-
1
-
-
84929687805
-
The technology and biology of single-cell RNA sequencing
-
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610-620 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
2
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
MacOsko, E.Z.1
-
3
-
-
84961327715
-
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
-
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016).
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 335-346
-
-
Tasic, B.1
-
4
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
-
5
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196 (2014).
-
(2014)
Science
, vol.343
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
6
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
-
7
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 1 (2016).
-
(2016)
Genome Biol.
, vol.17
, pp. 1
-
-
Bacher, R.1
Kendziorski, C.2
-
8
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
9
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163-166 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 163-166
-
-
Islam, S.1
-
10
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
-
(2017)
Sci. Rep.
, vol.7
, pp. 39921
-
-
Tung, P.Y.1
-
11
-
-
85021816036
-
Normalizing single-cell RNA sequencing data: Challenges and opportunities
-
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565-571 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 565-571
-
-
Vallejos, C.A.1
Risso, D.2
Scialdone, A.3
Dudoit, S.4
Marioni, J.C.5
-
12
-
-
84895562012
-
From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing
-
Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496-510 (2014).
-
(2014)
Genome Res.
, vol.24
, pp. 496-510
-
-
Marinov, G.K.1
-
13
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053-1058 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1053-1058
-
-
Pollen, A.A.1
-
14
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
15
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
16
-
-
84982806105
-
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
-
Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. e117
-
-
Ji, Z.1
Ji, H.2
-
17
-
-
84941010341
-
Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis
-
Shin, J. et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 360-372
-
-
Shin, J.1
-
19
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
20
-
-
84903185013
-
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
-
Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363-369 (2014).
-
(2014)
Nature
, vol.510
, pp. 363-369
-
-
Shalek, A.K.1
-
21
-
-
84949252174
-
Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
-
Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400-1412 (2015).
-
(2015)
Cell
, vol.163
, pp. 1400-1412
-
-
Gaublomme, J.T.1
-
23
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 278
-
-
Finak, G.1
-
24
-
-
0042378381
-
Laplacian Eigenmaps for dimensionality reduction and data representation
-
Belkin, M. & Niyogi, P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373-1396 (2003).
-
(2003)
Neural Comput.
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
26
-
-
84955706109
-
Dimensionality reduction for zero-inflated single cell gene expression analysis
-
Pierson, E. & Yau, C. Dimensionality reduction for zero-inflated single cell gene expression analysis. Genome Biol. 16, 241 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
27
-
-
84862250978
-
Using control genes to correct for unwanted variation in microarray data
-
Gagnon-Bartsch, J. a. & Speed, T. P. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539-552 (2012).
-
(2012)
Biostatistics
, vol.13
, pp. 539-552
-
-
Gagnon-Bartsch, Ja.1
Speed, T.P.2
-
28
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
29
-
-
85019062024
-
Deconstructing olfactory stem cell trajectories at single-cell resolution
-
Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817-830 (2017).
-
(2017)
Cell Stem Cell
, vol.20
, pp. 817-830
-
-
Fletcher, R.B.1
-
31
-
-
85027981692
-
Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference
-
Perraudeau, F., Risso, D., Street, K., Purdom, E. & Dudoit, S. Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference. F1000Research 6, 1158 (2017).
-
(2017)
F1000Research
, vol.6
, pp. 1158
-
-
Perraudeau, F.1
Risso, D.2
Street, K.3
Purdom, E.4
Dudoit, S.5
-
32
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 14049
-
-
Zheng, G.X.1
-
33
-
-
84888352905
-
A smart local moving algorithm for large-scale modularity-based community detection
-
Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).
-
(2013)
Eur. Phys. J. B
, vol.86
, pp. 471
-
-
Waltman, L.1
Van Eck, N.J.2
-
35
-
-
85018582872
-
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
-
Villani, A.-C. et al. Single-cell rna-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
-
(2017)
Science
, vol.356
, pp. eaah4573
-
-
Villani, A.C.1
-
37
-
-
84947748539
-
Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
-
Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell. Stem. Cell. 17, 471-485 (2015).
