메뉴 건너뛰기




Volumn 12, Issue 3, 2018, Pages 1700-1726

A general framework for association analysis of heterogeneous data

Author keywords

Association coefficient; Exponential family; Generalized linear model; Inter battery factor analysis; Joint and individual structure; Matrix decomposition

Indexed keywords


EID: 85053332408     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/17-AOAS1127     Document Type: Article
Times cited : (28)

References (42)
  • 3
    • 57049179026 scopus 로고    scopus 로고
    • Autotagger: A model for predicting social tags from acoustic features on large music databases
    • BERTIN-MAHIEUX, T., ECK, D., MAILLET, F. and LAMERE, P. (2008). Autotagger: A model for predicting social tags from acoustic features on large music databases. J. New Music Res. 37 115-135.
    • (2008) J. New Music Res. , vol.37 , pp. 115-135
    • Bertin-Mahieux, T.1    Eck, D.2    Maillet, F.3    Lamere, P.4
  • 4
    • 84966204312 scopus 로고
    • Numerical methods for computing angles between linear subspaces
    • BJÖRCK, K. and GOLUB, G. H. (1973). Numerical methods for computing angles between linear subspaces. Math. Comp. 27 579-594.
    • (1973) Math. Comp. , vol.27 , pp. 579-594
    • Björck, K.1    Golub, G.H.2
  • 5
    • 85004775272 scopus 로고
    • The maximum-likelihood solution in inter-battery factor analysis
    • MR0553146
    • BROWNE, M. W. (1979). The maximum-likelihood solution in inter-battery factor analysis. Br. J. Math. Stat. Psychol. 32 75-86. MR0553146
    • (1979) Br. J. Math. Stat. Psychol. , vol.32 , pp. 75-86
    • Browne, M.W.1
  • 7
    • 84860470942 scopus 로고    scopus 로고
    • An efficient optimization algorithm for structured sparse cca, with applications to eqtl mapping
    • CHEN, X. and LIU, H. (2012). An efficient optimization algorithm for structured sparse cca, with applications to eqtl mapping. Stat. Biosci. 4 3-26.
    • (2012) Stat. Biosci. , vol.4 , pp. 3-26
    • Chen, X.1    Liu, H.2
  • 9
    • 85018662555 scopus 로고    scopus 로고
    • High-dimensional mixed graphical models
    • MR3640193
    • CHENG, J., LI, T., LEVINA, E. and ZHU, J. (2017). High-dimensional mixed graphical models. J. Comput. Graph. Statist. 26 367-378. MR3640193
    • (2017) J. Comput. Graph. Statist. , vol.26 , pp. 367-378
    • Cheng, J.1    Li, T.2    Levina, E.3    Zhu, J.4
  • 12
    • 84931577988 scopus 로고    scopus 로고
    • Generalized multilevel function-on-scalar regression and principal component analysis
    • GOLDSMITH, J., ZIPUNNIKOV, V. and SCHRACK, J. (2015). Generalized multilevel function-on-scalar regression and principal component analysis. Biometrics 71 344-353.
    • (2015) Biometrics , vol.71 , pp. 344-353
    • Goldsmith, J.1    Zipunnikov, V.2    Schrack, J.3
  • 13
    • 0004236492 scopus 로고    scopus 로고
    • 4th ed. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins Univ. Press, Baltimore, MD. MR3024913
    • GOLUB, G. H. and VAN LOAN, C. F. (2013). Matrix Computations, 4th ed. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins Univ. Press, Baltimore, MD. MR3024913
    • (2013) Matrix Computations
    • Golub, G.H.1    van Loan, C.F.2
  • 14
    • 11144272602 scopus 로고    scopus 로고
    • Recent studies on music information processing
    • GOTO, M. and HIRATA, K. (2004). Recent studies on music information processing. Acoust. Sci. Technol. 25 419-425.
    • (2004) Acoust. Sci. Technol. , vol.25 , pp. 419-425
    • Goto, M.1    Hirata, K.2
  • 17
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • HOTELLING, H. (1936). Relations between two sets of variates. Biometrika 28 321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 21
    • 84877621868 scopus 로고    scopus 로고
    • Bayesian canonical correlation analysis
    • KLAMI, A., VIRTANEN, S. and KASKI, S. (2013). Bayesian canonical correlation analysis. J. Mach. Learn. Res. 14 965-1003.
    • (2013) J. Mach. Learn. Res. , vol.14 , pp. 965-1003
    • Klami, A.1    Virtanen, S.2    Kaski, S.3
  • 22
    • 85040101932 scopus 로고    scopus 로고
    • Generalized principal component analysis: Projection of saturated model parameters
    • Department of Statistics, Ohio State Univ
    • LANDGRAF, A. J. and LEE, Y. (2015). Generalized principal component analysis: Projection of saturated model parameters. Technical Report 892, Department of Statistics, Ohio State Univ.
