-
1
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. http://genomebiology.com/2014/15/12/550.
-
(2014)
Genome Biol.
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
2
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40. http://www.ncbi.nlm.nih.gov/pubmed/19910308. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2796818.
-
(2010)
Bioinformatics.
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
3
-
-
84896735766
-
voom: precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2):R29. http://www.pubmedcentral.nih.gov/articlerender.fcgi%3Fartid=4053721%26tool=pmcentrez%26rendertype=abstract.
-
(2014)
Genome Biol.
, vol.15
, Issue.2
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
4
-
-
57749195712
-
RNA-seq: a revolutionary tool for transcriptomics
-
Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57-63. http://www.nature.com/doifinder/10.1038/nrg2484.
-
(2009)
Nat Rev Genet.
, vol.10
, Issue.1
, pp. 57-63
-
-
Wang, Z.1
Gerstein, M.2
Snyder, M.3
-
5
-
-
84968903135
-
Coming of age: ten years of next-generation sequencing technologies
-
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333-51. http://www.nature.com/doifinder/10.1038/nrg.2016.49.
-
(2016)
Nat Rev Genet.
, vol.17
, Issue.6
, pp. 333-351
-
-
Goodwin, S.1
McPherson, J.D.2
McCombie, W.R.3
-
6
-
-
85040750667
-
Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
-
Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol. 2017; 2(9). http://www.ncbi.nlm.nih.gov/pubmed/28345074. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5365145.
-
(2017)
Sci Immunol
, vol.2
, Issue.9
-
-
Lönnberg, T.1
Svensson, V.2
James, K.R.3
Fernandez-Ruiz, D.4
Sebina, I.5
Montandon, R.6
-
7
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2):155-60. http://www.ncbi.nlm.nih.gov/pubmed/25599176. http://www.nature.com/doifinder/10.1038/nbt.3102.
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
Proserpio, V.4
Scialdone, A.5
Theis, F.J.6
-
8
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190). http://science.sciencemag.org/content/344/6190/1396.
-
(2014)
Science
, vol.344
, Issue.6190
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
Wakimoto, H.6
-
9
-
-
84947748539
-
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
-
Kolodziejczyk AA, Kim JK, Tsang JCH, Ilicic T, Henriksson J, Natarajan KN, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell. 2015; 17(4):471-85. http://www.ncbi.nlm.nih.gov/pubmed/26431182. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4595712.
-
(2015)
Cell Stem Cell.
, vol.17
, Issue.4
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Tsang, J.C.H.3
Ilicic, T.4
Henriksson, J.5
Natarajan, K.N.6
-
10
-
-
85018187726
-
Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions
-
Li L, Dong J, Yan L, Yong J, Liu X, Hu Y, et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell. 2017; 20(6):858-73.e4. http://www.ncbi.nlm.nih.gov/pubmed/28457750. http://linkinghub.elsevier.com/retrieve/pii/S1934590917300784.
-
(2017)
Cell Stem Cell.
, vol.20
, Issue.6
, pp. 858-873
-
-
Li, L.1
Dong, J.2
Yan, L.3
Yong, J.4
Liu, X.5
Hu, Y.6
-
11
-
-
84921466417
-
Unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing
-
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing. Nat Neurosci. 2014; 18(1):145-53. http://www.nature.com/doifinder/10.1038/nn.3881.
-
(2014)
Nat Neurosci.
, vol.18
, Issue.1
, pp. 145-153
-
-
Usoskin, D.1
Furlan, A.2
Islam, S.3
Abdo, H.4
Lönnerberg, P.5
Lou, D.6
-
12
-
-
84929687805
-
The technology and biology of single-cell RNA-sequencing
-
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA-sequencing. Mol Cell. 2015; 58(4):610-20. http://linkinghub.elsevier.com/retrieve/pii/S1097276515002610.
-
(2015)
Mol Cell.
