data sets: unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing. 2014. Linnarsson Lab Website. http://linnarssonlab.org/drg/.
    • (2014)
    • Usoskin, D.1    Furlan, A.2    Islam, S.3    Abdo, H.4    Lönnerberg, P.5    Lou, D.6
  • 66
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343(6167):193-6. http://www.ncbi.nlm.nih.gov/pubmed/24408435.
    • (2014) Science , vol.343 , Issue.6167 , pp. 193-196
    • Deng, Q.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 67
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq and microarrays
    • Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, et al. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq and microarrays. PLoS ONE. 2011; 6(3):e17820. http://www.pubmedcentral.nih.gov/articlerender.fcgi%3Fartid=3063777%26tool=pmcentrez%26rendertype=abstract.
    • (2011) PLoS ONE , vol.6 , Issue.3
    • Bottomly, D.1    Walter, N.A.R.2    Hunter, J.E.3    Darakjian, P.4    Kawane, S.5    Buck, K.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.