메뉴 건너뛰기




Volumn 7, Issue , 2018, Pages

A systematic performance evaluation of clustering methods for single-cell RNA-seq data

Author keywords

Benchmarking; Clustering; Clustering methods; RNA seq; Single cell RNA seq

Indexed keywords

ARTICLE; BENCHMARKING; CLUSTERING ALGORITHM; FEATURE SELECTION; INTERMETHOD COMPARISON; SIMULATION; SINGLE CELL RNA SEQ;

EID: 85089317715     PISSN: 20461402     EISSN: 1759796X     Source Type: Journal    
DOI: 10.12688/f1000research.15666.2     Document Type: Article
Times cited : (194)

References (54)
  • 1
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-transcriptome analysis of a single cell
    • 19349980
    • Tang F Barbacioru C Wang Y : mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377-382. 19349980 10.1038/nmeth.1315
    • (2009) Nat Methods , vol.6 , Issue.5 , pp. 377-382
    • Tang, F.1    Barbacioru, C.2    Wang, Y.3
  • 2
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • 24056875
    • Picelli S Björklund ÅK Faridani OR : Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096-1098. 24056875 10.1038/nmeth.2639
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1096-1098
    • Picelli, S.1    Björklund, K.2    Faridani, O.R.3
  • 3
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • 26000487, 4441768
    • Klein AM Mazutis L Akartuna I : Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. 26000487 10.1016/j.cell.2015.04.044 4441768
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 4
    • 84929684999 scopus 로고    scopus 로고
    • Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
    • 26000488, 4481139
    • Macosko EZ Basu A Satija R : Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202-1214. 26000488 10.1016/j.cell.2015.05.002 4481139
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 5
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • 28091601, 5241818
    • Zheng GX Terry JM Belgrader P : Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8: 14049. 28091601 10.1038/ncomms14049 5241818
    • (2017) Nat Commun , vol.8
    • Zheng, G.X.1    Terry, J.M.2    Belgrader, P.3
  • 6
    • 85014524493 scopus 로고    scopus 로고
    • Power analysis of single-cell RNA-sequencing experiments
    • 28263961, 5376499
    • Svensson V Natarajan KN Ly LH : Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017;14(4):381-387. 28263961 10.1038/nmeth.4220 5376499
    • (2017) Nat Methods , vol.14 , Issue.4 , pp. 381-387
    • Svensson, V.1    Natarajan, K.N.2    Ly, L.H.3
  • 7
    • 85044252958 scopus 로고    scopus 로고
    • Exponential scaling of single-cell RNA-seq in the past decade
    • 29494575
    • Svensson V Vento-Tormo R Teichmann SA : Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599-604. 29494575 10.1038/nprot.2017.149
    • (2018) Nat Protoc , vol.13 , Issue.4 , pp. 599-604
    • Svensson, V.1    Vento-Tormo, R.2    Teichmann, S.A.3
  • 8
    • 85050812427 scopus 로고    scopus 로고
    • Quantitative single-cell transcriptomics
    • 29579145, 6063296
    • Ziegenhain C Vieth B Parekh S : Quantitative single-cell transcriptomics. Brief Funct Genomics. 2018;17(4):220-232. 29579145 10.1093/bfgp/ely009 6063296
    • (2018) Brief Funct Genomics , vol.17 , Issue.4 , pp. 220-232
    • Ziegenhain, C.1    Vieth, B.2    Parekh, S.3
  • 9
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • 24747814
    • Grün D Kester L van Oudenaarden A : Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11(6):637-640. 24747814 10.1038/nmeth.2930
    • (2014) Nat Methods , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    van Oudenaarden, A.3
  • 10
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • 27052890, 4823857
    • Bacher R Kendziorski C : Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17(1):63. 27052890 10.1186/s13059-016-0927-y 4823857
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 11
    • 85008384488 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • 28045081, 5206706
    • Tung PY Blischak JD Hsiao CJ : Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017;7: 39921. 28045081 10.1038/srep39921 5206706
    • (2017) Sci Rep , vol.7
    • Tung, P.Y.1    Blischak, J.D.2    Hsiao, C.J.3
  • 12
    • 85054726691 scopus 로고    scopus 로고
    • Missing data and technical variability in single-cell RNA-sequencing experiments
    • 29121214
    • Hicks SC Townes FW Teng M : Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2017;kxx053. 29121214 10.1093/biostatistics/kxx053
    • (2017) Biostatistics
    • Hicks, S.C.1    Townes, F.W.2    Teng, M.3
  • 13
    • 85049372156 scopus 로고    scopus 로고
    • Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database
    • 29939984 , 6034903