, vol.58
, Issue.4
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
13
-
-
84929701097
-
SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression
-
Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S, Kurimoto K, et al. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res. 2015; 43(9):e60. https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkv134.
-
(2015)
Nucleic Acids Res.
, vol.43
, Issue.9
-
-
Nakamura, T.1
Yabuta, Y.2
Okamoto, I.3
Aramaki, S.4
Yokobayashi, S.5
Kurimoto, K.6
-
14
-
-
84893910301
-
Quantitative assessment of single-cell RNA-sequencing methods
-
Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2013; 11(1):41-6. http://www.ncbi.nlm.nih.gov/pubmed/24141493. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4022966. http://www.nature.com/doifinder/10.1038/nmeth.2694.
-
(2013)
Nat Methods.
, vol.11
, Issue.1
, pp. 41-46
-
-
Wu, A.R.1
Neff, N.F.2
Kalisky, T.3
Dalerba, P.4
Treutlein, B.5
Rothenberg, M.E.6
-
15
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2013; 11(2):163-6. http://www.ncbi.nlm.nih.gov/pubmed/24363023. http://www.nature.com/doifinder/10.1038/nmeth.2772.
-
(2013)
Nat Methods.
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
La Manno, G.4
Zajac, P.5
Kasper, M.6
-
16
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011; 21(7):1160-7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3129258%26tool=pmcentrez%26rendertype=abstract.
-
(2011)
Genome Res.
, vol.21
, Issue.7
, pp. 1160-1167
-
-
Islam, S.1
Kjällquist, U.2
Moliner, A.3
Zajac, P.4
Fan, J.B.5
Lönnerberg, P.6
-
17
-
-
84891677425
-
Full-length RNA-seq from single cells using Smart-Seq2
-
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-Seq2. Nat Protoc. 2014; 9(1):171-81. http://www.ncbi.nlm.nih.gov/pubmed/24385147. http://www.nature.com/doifinder/10.1038/nprot.2014.006.
-
(2014)
Nat Protoc.
, vol.9
, Issue.1
, pp. 171-181
-
-
Picelli, S.1
Faridani, O.R.2
Björklund, ÅK.3
Winberg, G.4
Sagasser, S.5
Sandberg, R.6
-
18
-
-
84964452502
-
CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq
-
Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-seq. Genome Biol. 2016; 17:77. http://www.ncbi.nlm.nih.gov/pubmed/27121950. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4848782.
-
(2016)
Genome Biol
, vol.17
, pp. 77
-
-
Hashimshony, T.1
Senderovich, N.2
Avital, G.3
Klochendler, A.4
De Leeuw, Y.5
Anavy, L.6
-
19
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA-sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA-sequencing data. Genome Biol. 2015; 16(1):278. http://genomebiology.com/2015/16/1/278.
-
(2015)
Genome Biol.
, vol.16
, Issue.1
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
-
20
-
-
53549123008
-
Nature, nurture, or chance: stochastic gene expression and its consequences
-
Raj A, van Oudenaarden A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell. 2008; 135(2):216-26. http://www.ncbi.nlm.nih.gov/pubmed/18957198. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3118044.
-
(2008)
Cell.
, vol.135
, Issue.2
, pp. 216-226
-
-
Raj, A.1
Van Oudenaarden, A.2
-
21
-
-
33748994704
-
Stochastic mRNA synthesis in mammalian cells
-
Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 2006; 4(10):e309. http://www.ncbi.nlm.nih.gov/pubmed/17048983.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1563489.http://dx.plos.org/10.1371/journal.pbio.0040309.
-
(2006)
PLoS Biol.
, vol.4
, Issue.10
-
-
Raj, A.1
Peskin, C.S.2
Tranchina, D.3
Vargas, D.Y.4
Tyagi, S.5
-
22
-
-
84955706109
-
ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16(1):241. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0805-z.
-
(2015)
Genome Biol.
, vol.16
, Issue.1
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
23
-
-
85040785722
-
A general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert JP. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):284. http://www.nature.com/articles/s41467-017-02554-5.