    • (2015) Technical Report 892
    • Landgraf, A.J.1    Lee, Y.2
  • 24
    • 85033699396 scopus 로고    scopus 로고
    • Embracing the blessing of dimensionality in factor models
    • MR3803472
    • LI, Q., CHENG, G., FAN, J. and WANG, Y. (2018). Embracing the blessing of dimensionality in factor models. J. Amer. Statist. Assoc. 113 380-389. MR3803472
    • (2018) J. Amer. Statist. Assoc. , vol.113 , pp. 380-389
    • Li, Q.1    Cheng, G.2    Fan, J.3    Wang, Y.4
  • 25
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
    • LOCK, E. F., HOADLEY, K. A., MARRON, J. S. and NOBEL, A. B. (2013). Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat. 7 523-542.
    • (2013) Ann. Appl. Stat. , vol.7 , pp. 523-542
    • Lock, E.F.1    Hoadley, K.A.2    Marron, J.S.3    Nobel, A.B.4
  • 27
    • 84977097839 scopus 로고    scopus 로고
    • Canonical variate regression
    • LUO, C., LIU, J., DEY, D. K. and CHEN, K. (2016). Canonical variate regression. Biostatistics 17 468-483.
    • (2016) Biostatistics , vol.17 , pp. 468-483
    • Luo, C.1    Liu, J.2    Dey, D.K.3    Chen, K.4
  • 28
    • 0003663926 scopus 로고
    • 2nd ed. Chapman & Hall, London. [Second edition of MR0727836.] MR3223057
    • MCCULLAGH, P. and NELDER, J. A. (1989). Generalized Linear Models, 2nd ed. Chapman & Hall, London. [Second edition of MR0727836.] MR3223057
    • (1989) Generalized Linear Models
    • McCullagh, P.1    Nelder, J.A.2
  • 29
    • 84880174018 scopus 로고    scopus 로고
    • Reduced rank vector generalized linear models for feature extraction
    • SHE, Y. (2013). Reduced rank vector generalized linear models for feature extraction. Stat. Interface 6 197-209.
    • (2013) Stat. Interface , vol.6 , pp. 197-209
    • She, Y.1
  • 30
    • 0037282744 scopus 로고    scopus 로고
    • O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter
    • TRYGG, J. and WOLD, S. (2003). O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J. Chemom. 17 53-64.
    • (2003) J. Chemom. , vol.17 , pp. 53-64
    • Trygg, J.1    Wold, S.2
  • 32
    • 0000503256 scopus 로고
    • An inter-battery method of factor analysis
    • MR0099737
    • TUCKER, L. R. (1958). An inter-battery method of factor analysis. Psychometrika 23 111-136. MR0099737
    • (1958) Psychometrika , vol.23 , pp. 111-136
    • Tucker, L.R.1
  • 36
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • WESTERHUIS, J. A., KOURTI, T. and MACGREGOR, J. F. (1998). Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 12 301-321.
    • (1998) J. Chemom. , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 37
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 513-534.
    • (2009) Biostatistics , vol.10 , pp. 513-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 38
    • 84908070948 scopus 로고    scopus 로고
    • A sparse singular value decomposition method for high-dimensional data
    • MR3270704
    • YANG, D., MA, Z. and BUJA, A. (2014). A sparse singular value decomposition method for high-dimensional data. J. Comput. Graph. Statist. 23 923-942. MR3270704
    • (2014) J. Comput. Graph. Statist. , vol.23 , pp. 923-942
    • Yang, D.1    Ma, Z.2    Buja, A.3
  • 40
    • 85008178335 scopus 로고    scopus 로고
    • Group component analysis for multiblock data: Common and individual feature extraction
    • ZHOU, G., CICHOCKI, A., ZHANG, Y. and MANDIC, D. P. (2016a). Group component analysis for multiblock data: Common and individual feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 27 2426-2439.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst. , vol.27 , pp. 2426-2439
    • Zhou, G.1    Cichocki, A.2    Zhang, Y.3    Mandic, D.P.4
  • 41
    • 84953282331 scopus 로고    scopus 로고
    • Linked component analysis from matrices to high-order tensors: Applications to biomedical data
    • ZHOU, G., ZHAO, Q., ZHANG, Y., ADALI, T., XIE, S. and CICHOCKI, A. (2016b). Linked component analysis from matrices to high-order tensors: Applications to biomedical data. Proc. IEEE 104 310-331.
    • (2016) Proc. IEEE , vol.104 , pp. 310-331
    • Zhou, G.1    Zhao, Q.2    Zhang, Y.3    Adali, T.4    Xie, S.5    Cichocki, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.