    • Zappia L Phipson B Oshlack A : Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput Biol. 2018;14(6):e1006245. 29939984 10.1371/journal.pcbi.1006245 6034903
    • (2018) PLoS Comput Biol , vol.14 , Issue.6
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 14
    • 84874666550 scopus 로고    scopus 로고
    • Critical assessment of automated flow cytometry data analysis techniques
    • 23396282, 3906045
    • Aghaeepour N Finak G , FlowCAP Consortium, et al.: Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228-238. 23396282 10.1038/nmeth.2365 3906045
    • (2013) Nat Methods , vol.10 , Issue.3 , pp. 228-238
    • Aghaeepour, N.1    Finak, G.2
  • 15
    • 85006826083 scopus 로고    scopus 로고
    • Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data
    • 27992111
    • Weber LM Robinson MD : Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A. 2016;89(12):1084-1096. 27992111 10.1002/cyto.a.23030
    • (2016) Cytometry A , vol.89 , Issue.12 , pp. 1084-1096
    • Weber, L.M.1    Robinson, M.D.2
  • 16
    • 85054667891 scopus 로고    scopus 로고
    • Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data
    • 29236955, 6063268
    • Menon V : Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data. Brief Funct Genomics. 2018;17(4):240-245. 29236955 10.1093/bfgp/elx044 6063268
    • (2018) Brief Funct Genomics , vol.17 , Issue.4 , pp. 240-245
    • Menon, V.1
  • 17
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • 25867923, 4430369
    • Satija R Farrell JA Gennert D : Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495-502. 25867923 10.1038/nbt.3192 4430369
    • (2015) Nat Biotechnol , vol.33 , Issue.5 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3
  • 18
    • 60549111634 scopus 로고    scopus 로고
    • WGCNA: an R package for weighted correlation network analysis
    • 19114008, 2631488
    • Langfelder P Horvath S : WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. 19114008 10.1186/1471-2105-9-559 2631488
    • (2008) BMC Bioinformatics , vol.9 , pp. 559
    • Langfelder, P.1    Horvath, S.2
  • 19
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • 25700174
    • Zeisel A Muñoz-Manchado AB Codeluppi S : Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347(6226):1138-1142. 25700174 10.1126/science.aaa1934
    • (2015) Science , vol.347 , Issue.6226 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3
  • 20
    • 85059492831 scopus 로고    scopus 로고
    • Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data [version 1; referees: 1 approved, 2 approved with reservations]
    • Freytag S Tian L Lönnstedt I : Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data [version 1; referees: 1 approved, 2 approved with reservations]. F1000Res. 2018;7:1297. 10.12688/f1000research.15809.1
    • (2018) F1000Res , vol.7 , pp. 1297
    • Freytag, S.1    Tian, L.2    Lönnstedt, I.3
  • 21
    • 85025649872 scopus 로고    scopus 로고
    • Identifying cell populations with scRNASeq
    • 28712804
    • Andrews TS Hemberg M : Identifying cell populations with scRNASeq. Mol Aspects Med. 2018;59:114-122. 28712804 10.1016/j.mam.2017.07.002
    • (2018) Mol Aspects Med , vol.59 , pp. 114-122
    • Andrews, T.S.1    Hemberg, M.2
  • 22
    • 85044944299 scopus 로고    scopus 로고
    • Bias, robustness and scalability in single-cell differential expression analysis
    • 29481549
    • Soneson C Robinson MD : Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018;15(4):255-261. 29481549 10.1038/nmeth.4612
    • (2018) Nat Methods , vol.15 , Issue.4 , pp. 255-261
    • Soneson, C.1    Robinson, M.D.2
  • 23
    • 84923188586 scopus 로고    scopus 로고
    • Deconstructing transcriptional heterogeneity in pluripotent stem cells
    • 25471879, 4256722
    • Kumar RM Cahan P Shalek AK : Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature. 2014;516(7529):56-61. 25471879 10.1038/nature13920 4256722
    • (2014) Nature , vol.516 , Issue.7529 , pp. 56-61
    • Kumar, R.M.1    Cahan, P.2    Shalek, A.K.3
  • 24
    • 85007005549 scopus 로고    scopus 로고
    • An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development
    • 27996962, 5170597
    • Koh PW Sinha R Barkal AA : An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development. Sci Data. 2016;3: 160109. 27996962 10.1038/sdata.2016.109 5170597
    • (2016) Sci Data , vol.3
    • Koh, P.W.1    Sinha, R.2    Barkal, A.A.3
  • 25
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • 24658644, 4122333
    • Trapnell C Cacchiarelli D Grimsby J : The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381-386. 24658644 10.1038/nbt.2859 4122333
    • (2014) Nat Biotechnol , vol.32 , Issue.4 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3