-
(2018)
Nat Commun.
, vol.9
, Issue.1
, pp. 284
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.P.5
-
24
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories from single-cell data
-
Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, et al.Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016; 34(6):637-45. http://www.ncbi.nlm.nih.gov/pubmed/27136076. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4900897.
-
(2016)
Nat Biotechnol
, vol.34
, Issue.6
, pp. 637-645
-
-
Setty, M.1
Tadmor, M.D.2
Reich-Zeliger, S.3
Angel, O.4
Salame, T.M.5
Kathail, P.6
-
25
-
-
85031017685
-
Reversed graph embedding resolves complex single-cell trajectories
-
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017. https://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4402.html.
-
(2017)
Nat Methods
-
-
Qiu, X.1
Mao, Q.2
Tang, Y.3
Wang, L.4
Chawla, R.5
Pliner, H.A.6
-
26
-
-
85027990252
-
Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
-
Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. 2017:128843. http://www.biorxiv.org/content/early/2017/04/19/128843.
-
(2017)
, pp. 128843
-
-
Street, K.1
Risso, D.2
Fletcher, R.B.3
Das, D.4
Ngai, J.5
Yosef, N.6
-
27
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
-
Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Research. 2016; 5:2122. https://f1000research.com/articles/5-2122/v2.
-
(2016)
F1000Research
, vol.5
, pp. 2122
-
-
Lun, A.T.L.1
McCarthy, D.J.2
Marioni, J.C.3
-
28
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2. http://www.ncbi.nlm.nih.gov/pubmed/24836921. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4112276.
-
(2014)
Nat Methods.
, vol.11
, Issue.7
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
29
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2016:bbw057. http://www.ncbi.nlm.nih.gov/pubmed/27373736. http://bib.oxfordjournals.org/lookup/doi/10.1093/bib/bbw057.
-
(2016)
Brief Bioinform
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
30
-
-
85042148811
-
Bias, robustness and scalability in differential expression analysis of single-cell RNA-seq data
-
Soneson C, Robinson MD. Bias, robustness and scalability in differential expression analysis of single-cell RNA-seq data. 2017. http://biorxiv.org/content/early/2017/05/28/143289.
-
(2017)
-
-
Soneson, C.1
Robinson, M.D.2
-
31
-
-
84858041341
-
Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
-
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3378882%26tool=pmcentrez%26rendertype=abstract.
-
(2012)
Nucleic Acids Res.
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
32
-
-
85042596015
-
-
In: Regression Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press
-
Colin Cameron A, Trivedi PK. Zero-Inflated Count Models. In: Regression Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press: 2013.
-
(2013)
Zero-Inflated Count Models
-
-
Colin Cameron, A.1
Trivedi, P.K.2
-
33
-
-
84862250978
-
Using control genes to correct for unwanted variation in microarray data
-
Gagnon-Bartsch Ja, Speed TP. Using control genes to correct for unwanted variation in microarray data. Biostatistics. 2012; 13(3):539-52. http://www.ncbi.nlm.nih.gov/pubmed/22101192.
-
(2012)
Biostatistics.
, vol.13
, Issue.3
, pp. 539-552
-
-
Gagnon-Bartsch, J.A.1
Speed, T.P.2
-
34
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotech. 2014; 32(9):896-902. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4404308%26tool=pmcentrez%26rendertype=abstract.
-
(2014)
Nat Biotech.
, vol.32
, Issue.9
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
35
-
-
85042621148
-
Data sets: characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
accession GSE29087
-
Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Data sets: characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. 2011. Gene expression Omnibus, accession GSE29087. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29087.
-
(2011)
Gene expression Omnibus
-
-
Islam, S.1
Kjällquist, U.2
Moliner, A.3
Zajac, P.4
Fan, J.B.5
Lönnerberg, P.6
-
36
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381-6. http://www.ncbi.nlm.nih.gov/pubmed/24658644. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4122333. http://www.nature.com/articles/nbt.2859.
