메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Correction to: A general and flexible method for signal extraction from single-cell RNA-seq data (Nature Communications, (2018), 9, 1, (284), 10.1038/s41467-017-02554-5);A general and flexible method for signal extraction from single-cell RNA-seq data

Author keywords

[No Author keywords available]

Indexed keywords

CELL; EXTRACTION METHOD; FACTOR ANALYSIS; GENE EXPRESSION; GENOME; NUMERICAL MODEL; PRINCIPAL COMPONENT ANALYSIS; RNA;

EID: 85040785722     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-019-08614-2     Document Type: Erratum
Times cited : (470)

References (60)
  • 2
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • MacOsko, E.Z.1
  • 3
    • 84961327715 scopus 로고    scopus 로고
    • Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
    • Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016).
    • (2016) Nat. Neurosci. , vol.19 , pp. 335-346
    • Tasic, B.1
  • 4
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 5
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193-196 (2014).
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 6
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 7
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 1 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 1
    • Bacher, R.1    Kendziorski, C.2
  • 8
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 9
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163-166 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 163-166
    • Islam, S.1
  • 10
    • 85008384488 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • Tung, P.-Y. et al. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7, 39921 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 39921
    • Tung, P.Y.1
  • 11
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: Challenges and opportunities
    • Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat. Methods 14, 565-571 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 12
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing
    • Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496-510 (2014).
    • (2014) Genome Res. , vol.24 , pp. 496-510
    • Marinov, G.K.1
  • 13
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053-1058 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1053-1058
    • Pollen, A.A.1
  • 14
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 15
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 16
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 44, e117 (2016).
    • (2016) Nucleic Acids Res. , vol.44 , pp. e117
    • Ji, Z.1    Ji, H.2
  • 17
    • 84941010341 scopus 로고    scopus 로고
    • Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis
    • Shin, J. et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 360-372
    • Shin, J.1
  • 20
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363-369 (2014).
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1
  • 21
    • 84949252174 scopus 로고    scopus 로고
    • Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
    • Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400-1412 (2015).
    • (2015) Cell , vol.163 , pp. 1400-1412
    • Gaublomme, J.T.1
  • 23
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1
  • 24
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian Eigenmaps for dimensionality reduction and data representation
    • Belkin, M. & Niyogi, P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373-1396 (2003).
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 26
    • 84955706109 scopus 로고    scopus 로고
    • Dimensionality reduction for zero-inflated single cell gene expression analysis
    • Pierson, E. & Yau, C. Dimensionality reduction for zero-inflated single cell gene expression analysis. Genome Biol. 16, 241 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 27
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch, J. a. & Speed, T. P. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539-552 (2012).
    • (2012) Biostatistics , vol.13 , pp. 539-552
    • Gagnon-Bartsch, Ja.1    Speed, T.P.2
  • 28
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 29
    • 85019062024 scopus 로고    scopus 로고
    • Deconstructing olfactory stem cell trajectories at single-cell resolution
    • Fletcher, R. B. et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell 20, 817-830 (2017).
    • (2017) Cell Stem Cell , vol.20 , pp. 817-830
    • Fletcher, R.B.1
  • 31
    • 85027981692 scopus 로고    scopus 로고
    • Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference
    • Perraudeau, F., Risso, D., Street, K., Purdom, E. & Dudoit, S. Bioconductor workflow for single-cell rna sequencing: Normalization, dimensionality reduction, clustering, and lineage inference. F1000Research 6, 1158 (2017).
    • (2017) F1000Research , vol.6 , pp. 1158
    • Perraudeau, F.1    Risso, D.2    Street, K.3    Purdom, E.4    Dudoit, S.5
  • 32
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 14049
    • Zheng, G.X.1
  • 33
    • 84888352905 scopus 로고    scopus 로고
    • A smart local moving algorithm for large-scale modularity-based community detection
    • Waltman, L. & van Eck, N. J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).
    • (2013) Eur. Phys. J. B , vol.86 , pp. 471
    • Waltman, L.1    Van Eck, N.J.2
  • 35
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani, A.-C. et al. Single-cell rna-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
    • (2017) Science , vol.356 , pp. eaah4573
    • Villani, A.C.1
  • 37
    • 84947748539 scopus 로고    scopus 로고
    • Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation
    • Kolodziejczyk, A. A. et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional variation. Cell. Stem. Cell. 17, 471-485 (2015).
    • (2015) Cell. Stem. Cell , vol.17 , pp. 471-485
    • Kolodziejczyk, A.A.1
  • 38
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118-127 (2007).
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 39
    • 84859098571 scopus 로고    scopus 로고
    • The sva package for removing batch effects and other unwanted variation in high-throughput experiments
    • Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882-883 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 882-883
    • Leek, J.T.1    Johnson, W.E.2    Parker, H.S.3    Jaffe, A.E.4    Storey, J.D.5
  • 41
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 139
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 42
    • 85029226561 scopus 로고    scopus 로고
    • Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
    • Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451-464 (2016).
    • (2016) Biostatistics , vol.18 , pp. 451-464
    • Lun, A.T.L.1    Marioni, J.C.2
  • 43
    • 85019072518 scopus 로고    scopus 로고
    • Scater: Pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R
    • McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. Bioinformatics 33, 1179-1186 (2016).
    • (2016) Bioinformatics , vol.33 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3    Wills, Q.F.4
  • 44
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, e161 (2007).
    • (2007) PLoS Genet. , vol.3 , pp. e161
    • Leek, J.T.1    Storey, J.D.2
  • 45
    • 85006380199 scopus 로고    scopus 로고
    • Simultaneous dimension reduction and adjustment for confounding variation
    • Lin, Z. et al. Simultaneous dimension reduction and adjustment for confounding variation. Proc. Natl Acad. Sci. USA 113, 14662-14667 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 14662-14667
    • Lin, Z.1
  • 46
    • 85003441754 scopus 로고    scopus 로고
    • Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
    • Love, M. I., Hogenesch, J. B. & Irizarry, R. A. Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat. Biotechnol. 34, 1287 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 1287
    • Love, M.I.1    Hogenesch, J.B.2    Irizarry, R.A.3
  • 48
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
    • Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14, 414-416 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Ramazzotti, D.4    Batzoglou, S.5
  • 51
    • 77956944781 scopus 로고    scopus 로고
    • Spectral regularization algorithms for learning large incomplete matrices
    • Mazumder, R., Hastie, T. & Tibshirani, R. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11, 2287-2322 (2010).
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2287-2322
    • Mazumder, R.1    Hastie, T.2    Tibshirani, R.3
  • 52
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 53
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 54
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 55
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 57
    • 15044346962 scopus 로고    scopus 로고
    • Tight clustering: A resampling-based approach for identifying stable and tight patterns in data
    • Tseng, G. C. & Wong, W. H. Tight clustering: A resampling-based approach for identifying stable and tight patterns in data. Biometrics 61, 10-16 (2005).
    • (2005) Biometrics , vol.61 , pp. 10-16
    • Tseng, G.C.1    Wong, W.H.2
  • 60
    • 85019072518 scopus 로고    scopus 로고
    • Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • Mccarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179-1186 (2017).
    • (2017) Bioinformatics , vol.33 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3    Wills, Q.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.