-
1
-
-
67349146589
-
mRNA-Seq whole-transcriptome analysis of a single cell
-
19349980
-
Tang F Barbacioru C Wang Y : mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382. 19349980 10.1038/nmeth.1315
-
(2009)
Nat Methods
, vol.6
, Issue.5
, pp. 377-382
-
-
Tang, F.1
Barbacioru, C.2
Wang, Y.3
-
2
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
24056875
-
Picelli S Björklund ÅK Faridani OR : Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096-1098. 24056875 10.1038/nmeth.2639
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1096-1098
-
-
Picelli, S.1
Björklund, K.2
Faridani, O.R.3
-
3
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
26000487, 4441768
-
Klein AM Mazutis L Akartuna I : Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. 26000487 10.1016/j.cell.2015.04.044 4441768
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
-
4
-
-
84929684999
-
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
-
26000488, 4481139
-
Macosko EZ Basu A Satija R : Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202-1214. 26000488 10.1016/j.cell.2015.05.002 4481139
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
-
5
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
28091601, 5241818
-
Zheng GX Terry JM Belgrader P : Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8: 14049. 28091601 10.1038/ncomms14049 5241818
-
(2017)
Nat Commun
, vol.8
-
-
Zheng, G.X.1
Terry, J.M.2
Belgrader, P.3
-
6
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
28263961, 5376499
-
Svensson V Natarajan KN Ly LH : Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017;14(4):381-387. 28263961 10.1038/nmeth.4220 5376499
-
(2017)
Nat Methods
, vol.14
, Issue.4
, pp. 381-387
-
-
Svensson, V.1
Natarajan, K.N.2
Ly, L.H.3
-
7
-
-
85044252958
-
Exponential scaling of single-cell RNA-seq in the past decade
-
29494575
-
Svensson V Vento-Tormo R Teichmann SA : Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599-604. 29494575 10.1038/nprot.2017.149
-
(2018)
Nat Protoc
, vol.13
, Issue.4
, pp. 599-604
-
-
Svensson, V.1
Vento-Tormo, R.2
Teichmann, S.A.3
-
8
-
-
85050812427
-
Quantitative single-cell transcriptomics
-
29579145, 6063296
-
Ziegenhain C Vieth B Parekh S : Quantitative single-cell transcriptomics. Brief Funct Genomics. 2018;17(4):220-232. 29579145 10.1093/bfgp/ely009 6063296
-
(2018)
Brief Funct Genomics
, vol.17
, Issue.4
, pp. 220-232
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
-
9
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
24747814
-
Grün D Kester L van Oudenaarden A : Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11(6):637-640. 24747814 10.1038/nmeth.2930
-
(2014)
Nat Methods
, vol.11
, Issue.6
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
van Oudenaarden, A.3
-
10
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
27052890, 4823857
-
Bacher R Kendziorski C : Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17(1):63. 27052890 10.1186/s13059-016-0927-y 4823857
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 63
-
-
Bacher, R.1
Kendziorski, C.2
-
11
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
28045081, 5206706
-
Tung PY Blischak JD Hsiao CJ : Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017;7: 39921. 28045081 10.1038/srep39921 5206706
-
(2017)
Sci Rep
, vol.7
-
-
Tung, P.Y.1
Blischak, J.D.2
Hsiao, C.J.3
-
12
-
-
85054726691
-
Missing data and technical variability in single-cell RNA-sequencing experiments
-
29121214
-
Hicks SC Townes FW Teng M : Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2017;kxx053. 29121214 10.1093/biostatistics/kxx053
-
(2017)
Biostatistics
-
-
Hicks, S.C.1
Townes, F.W.2
Teng, M.3
-
13
-
-
85049372156
-
Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database
-
29939984 , 6034903
-
Zappia L Phipson B Oshlack A : Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput Biol. 2018;14(6):e1006245. 29939984 10.1371/journal.pcbi.1006245 6034903
-
(2018)
PLoS Comput Biol
, vol.14
, Issue.6
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
14
-
-
84874666550
-
Critical assessment of automated flow cytometry data analysis techniques
