-
1
-
-
67349146589
-
mRNA-Seq whole-Transcriptome analysis of a single cell
-
Tang, F. et al. mRNA-Seq whole-Transcriptome analysis of a single cell. Nat. Methods 6, 377-382 (2009).
-
(2009)
Nat. Methods
, vol.6
, pp. 377-382
-
-
Tang, F.1
-
2
-
-
84887101406
-
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
-
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096-1098 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1096-1098
-
-
Picelli, S.1
-
3
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
-
4
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
5
-
-
85009446777
-
Massively parallel digital transcriptional profiling of single cells
-
Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
-
(2017)
Nat. Commun
, vol.8
, pp. 14049
-
-
Zheng, G.X.Y.1
-
6
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
7
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
8
-
-
84896735766
-
Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
9
-
-
85042780617
-
Differential expression analyses for single-cell RNA-Seq: Old questions on new data
-
Miao, Z. & Zhang, X. Differential expression analyses for single-cell RNA-Seq: old questions on new data. Quant. Biol. 4, 243-260 (2016).
-
(2016)
Quant. Biol
, vol.4
, pp. 243-260
-
-
Miao, Z.1
Zhang, X.2
-
10
-
-
85037359221
-
Comparison of methods to detect differentially expressed genes between single-cell populations
-
Jaakkola, M.K., Seyednasrollah, F., Mehmood, A. & Elo, L.L. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief. Bioinform. 18, 735-743 (2017).
-
(2017)
Brief. Bioinform
, vol.18
, pp. 735-743
-
-
Jaakkola, M.K.1
Seyednasrollah, F.2
Mehmood, A.3
Elo, L.L.4
-
11
-
-
85029226561
-
Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
-
Lun, A.T.L. & Marioni, J.C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451-464 (2017).
-
(2017)
Biostatistics
, vol.18
, pp. 451-464
-
-
Lun, A.T.L.1
Marioni, J.C.2
-
12
-
-
84962861088
-
Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
-
Vallejos, C.A., Richardson, S. & Marioni, J.C. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 70
-
-
Vallejos, C.A.1
Richardson, S.2
Marioni, J.C.3
-
13
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
Korthauer, K.D. et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 17, 222 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 222
-
-
Korthauer, K.D.1
-
14
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502 (2015).
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
15
-
-
84961614091
-
It?s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edger. in
-
Springer New York
-
Lun, A.T.L., Chen, Y. & Smyth, G.K. It?s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edger. in Statistical Genomics (eds. Mathé, E. & Davis, S.) 391-416 (Springer New York, 2016).
-
(2016)
Statistical Genomics (Eds. Mathé, E. & Davis, S.)
, pp. 391-416
-
-
Lun, A.T.L.1
Chen, Y.2
Smyth, G.K.3
-
16
-
-
84888865593
-
Differential abundance analysis for microbial marker-gene surveys
-
Paulson, J.N., Stine, O.C., Bravo, H.C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200-1202 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1200-1202
-
-
Paulson, J.N.1
Stine, O.C.2
Bravo, H.C.3
Pop, M.4
-
17
-
-
77953095629
-
Independent filtering increases detection power for high-Throughput experiments
-
Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-Throughput experiments. Proc. Natl. Acad. Sci. USA 107, 9546-9551 (2010).
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 9546-9551
-
-
Bourgon, R.1
Gentleman, R.2
Huber, W.3
-
18
-
-
84973098846
-
Data-driven hypothesis weighting increases detection power in genome-scale multiple testing
-
Ignatiadis, N., Klaus, B., Zaugg, J.B. & Huber, W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat. Methods 13, 577-580 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 577-580
-
-
Ignatiadis, N.1
Klaus, B.2
Zaugg, J.B.3
Huber, W.4
-
19
-
-
84885645853
-
Transcriptome and genome sequencing uncovers functional variation in humans
-
Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511 (2013).