-
(2014)
Nat Biotechnol.
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
37
-
-
85042546527
-
Towards unified quality verification of synthetic count data with countsimQC
-
Soneson C, Robinson MD. Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics. 2017. http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/4345646/Towards-unified-quality-verification-of-synthetic.
-
(2017)
Bioinformatics
-
-
Soneson, C.1
Robinson, M.D.2
-
38
-
-
84962641396
-
On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data
-
Hicks SC, Teng M, Irizarry RA. On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-seq data. 2015. http://biorxiv.org/content/early/2015/12/27/025528.
-
(2015)
-
-
Hicks, S.C.1
Teng, M.2
Irizarry, R.A.3
-
39
-
-
85041108250
-
Integrated analysis of single cell transcriptomic data across conditions, technologies, and species
-
Butler A, Satija R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. 2017:164889. https://www.biorxiv.org/content/early/2017/07/18/164889.
-
(2017)
, pp. 164889
-
-
Butler, A.1
Satija, R.2
-
40
-
-
85037330563
-
An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation
-
Sergushichev A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. 2016:060012. https://www.biorxiv.org/content/early/2016/06/20/060012.
-
(2016)
-
-
Sergushichev, A.1
-
42
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57(1):289-300. https://www.jstor.org/stable/2346101?seq=1%23page_scan_tab_contents.
-
(1995)
J R Stat Soc Ser B Methodol.
, vol.57
, Issue.1
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
43
-
-
85040765488
-
zingeR. unlocking RNA-seq tools for zero-inflation and single cell applications
-
Van den Berge K, Soneson C, Love MI, Robinson MD, Clement L. zingeR: unlocking RNA-seq tools for zero-inflation and single cell applications. 2017:157982. https://www.biorxiv.org/content/early/2017/06/30/157982.
-
, vol.2017
, pp. 157982
-
-
Van den Berge, K.1
Soneson, C.2
Love, M.I.3
Robinson, M.D.4
Clement, L.5
-
44
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11(6):637-40. http://www.ncbi.nlm.nih.gov/pubmed/24747814. http://www.nature.com/doifinder/10.1038/nmeth.2930.
-
(2014)
Nat Methods.
, vol.11
, Issue.6
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Van Oudenaarden, A.3
-
45
-
-
85013200683
-
Comparative analysis of single-cell RNA-sequencing methods
-
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA-sequencing methods. Mol Cell. 2017; 65(4):631-43. http://linkinghub.elsevier.com/retrieve/pii/S1097276517300497.
-
(2017)
Mol Cell.
, vol.65
, Issue.4
, pp. 631-643
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
Reinius, B.4
Guillaumet-Adkins, A.5
Smets, M.6
-
46
-
-
85034642667
-
Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling
-
Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017; 8(1):1627. http://www.nature.com/articles/s41467-017-01560-x.
-
(2017)
Nat Commun.
, vol.8
, Issue.1
, pp. 1627
-
-
Pal, B.1
Chen, Y.2
Vaillant, F.3
Jamieson, P.4
Gordon, L.5
Rios, A.C.6
-
47
-
-
85005943839
-
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA
-
Fujita K, Iwaki M, Yanagida T. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nat Commun. 2016; 7:13788. http://www.nature.com/doifinder/10.1038/ncomms13788.
-
(2016)
Nat Commun
, vol.7
, pp. 13788
-
-
Fujita, K.1
Iwaki, M.2
Yanagida, T.3
-
48
-
-
84888865593
-
Differential abundance analysis for microbial marker-gene surveys
-
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12):1200-2. http://www.ncbi.nlm.nih.gov/pubmed/24076764. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4010126. http://www.nature.com/doifinder/10.1038/nmeth.2658. http://dx.doi.org/10.1038/nmeth.2658.
-
(2013)
Nat Methods.