  • 26
    • 85091196113 scopus 로고    scopus 로고
    • Software for the integration of Multi-Omics experiments in Bioconductor
    • Ramos M Schiffer L Re A : Software for the integration of Multi-Omics experiments in Bioconductor. bioRxiv. 2017. 10.1101/144774
    • (2017) bioRxiv
    • Ramos, M.1    Schiffer, L.2    Re, A.3
  • 27
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • 27043002
    • Bray NL Pimentel H Melsted P : Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525-527. 27043002 10.1038/nbt.3519
    • (2016) Nat Biotechnol , vol.34 , Issue.5 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 28
    • 84969856092 scopus 로고    scopus 로고
    • Fast and accurate single-cell RNA-Seq analysis by clustering of transcript-compatibility counts
    • 27230763, 4881296
    • Ntranos V Kamath GM Zhang JM : Fast and accurate single-cell RNA-Seq analysis by clustering of transcript-compatibility counts. Genome Biol. 2016;17(1):112. 27230763 10.1186/s13059-016-0970-8 4881296
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 112
    • Ntranos, V.1    Kamath, G.M.2    Zhang, J.M.3
  • 29
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: simulation of single-cell RNA sequencing data
    • 28899397, 5596896
    • Zappia L Phipson B Oshlack A : Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18(1):174. 28899397 10.1186/s13059-017-1305-0 5596896
    • (2017) Genome Biol , vol.18 , Issue.1 , pp. 174
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3
  • 30
    • 85042546527 scopus 로고    scopus 로고
    • Towards unified quality verification of synthetic count data with countsimQC
    • 29028961, 5860609
    • Soneson C Robinson MD : Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics. 2018;34(4):691-692. 29028961 10.1093/bioinformatics/btx631 5860609
    • (2018) Bioinformatics , vol.34 , Issue.4 , pp. 691-692
    • Soneson, C.1    Robinson, M.D.2
  • 31
    • 85019072518 scopus 로고    scopus 로고
    • Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • 28088763, 5408845
    • McCarthy DJ Campbell KR Lun AT : Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33(8):1179-1186. 28088763 10.1093/bioinformatics/btw777 5408845
    • (2017) Bioinformatics , vol.33 , Issue.8 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.3
  • 32
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • 27122128, 4848819
    • Lun AT Bach K Marioni JC : Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17(1):75. 27122128 10.1186/s13059-016-0947-7 4848819
    • (2016) Genome Biol , vol.17 , Issue.1 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 33
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K : On lines and planes of closest fit to systems of points in space. Philos Mag. 1901;2:559-572. 10.1080/14786440109462720
    • (1901) Philos Mag , vol.2 , pp. 559-572
    • Pearson, K.1
  • 34
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Reference Source
    • van der Maaten L Hinton G : Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-2605. Reference Source
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • van der Maaten, L.1    Hinton, G.2
  • 35
    • 85029221521 scopus 로고    scopus 로고
    • Dropout-based feature selection for scRNASeq
    • Andrews TS Hemberg M : Dropout-based feature selection for scRNASeq. bioRxiv. 2018. 10.1101/065094
    • (2018) bioRxiv
    • Andrews, T.S.1    Hemberg, M.2
  • 36
    • 85053184626 scopus 로고    scopus 로고
    • ascend: R package for analysis of single cell RNA-seq data
    • Senabouth A Lukowski S Alquicira J : ascend: R package for analysis of single cell RNA-seq data. bioRxiv. 2017. 10.1101/207704
    • (2017) bioRxiv
    • Senabouth, A.1    Lukowski, S.2    Alquicira, J.3
  • 37
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • 28351406, 5371246
    • Lin P Troup M Ho JW : CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017;18(1):59. 28351406 10.1186/s13059-017-1188-0 5371246
    • (2017) Genome Biol , vol.18 , Issue.1 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.3
  • 38
    • 84932198501 scopus 로고    scopus 로고
    • Flowsom: Using self-organizing maps for visualization and interpretation of cytometry data
    • 25573116
    • Van Gassen S Callebaut B Van Helden MJ : Flowsom: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636-645. 25573116 10.1002/cyto.a.22625
    • (2015) Cytometry A , vol.87 , Issue.7 , pp. 636-645
    • Van Gassen, S.1    Callebaut, B.2    Van Helden, M.J.3
  • 39
    • 85031017685 scopus 로고    scopus 로고
    • Reversed graph embedding resolves complex single-cell trajectories
    • 28825705, 5764547