-
23396282, 3906045
-
Aghaeepour N Finak G , FlowCAP Consortium, et al.: Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228-238. 23396282 10.1038/nmeth.2365 3906045
-
(2013)
Nat Methods
, vol.10
, Issue.3
, pp. 228-238
-
-
Aghaeepour, N.1
Finak, G.2
-
15
-
-
85006826083
-
Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
-
27992111
-
Weber LM Robinson MD : Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A. 2016;89(12):1084-1096. 27992111 10.1002/cyto.a.23030
-
(2016)
Cytometry A
, vol.89
, Issue.12
, pp. 1084-1096
-
-
Weber, L.M.1
Robinson, M.D.2
-
16
-
-
85054667891
-
Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data
-
29236955, 6063268
-
Menon V : Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Brief Funct Genomics. 2018;17(4):240-245. 29236955 10.1093/bfgp/elx044 6063268
-
(2018)
Brief Funct Genomics
, vol.17
, Issue.4
, pp. 240-245
-
-
Menon, V.1
-
17
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
25867923, 4430369
-
Satija R Farrell JA Gennert D : Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495-502. 25867923 10.1038/nbt.3192 4430369
-
(2015)
Nat Biotechnol
, vol.33
, Issue.5
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
-
18
-
-
60549111634
-
WGCNA: an R package for weighted correlation network analysis
-
19114008, 2631488
-
Langfelder P Horvath S : WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. 19114008 10.1186/1471-2105-9-559 2631488
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 559
-
-
Langfelder, P.1
Horvath, S.2
-
19
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
25700174
-
Zeisel A Muñoz-Manchado AB Codeluppi S : Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138-1142. 25700174 10.1126/science.aaa1934
-
(2015)
Science
, vol.347
, Issue.6226
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
-
20
-
-
85059492831
-
Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data [version 1; referees: 1 approved, 2 approved with reservations]
-
Freytag S Tian L Lönnstedt I : Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data [version 1; referees: 1 approved, 2 approved with reservations]. F1000Res. 2018;7:1297. 10.12688/f1000research.15809.1
-
(2018)
F1000Res
, vol.7
, pp. 1297
-
-
Freytag, S.1
Tian, L.2
Lönnstedt, I.3
-
21
-
-
85025649872
-
Identifying cell populations with scRNASeq
-
28712804
-
Andrews TS Hemberg M : Identifying cell populations with scRNASeq. Mol Aspects Med. 2018;59:114-122. 28712804 10.1016/j.mam.2017.07.002
-
(2018)
Mol Aspects Med
, vol.59
, pp. 114-122
-
-
Andrews, T.S.1
Hemberg, M.2
-
22
-
-
85044944299
-
Bias, robustness and scalability in single-cell differential expression analysis
-
29481549
-
Soneson C Robinson MD : Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018;15(4):255-261. 29481549 10.1038/nmeth.4612
-
(2018)
Nat Methods
, vol.15
, Issue.4
, pp. 255-261
-
-
Soneson, C.1
Robinson, M.D.2
-
23
-
-
84923188586
-
Deconstructing transcriptional heterogeneity in pluripotent stem cells
-
25471879, 4256722
-
Kumar RM Cahan P Shalek AK : Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature. 2014;516(7529):56-61. 25471879 10.1038/nature13920 4256722
-
(2014)
Nature
, vol.516
, Issue.7529
, pp. 56-61
-
-
Kumar, R.M.1
Cahan, P.2
Shalek, A.K.3
-
24
-
-
85007005549
-
An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development
-
27996962, 5170597
-
Koh PW Sinha R Barkal AA : An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development. Sci Data. 2016;3: 160109. 27996962 10.1038/sdata.2016.109 5170597
-
(2016)
Sci Data
, vol.3
-
-
Koh, P.W.1
Sinha, R.2
Barkal, A.A.3
-
25
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
24658644, 4122333
-
Trapnell C Cacchiarelli D Grimsby J : The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-386. 24658644 10.1038/nbt.2859 4122333
-
(2014)
Nat Biotechnol
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
-
26
-
-
85091196113
-
Software for the integration of Multi-Omics experiments in Bioconductor
-
Ramos M Schiffer L Re A : Software for the integration of Multi-Omics experiments in Bioconductor. bioRxiv. 2017. 10.1101/144774
-
(2017)
bioRxiv