-
(2013)
Nature
, vol.501
, pp. 506-511
-
-
Lappalainen, T.1
-
20
-
-
49249093918
-
Reproducibilityoptimized test statistic for ranking genes in microarray studies
-
Elo, L.L., Filén, S., Lahesmaa, R. & Aittokallio, T. Reproducibilityoptimized test statistic for ranking genes in microarray studies. IEEE/ACM Trans. Comput. Biol. Bioinform. 5, 423-431 (2008).
-
(2008)
IEEE/ACM Trans. Comput. Biol. Bioinform
, vol.5
, pp. 423-431
-
-
Elo, L.L.1
Filén, S.2
Lahesmaa, R.3
Aittokallio, T.4
-
21
-
-
84959452344
-
ROTS: Reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
-
Seyednasrollah, F., Rantanen, K., Jaakkola, P. & Elo, L.L. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids Res. 44, e1 (2016).
-
(2016)
Nucleic Acids Res
, vol.44
, pp. e1
-
-
Seyednasrollah, F.1
Rantanen, K.2
Jaakkola, P.3
Elo, L.L.4
-
22
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
23
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
-
24
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
-
(2014)
Nat. Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
25
-
-
85042592208
-
-
Sengupta, D., Rayan, N.A., Lim, M., Lim, B. & Prabhakar, S. Fast, scalable and accurate differential expression analysis for single cells. Preprint available at https://www.biorxiv.org/content/early/2016/04/22/049734 (2016).
-
(2016)
Fast, Scalable and Accurate Differential Expression Analysis for Single Cells. Preprint
-
-
Sengupta, D.1
Rayan, N.A.2
Lim, M.3
Lim, B.4
Prabhakar, S.5
-
26
-
-
84886557480
-
Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
-
Li, J. & Tibshirani, R. Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res. 22, 519-536 (2013).
-
(2013)
Stat. Methods Med. Res
, vol.22
, pp. 519-536
-
-
Li, J.1
Tibshirani, R.2
-
27
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
-
28
-
-
84962119091
-
Discrete distributional differential expression (D3E)-A tool for gene expression analysis of single-cell RNA-seq data
-
Delmans, M. & Hemberg, M. Discrete distributional differential expression (D3E)-A tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinformatics 17, 110 (2016).
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 110
-
-
Delmans, M.1
Hemberg, M.2
-
29
-
-
4544341015
-
Linear models and empirical bayes methods for assessing differential expression in microarray experiments
-
Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, e3 (2004).
-
(2004)
Stat. Appl. Genet. Mol. Biol
, vol.3
, pp. e3
-
-
Smyth, G.K.1
-
31
-
-
84984845042
-
Beta-Poisson model for single-cell RNA-seq data analyses
-
Vu, T.N. et al. Beta-Poisson model for single-cell RNA-seq data analyses. Bioinformatics 32, 2128-2135 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. 2128-2135
-
-
Vu, T.N.1
-
32
-
-
84961289551
-
Orchestrating high-Throughput genomic analysis with Bioconductor
-
Huber, W. et al. Orchestrating high-Throughput genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 115-121
-
-
Huber, W.1
-
33
-
-
85037705797
-
The Ensembl gene annotation system
-
Aken, B.L. et al. The Ensembl gene annotation system. Database 2016, baw093 (2016).
-
(2016)
Database
, vol.2016
, pp. baw093
-
-
Aken, B.L.1
-
34
-
-
85044933596
-
-
Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Preprint available at https://www.biorxiv.org/content/early/2017/06/26/117150 (2017).
-
(2017)
PowsimR: Power Analysis for Bulk and Single Cell RNA-seq Experiments. Preprint
-
-
Vieth, B.1
Ziegenhain, C.2
Parekh, S.3
Enard, W.4
Hellmann, I.5
-
35
-
-
85042546527
-
Towards unified quality verification of synthetic count data with countsimQC
-
Soneson, C. & Robinson, M.D. Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics https://dx.doi. org/10.1093/bioinformatics/btx631 (2017).