, vol.10
, Issue.12
, pp. 1200-1202
-
-
Paulson, J.N.1
Stine, O.C.2
Bravo, H.C.3
Pop, M.4
-
49
-
-
84940398787
-
Assessment and selection of competing models for zero-inflated microbiome data
-
Xu L, Paterson AD, Turpin W, Xu W. Assessment and selection of competing models for zero-inflated microbiome data. PLoS ONE. 2015; 10(7):e0129606. http://www.ncbi.nlm.nih.gov/pubmed/26148172. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4493133.
-
(2015)
PLoS ONE.
, vol.10
, Issue.7
-
-
Xu, L.1
Paterson, A.D.2
Turpin, W.3
Xu, W.4
-
50
-
-
84858041341
-
Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
-
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288-97. http://www.ncbi.nlm.nih.gov/pubmed/22287627. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3378882.
-
(2012)
Nucleic Acids Res.
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
51
-
-
85021816036
-
Normalizing single-cell RNA-sequencing data: challenges and opportunities
-
Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA-sequencing data: challenges and opportunities. Nat Methods. 2017; 14(6):565-71. https://doi.org/10.1038/nmeth.4292. http://www.nature.com/doifinder/10.1038/nmeth.4292.
-
(2017)
Nat Methods.
, vol.14
, Issue.6
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
52
-
-
84876427223
-
phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data
-
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013; 8(4):e61217. http://dx.plos.org/10.1371/journal.pone.0061217.
-
(2013)
PLoS ONE.
, vol.8
, Issue.4
-
-
McMurdie, P.J.1
Holmes, S.2
-
53
-
-
77953095629
-
Independent filtering increases detection power for high-throughput experiments
-
Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci. 2010; 107(21):9546-51. http://www.ncbi.nlm.nih.gov/pubmed/20460310. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2906865.
-
(2010)
Proc Natl Acad Sci.
, vol.107
, Issue.21
, pp. 9546-9551
-
-
Bourgon, R.1
Gentleman, R.2
Huber, W.3
-
54
-
-
84978699234
-
iCOBRA: open, reproducible, standardized and live method benchmarking
-
Soneson C, Robinson MD. iCOBRA: open, reproducible, standardized and live method benchmarking. Nat Methods. 2016; 13(4):283. http://www.nature.com/doifinder/10.1038/nmeth.3805.
-
(2016)
Nat Methods
, vol.13
, Issue.4
, pp. 283
-
-
Soneson, C.1
Robinson, M.D.2
-
55
-
-
85042592208
-
Fast, scalable and accurate differential expression analysis for single cells
-
Cold Spring Harbor Laboratory
-
Sengupta D, Rayan NA, Lim M, Lim B, Prabhakar S. Fast, scalable and accurate differential expression analysis for single cells. bioRxiv. 2016:049734. https://doi.org/10.1101/049734. https://www.biorxiv.org/content/early/2016/04/22/049734. Cold Spring Harbor Laboratory.
-
(2016)
bioRxiv
-
-
Sengupta, D.1
Rayan, N.A.2
Lim, M.3
Lim, B.4
Prabhakar, S.5
-
56
-
-
84900391007
-
ShrinkBayes: a versatile R package for analysis of count-based sequencing data in complex study designs
-
van de Wiel MA, Neerincx M, Buffart TE, Sie D, Verheul HM. ShrinkBayes: a versatile R package for analysis of count-based sequencing data in complex study designs. BMC Bioinform. 2014; 15(1):116. http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-116.
-
(2014)
BMC Bioinform
, vol.15
, Issue.1
, pp. 116
-
-
Van de Wiel, M.A.1
Neerincx, M.2
Buffart, T.E.3
Sie, D.4
Verheul, H.M.5
-
57
-
-
84903146127
-
Robustly detecting differential expression in RNA-sequencing data using observation weights
-
Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA-sequencing data using observation weights. Nucleic Acids Res. 2014; 42(11):e91. http://www.ncbi.nlm.nih.gov/pubmed/24753412. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4066750.