-
(2015)
Cell. Stem. Cell
, vol.17
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
-
38
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
39
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882-883 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
-
40
-
-
85040772179
-
-
bioRxiv 166736
-
Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Varying-censoring aware matrix factorization for single cell RNA-sequencing. bioRxiv 166736 (2017).
-
(2017)
Varying-censoring Aware Matrix Factorization for Single Cell RNA-sequencing
-
-
Townes, F.W.1
Hicks, S.C.2
Aryee, M.J.3
Irizarry, R.A.4
-
41
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139 (2010).
-
(2010)
Bioinformatics
, vol.26
, pp. 139
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
42
-
-
85029226561
-
Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
-
Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451-464 (2016).
-
(2016)
Biostatistics
, vol.18
, pp. 451-464
-
-
Lun, A.T.L.1
Marioni, J.C.2
-
43
-
-
85019072518
-
Scater: Pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R
-
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. Bioinformatics 33, 1179-1186 (2016).
-
(2016)
Bioinformatics
, vol.33
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
44
-
-
34848914038
-
Capturing heterogeneity in gene expression studies by surrogate variable analysis
-
Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).
-
(2007)
PLoS Genet.
, vol.3
, pp. e161
-
-
Leek, J.T.1
Storey, J.D.2
-
45
-
-
85006380199
-
Simultaneous dimension reduction and adjustment for confounding variation
-
Lin, Z. et al. Simultaneous dimension reduction and adjustment for confounding variation. Proc. Natl Acad. Sci. USA 113, 14662-14667 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 14662-14667
-
-
Lin, Z.1
-
46
-
-
85003441754
-
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
-
Love, M. I., Hogenesch, J. B. & Irizarry, R. A. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat. Biotechnol. 34, 1287 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 1287
-
-
Love, M.I.1
Hogenesch, J.B.2
Irizarry, R.A.3
-
48
-
-
85014528252
-
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
-
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Ramazzotti, D.4
Batzoglou, S.5
-
49
-
-
85040765488
-
-
bioRxiv 157982
-
Van den Berge, K., Soneson, C., Love, M. I., Robinson, M. D. & Clement, L. ZingeR: unlocking rna-seq tools for zero-inflation and single cell applications. bioRxiv 157982 (2017).
-
(2017)
ZingeR: Unlocking RNA-seq Tools for Zero-inflation and Single Cell Applications
-
-
Van Den Berge, K.1
Soneson, C.2
Love, M.I.3
Robinson, M.D.4
Clement, L.5
-
50
-
-
84898932317
-
Maximum-margin matrix factorization
-
Srebro, N., Rennie, J. D. M. & Jaakkola, T. S. Maximum-margin matrix factorization. Adv. Neural Inf. Process. Syst. 17, 1329-1336 (2005).
-
(2005)
Adv. Neural Inf. Process. Syst.
, vol.17
, pp. 1329-1336
-
-
Srebro, N.1
Rennie, J.D.M.2
Jaakkola, T.S.3
-
51
-
-
77956944781
-
Spectral regularization algorithms for learning large incomplete matrices
-
Mazumder, R., Hastie, T. & Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287-2322 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2287-2322
-
-
Mazumder, R.1
Hastie, T.2
Tibshirani, R.3
-
52
-
-
79961123152
-
RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
53
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
-
54
-
-
77949481052
-
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
-
Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 94
-
-
Bullard, J.H.1
Purdom, E.2
Hansen, K.D.3
Dudoit, S.4
-
55
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
-
(2010)
Genome Biol.
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
57
-
-
15044346962
-
Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
-
Tseng, G. C. & Wong, W. H. Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16 (2005).
-
(2005)
Biometrics
, vol.61
, pp. 10-16
-
-
Tseng, G.C.1
Wong, W.H.2
-
60
-
-
85019072518
-
Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
Mccarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179-1186 (2017).
-
(2017)
Bioinformatics
, vol.33
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
|