-
(2017)
Bioinformatics
-
-
Soneson, C.1
Robinson, M.D.2
-
36
-
-
85010908291
-
Differential analyses for RNAseq: Transcript-level estimates improve gene-level inferences
-
Soneson, C., Love, M.I. & Robinson, M.D. Differential analyses for RNAseq: Transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).
-
(2015)
F1000Res
, vol.4
, pp. 1521
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
37
-
-
84921466417
-
Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
-
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145-153 (2015).
-
(2015)
Nat. Neurosci
, vol.18
, pp. 145-153
-
-
Usoskin, D.1
-
38
-
-
84858041341
-
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
-
McCarthy, D.J., Chen, Y. & Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297 (2012).
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
39
-
-
84930003332
-
Differential expression analysis of complex RNA-seq experiments using EdgeR
-
Springer International Publishing(eds. Datta, S. & Nettleton, D
-
Chen, Y., Lun, A.T.L. & Smyth, G.K. Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR. in Statistical Analysis of Next Generation Sequencing Data (eds. Datta, S. & Nettleton, D.) 51-74 (Springer International Publishing, 2014).
-
(2014)
Statistical Analysis of Next Generation Sequencing Data
, pp. 51-74
-
-
Chen, Y.1
Lun, A.T.L.2
Smyth, G.K.3
-
40
-
-
84903146127
-
Robustly detecting differential expression in RNA sequencing data using observation weights
-
Zhou, X., Lindsay, H. & Robinson, M.D. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 42, e91 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e91
-
-
Zhou, X.1
Lindsay, H.2
Robinson, M.D.3
-
41
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
42
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun, A.T.L., Bach, K. & Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, A.T.L.1
Bach, K.2
Marioni, J.C.3
-
43
-
-
0001884644
-
Individual comparisons by ranking methods
-
Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1, 80-83 (1945).
-
(1945)
Biom. Bull
, vol.1
, pp. 80-83
-
-
Wilcoxon, F.1
-
44
-
-
84874321000
-
Data exploration, quality control and testing in singlecell qPCR-based gene expression experiments
-
McDavid, A. et al. Data exploration, quality control and testing in singlecell qPCR-based gene expression experiments. Bioinformatics 29, 461-467 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 461-467
-
-
McDavid, A.1
-
45
-
-
84870267223
-
The generalisation of student?s problems when several different population variances are involved
-
Welch, B.L. The generalisation of student?s problems when several different population variances are involved. Biometrika 34, 28-35 (1947).
-
(1947)
Biometrika
, vol.34
, pp. 28-35
-
-
Welch, B.L.1
-
46
-
-
18244384210
-
Multiple-laboratory comparison of microarray platforms
-
Irizarry, R.A. et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2, 345-350 (2005).
-
(2005)
Nat. Methods
, vol.2
, pp. 345-350
-
-
Irizarry, R.A.1
-
48
-
-
85014549629
-
Salmon provides fast and bias-Aware quantification of transcript expression
-
Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and bias-Aware quantification of transcript expression. Nat. Methods 14, 417-419 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 417-419
-
-
Patro, R.1
Duggal, G.2
Love, M.I.3
Irizarry, R.A.4
Kingsford, C.5
-
49
-
-
84988570649
-
MultiQC: Summarize analysis results for multiple tools and samples in a single report
-
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048 (2016).
-
(2016)
Bioinformatics
, vol.32
, pp. 3047-3048
-
-
Ewels, P.1
Magnusson, M.2
Lundin, S.3
Käller, M.4
-
51
-
-
84978699234
-
ICOBRA: Open, reproducible, standardized and live method benchmarking
-
Soneson, C. & Robinson, M.D. iCOBRA: open, reproducible, standardized and live method benchmarking. Nat. Methods 13, 283 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 283
-
-
Soneson, C.1
Robinson, M.D.2
|