    • Qiu X Mao Q Tang Y : Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017;14(10):979-982. 28825705 10.1038/nmeth.4402 5764547
    • (2017) Nat Methods , vol.14 , Issue.10 , pp. 979-982
    • Qiu, X.1    Mao, Q.2    Tang, Y.3
  • 40
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward JH Jr : Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-244. 10.1080/01621459.1963.10500845
    • (1963) J Am Stat Assoc , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 41
    • 0001138328 scopus 로고
    • Algorithm as-136: A k-means clustering algorithm
    • Hartigan JA Wong MA : Algorithm as-136: A k-means clustering algorithm. J R Stat Soc Ser C Appl Stat. 1979;28(1):100-108. 10.2307/2346830
    • (1979) J R Stat Soc Ser C Appl Stat , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 42
    • 84977499231 scopus 로고    scopus 로고
    • pcaReduce: hierarchical clustering of single cell transcriptional profiles
    • 27005807, 4802652
    • Žurauskiene J Yau C : pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinformatics. 2016;17(1):140. 27005807 10.1186/s12859-016-0984-y 4802652
    • (2016) BMC Bioinformatics , vol.17 , Issue.1 , pp. 140
    • Žurauskiene, J.1    Yau, C.2
  • 43
    • 84990895380 scopus 로고    scopus 로고
    • De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data
    • 27345837, 4985539
    • Grün D Muraro MJ Boisset JC : De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data. Cell Stem Cell. 2016;19(2):266-277. 27345837 10.1016/j.stem.2016.05.010 4985539
    • (2016) Cell Stem Cell , vol.19 , Issue.2 , pp. 266-277
    • Grün, D.1    Muraro, M.J.2    Boisset, J.C.3
  • 44
    • 84998524866 scopus 로고    scopus 로고
    • Accelerating t-SNE using tree-based algorithms
    • Reference Source
    • Van Der Maaten L : Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014;15:1-21. Reference Source
    • (2014) J Mach Learn Res , vol.15 , pp. 1-21
    • Van Der Maaten, L.1
  • 45
    • 85081030260 scopus 로고    scopus 로고
    • SAFE-clustering: Single-cell aggregated (from ensemble) clustering for single-cell RNA-seq data
    • Yang Y Huh R Culpepper HW : SAFE-clustering: Single-cell aggregated (from ensemble) clustering for single-cell RNA-seq data. bioRxiv. 2017. 10.1101/215723
    • (2017) bioRxiv
    • Yang, Y.1    Huh, R.2    Culpepper, H.W.3
  • 46
    • 85016121177 scopus 로고    scopus 로고
    • SC3: consensus clustering of single-cell RNA-seq data
    • 28346451, 5410170
    • Kiselev VY Kirschner K Schaub MT : SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017;14(5):483-486. 28346451 10.1038/nmeth.4236 5410170
    • (2017) Nat Methods , vol.14 , Issue.5 , pp. 483-486
    • Kiselev, V.Y.1    Kirschner, K.2    Schaub, M.T.3
  • 47
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C Vapnik V : Support-vector networks. Mach Learn. 1995;20(3):273-297. 10.1023/A:1022627411411
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 48
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • 27179027, 4994863
    • Ji Z Ji H : TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016;44(13):e117. 27179027 10.1093/nar/gkw430 4994863
    • (2016) Nucleic Acids Res , vol.44 , Issue.13
    • Ji, Z.1    Ji, H.2
  • 49
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L Arabie P : Comparing partitions. J Classif. 1985;2(1):193-218. 10.1007/BF01908075
    • (1985) J Classif , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 50
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Shannon CE : A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379-423. 10.1002/j.1538-7305.1948.tb01338.x
    • (1948) Bell Syst Tech J , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.E.1
  • 51
    • 27544491443 scopus 로고    scopus 로고
    • A CLUE for CLUster Ensembles
    • Hornik K : A CLUE for CLUster Ensembles. J Stat Softw. 2005;14(12):1-25. 10.18637/jss.v014.i12
    • (2005) J Stat Softw , vol.14 , Issue.12 , pp. 1-25
    • Hornik, K.1
  • 52
    • 84943709252 scopus 로고
    • Use of ranks in one-criterion variance analysis
    • Kruskal WH Wallis WA : Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583-621. 10.2307/2280779
    • (1952) J Am Stat Assoc , vol.47 , Issue.260 , pp. 583-621
    • Kruskal, W.H.1    Wallis, W.A.2
  • 54
    • 85044318374 scopus 로고    scopus 로고
    • BEARscc determines robustness of single-cell clusters using simulated technical replicates
    • 29567991, 5864873
    • Severson DT Owen RP White MJ : BEARscc determines robustness of single-cell clusters using simulated technical replicates. Nat Commun. 2018;9(1): 1187. 29567991 10.1038/s41467-018-03608-y 5864873
    • (2018) Nat Commun , vol.9 , Issue.1
    • Severson, D.T.1    Owen, R.P.2    White, M.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.