-
(2014)
Nucleic Acids Res
, vol.42
, Issue.11
-
-
Zhou, X.1
Lindsay, H.2
Robinson, M.D.3
-
58
-
-
0001622853
-
Asymptotic properties of moment estimators for overdispersed counts and proportions
-
Moore DF. Asymptotic properties of moment estimators for overdispersed counts and proportions. Biometrika. 1986; 73(3):583. http://www.jstor.org/stable/2336522?origin=crossref.
-
(1986)
Biometrika
, vol.73
, Issue.3
, pp. 583
-
-
Moore, D.F.1
-
59
-
-
0003663926
-
-
2nd ed. New York: Chapman and Hall
-
McCullagh PP, Nelder JA. Generalized linear models. 2nd ed. New York: Chapman and Hall; 1989. https://www.crcpress.com/Generalized-Linear-Models-Second-Edition/McCullagh-Nelder/p/book/9780412317606.
-
(1989)
Generalized linear models
-
-
McCullagh, P.P.1
Nelder, J.A.2
-
60
-
-
0141576514
-
Thin plate regression splines
-
Wood SN. Thin plate regression splines. J R Stat Soc Ser B Stat Methodol. 2003; 65(1):95-114. http://doi.wiley.com/10.1111/1467-9868.00374.
-
(2003)
J R Stat Soc Ser B Stat Methodol
, vol.65
, Issue.1
, pp. 95-114
-
-
Wood, S.N.1
-
61
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102(43):15545-50. http://www.pnas.org/cgi/doi/10.1073/pnas.0506580102.
-
(2005)
Proc Natl Acad Sci
, vol.102
, Issue.43
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
-
62
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. http://www.nature.com/doifinder/10.1038/ncomms14049.
-
(2017)
Nat Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
Terry, J.M.Y.2
Belgrader, P.Y.3
Ryvkin, P.Y.4
Bent, Z.W.5
Wilson, R.6
-
63
-
-
85042627268
-
Data sets: the dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
accession GSE52529.
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. Data sets: the dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. 2014. Gene expression Omnibus, accession GSE52529. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52529.
-
(2014)
Gene expression Omnibus
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
64
-
-
85042614404
-
Data sets: unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing
-
Linnarsson Lab Website
-
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Data sets: unbiased classification of sensory neuron types by large-scale single-cell RNA-sequencing. 2014. Linnarsson Lab Website. http://linnarssonlab.org/drg/.
-
(2014)
-
-
Usoskin, D.1
Furlan, A.2
Islam, S.3
Abdo, H.4
Lönnerberg, P.5
Lou, D.6
-
65
-
-
85042619807
-
-
Short Read Archive, accession SRP073767.
-
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Data sets: massively parallel digital transcriptional profiling of single cells. 2017. Short Read Archive, accession SRP073767. https://www.ncbi.nlm.nih.gov/sra?term=SRP073767.
-
(2017)
Data sets: massively parallel digital transcriptional profiling of single cells
-
-
Zheng, G.X.Y.1
Terry, J.M.2
Belgrader, P.3
Ryvkin, P.4
Bent, Z.W.5
Wilson, R.6
-
66
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014; 343(6167):193-6. http://www.ncbi.nlm.nih.gov/pubmed/24408435.
-
(2014)
Science
, vol.343
, Issue.6167
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
67
-
-
79953034289
-
Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq and microarrays
-
Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, et al. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq and microarrays. PLoS ONE. 2011; 6(3):e17820. http://www.pubmedcentral.nih.gov/articlerender.fcgi%3Fartid=3063777%26tool=pmcentrez%26rendertype=abstract.
-
(2011)
PLoS ONE
, vol.6
, Issue.3
-
-
Bottomly, D.1
Walter, N.A.R.2
Hunter, J.E.3
Darakjian, P.4
Kawane, S.5
Buck, K.J.6
|