-
-
Ramos, M.1
Schiffer, L.2
Re, A.3
-
27
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
27043002
-
Bray NL Pimentel H Melsted P : Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525-527. 27043002 10.1038/nbt.3519
-
(2016)
Nat Biotechnol
, vol.34
, Issue.5
, pp. 525-527
-
-
Bray, N.L.1
Pimentel, H.2
Melsted, P.3
-
28
-
-
84969856092
-
Fast and accurate single-cell RNA-Seq analysis by clustering of transcript-compatibility counts
-
27230763, 4881296
-
Ntranos V Kamath GM Zhang JM : Fast and accurate single-cell RNA-Seq analysis by clustering of transcript-compatibility counts. Genome Biol. 2016;17(1):112. 27230763 10.1186/s13059-016-0970-8 4881296
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 112
-
-
Ntranos, V.1
Kamath, G.M.2
Zhang, J.M.3
-
29
-
-
85029212828
-
Splatter: simulation of single-cell RNA sequencing data
-
28899397, 5596896
-
Zappia L Phipson B Oshlack A : Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18(1):174. 28899397 10.1186/s13059-017-1305-0 5596896
-
(2017)
Genome Biol
, vol.18
, Issue.1
, pp. 174
-
-
Zappia, L.1
Phipson, B.2
Oshlack, A.3
-
30
-
-
85042546527
-
Towards unified quality verification of synthetic count data with countsimQC
-
29028961, 5860609
-
Soneson C Robinson MD : Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics. 2018;34(4):691-692. 29028961 10.1093/bioinformatics/btx631 5860609
-
(2018)
Bioinformatics
, vol.34
, Issue.4
, pp. 691-692
-
-
Soneson, C.1
Robinson, M.D.2
-
31
-
-
85019072518
-
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
28088763, 5408845
-
McCarthy DJ Campbell KR Lun AT : Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33(8):1179-1186. 28088763 10.1093/bioinformatics/btw777 5408845
-
(2017)
Bioinformatics
, vol.33
, Issue.8
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.3
-
32
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
27122128, 4848819
-
Lun AT Bach K Marioni JC : Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17(1):75. 27122128 10.1186/s13059-016-0947-7 4848819
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
33
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson K : On lines and planes of closest fit to systems of points in space. Philos Mag. 1901;2:559-572. 10.1080/14786440109462720
-
(1901)
Philos Mag
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
34
-
-
57249084011
-
Visualizing data using t-SNE
-
Reference Source
-
van der Maaten L Hinton G : Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-2605. Reference Source
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2579-2605
-
-
van der Maaten, L.1
Hinton, G.2
-
35
-
-
85029221521
-
Dropout-based feature selection for scRNASeq
-
Andrews TS Hemberg M : Dropout-based feature selection for scRNASeq. bioRxiv. 2018. 10.1101/065094
-
(2018)
bioRxiv
-
-
Andrews, T.S.1
Hemberg, M.2
-
36
-
-
85053184626
-
ascend: R package for analysis of single cell RNA-seq data
-
Senabouth A Lukowski S Alquicira J : ascend: R package for analysis of single cell RNA-seq data. bioRxiv. 2017. 10.1101/207704
-
(2017)
bioRxiv
-
-
Senabouth, A.1
Lukowski, S.2
Alquicira, J.3
-
37
-
-
85016502564
-
CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
-
28351406, 5371246
-
Lin P Troup M Ho JW : CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017;18(1):59. 28351406 10.1186/s13059-017-1188-0 5371246
-
(2017)
Genome Biol
, vol.18
, Issue.1
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.3
-
38
-
-
84932198501
-
Flowsom: Using self-organizing maps for visualization and interpretation of cytometry data
-
25573116
-
Van Gassen S Callebaut B Van Helden MJ : Flowsom: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636-645. 25573116 10.1002/cyto.a.22625
-
(2015)
Cytometry A
, vol.87
, Issue.7
, pp. 636-645
-
-
Van Gassen, S.1
Callebaut, B.2
Van Helden, M.J.3
-
39
-
-
85031017685
-
Reversed graph embedding resolves complex single-cell trajectories
-
28825705, 5764547
-
Qiu X Mao Q Tang Y : Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979-982. 28825705 10.1038/nmeth.4402 5764547
-
(2017)
Nat Methods
, vol.14
, Issue.10
, pp. 979-982
-
-
Qiu, X.1
Mao, Q.2
Tang, Y.3
-
40
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
Ward JH Jr : Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-244. 10.1080/01621459.1963.10500845
-
(1963)
J Am Stat Assoc
, vol.58
, Issue.301
, pp. 236-244
-
-
Ward, J.H.1
-
41
-
-
0001138328
-
Algorithm as-136: A k-means clustering algorithm
-
Hartigan JA Wong MA : Algorithm as-136: A k-means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979;28(1):100-108. 10.2307/2346830
-
(1979)
J R Stat Soc Ser C Appl Stat
, vol.28
, Issue.1
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
42
-
-
84977499231
-
pcaReduce: hierarchical clustering of single cell transcriptional profiles
-
27005807, 4802652
-
Žurauskiene J Yau C : pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics. 2016;17(1):140. 27005807 10.1186/s12859-016-0984-y 4802652
-
(2016)
BMC Bioinformatics
, vol.17
, Issue.1
, pp. 140
-
-
Žurauskiene, J.1
Yau, C.2
-
43
-
-
84990895380
-
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
-
27345837, 4985539
-
Grün D Muraro MJ Boisset JC : De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell. 2016;19(2):266-277. 27345837 10.1016/j.stem.2016.05.010 4985539
-
(2016)
Cell Stem Cell
, vol.19
, Issue.2
, pp. 266-277
-
-
Grün, D.1
Muraro, M.J.2
Boisset, J.C.3
-
44
-
-
84998524866
-
Accelerating t-SNE using tree-based algorithms
-
Reference Source
-
Van Der Maaten L : Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014;15:1-21. Reference Source
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1-21
-
-
Van Der Maaten, L.1
-
45
-
-
85081030260
-
SAFE-clustering: Single-cell aggregated (from ensemble) clustering for single-cell RNA-seq data
-
Yang Y Huh R Culpepper HW : SAFE-clustering: Single-cell aggregated (from ensemble) clustering for single-cell RNA-seq data. bioRxiv. 2017. 10.1101/215723
-
(2017)
bioRxiv
-
-
Yang, Y.1
Huh, R.2
Culpepper, H.W.3
-
46
-
-
85016121177
-
SC3: consensus clustering of single-cell RNA-seq data
-
28346451, 5410170
-
Kiselev VY Kirschner K Schaub MT : SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017;14(5):483-486. 28346451 10.1038/nmeth.4236 5410170
-
(2017)
Nat Methods
, vol.14
, Issue.5
, pp. 483-486
-
-
Kiselev, V.Y.1
Kirschner, K.2
Schaub, M.T.3
-
47
-
-
34249753618
-
Support-vector networks
-
Cortes C Vapnik V : Support-vector networks. Mach Learn. 1995;20(3):273-297. 10.1023/A:1022627411411
-
(1995)
Mach Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
48
-
-
84982806105
-
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
-
27179027, 4994863
-
Ji Z Ji H : TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016;44(13):e117. 27179027 10.1093/nar/gkw430 4994863
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.13
-
-
Ji, Z.1
Ji, H.2
-
49
-
-
0000008146
-
Comparing partitions
-
Hubert L Arabie P : Comparing partitions. J Classif. 1985;2(1):193-218. 10.1007/BF01908075
-
(1985)
J Classif
, vol.2
, Issue.1
, pp. 193-218
-
-
Hubert, L.1
Arabie, P.2
-
50
-
-
84940644968
-
A mathematical theory of communication
-
Shannon CE : A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379-423. 10.1002/j.1538-7305.1948.tb01338.x
-
(1948)
Bell Syst Tech J
, vol.27
, Issue.3
, pp. 379-423
-
-
Shannon, C.E.1
-
51
-
-
27544491443
-
A CLUE for CLUster Ensembles
-
Hornik K : A CLUE for CLUster Ensembles. J Stat Softw. 2005;14(12):1-25. 10.18637/jss.v014.i12
-
(2005)
J Stat Softw
, vol.14
, Issue.12
, pp. 1-25
-
-
Hornik, K.1
-
52
-
-
84943709252
-
Use of ranks in one-criterion variance analysis
-
Kruskal WH Wallis WA : Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583-621. 10.2307/2280779
-
(1952)
J Am Stat Assoc
, vol.47
, Issue.260
, pp. 583-621
-
-
Kruskal, W.H.1
Wallis, W.A.2
-
54
-
-
85044318374
-
BEARscc determines robustness of single-cell clusters using simulated technical replicates
-
29567991, 5864873
-
Severson DT Owen RP White MJ : BEARscc determines robustness of single-cell clusters using simulated technical replicates. Nat Commun. 2018;9(1): 1187. 29567991 10.1038/s41467-018-03608-y 5864873
-
(2018)
Nat Commun
, vol.9
, Issue.1
-
-
Severson, D.T.1
Owen, R.P.2
White, M.J.3
|