메뉴 건너뛰기




Volumn 15, Issue 4, 2018, Pages 255-261

Bias, robustness and scalability in single-cell differential expression analysis

Author keywords

[No Author keywords available]

Indexed keywords

SMALL CYTOPLASMIC RNA; RNA;

EID: 85044944299     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/nmeth.4612     Document Type: Article
Times cited : (478)

References (52)
  • 1
    • 67349146589 scopus 로고    scopus 로고
    • mRNA-Seq whole-Transcriptome analysis of a single cell
    • Tang, F. et al. mRNA-Seq whole-Transcriptome analysis of a single cell. Nat. Methods 6, 377-382 (2009).
    • (2009) Nat. Methods , vol.6 , pp. 377-382
    • Tang, F.1
  • 2
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096-1098 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1096-1098
    • Picelli, S.1
  • 3
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 (2015).
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1
  • 4
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 5
    • 85009446777 scopus 로고    scopus 로고
    • Massively parallel digital transcriptional profiling of single cells
    • Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).
    • (2017) Nat. Commun , vol.8 , pp. 14049
    • Zheng, G.X.Y.1
  • 6
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    • (2014) Genome Biol , vol.15 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 7
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 8
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 9
    • 85042780617 scopus 로고    scopus 로고
    • Differential expression analyses for single-cell RNA-Seq: Old questions on new data
    • Miao, Z. & Zhang, X. Differential expression analyses for single-cell RNA-Seq: old questions on new data. Quant. Biol. 4, 243-260 (2016).
    • (2016) Quant. Biol , vol.4 , pp. 243-260
    • Miao, Z.1    Zhang, X.2
  • 10
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola, M.K., Seyednasrollah, F., Mehmood, A. & Elo, L.L. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief. Bioinform. 18, 735-743 (2017).
    • (2017) Brief. Bioinform , vol.18 , pp. 735-743
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 11
    • 85029226561 scopus 로고    scopus 로고
    • Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
    • Lun, A.T.L. & Marioni, J.C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451-464 (2017).
    • (2017) Biostatistics , vol.18 , pp. 451-464
    • Lun, A.T.L.1    Marioni, J.C.2
  • 12
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
    • Vallejos, C.A., Richardson, S. & Marioni, J.C. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 17, 70 (2016).
    • (2016) Genome Biol , vol.17 , pp. 70
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 13
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • Korthauer, K.D. et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 17, 222 (2016).
    • (2016) Genome Biol , vol.17 , pp. 222
    • Korthauer, K.D.1
  • 15
    • 84961614091 scopus 로고    scopus 로고
    • It?s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edger. in
    • Springer New York
    • Lun, A.T.L., Chen, Y. & Smyth, G.K. It?s DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edger. in Statistical Genomics (eds. Mathé, E. & Davis, S.) 391-416 (Springer New York, 2016).
    • (2016) Statistical Genomics (Eds. Mathé, E. & Davis, S.) , pp. 391-416
    • Lun, A.T.L.1    Chen, Y.2    Smyth, G.K.3
  • 16
    • 84888865593 scopus 로고    scopus 로고
    • Differential abundance analysis for microbial marker-gene surveys
    • Paulson, J.N., Stine, O.C., Bravo, H.C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200-1202 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1200-1202
    • Paulson, J.N.1    Stine, O.C.2    Bravo, H.C.3    Pop, M.4
  • 17
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-Throughput experiments
    • Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-Throughput experiments. Proc. Natl. Acad. Sci. USA 107, 9546-9551 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 18
    • 84973098846 scopus 로고    scopus 로고
    • Data-driven hypothesis weighting increases detection power in genome-scale multiple testing
    • Ignatiadis, N., Klaus, B., Zaugg, J.B. & Huber, W. Data-driven hypothesis weighting increases detection power in genome-scale multiple testing. Nat. Methods 13, 577-580 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 577-580
    • Ignatiadis, N.1    Klaus, B.2    Zaugg, J.B.3    Huber, W.4
  • 19
    • 84885645853 scopus 로고    scopus 로고
    • Transcriptome and genome sequencing uncovers functional variation in humans
    • Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511 (2013).
    • (2013) Nature , vol.501 , pp. 506-511
    • Lappalainen, T.1
  • 21
    • 84959452344 scopus 로고    scopus 로고
    • ROTS: Reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
    • Seyednasrollah, F., Rantanen, K., Jaakkola, P. & Elo, L.L. ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer. Nucleic Acids Res. 44, e1 (2016).
    • (2016) Nucleic Acids Res , vol.44 , pp. e1
    • Seyednasrollah, F.1    Rantanen, K.2    Jaakkola, P.3    Elo, L.L.4
  • 22
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 23
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309-315 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 309-315
    • Qiu, X.1
  • 24
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386 (2014).
    • (2014) Nat. Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 26
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    • Li, J. & Tibshirani, R. Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res. 22, 519-536 (2013).
    • (2013) Stat. Methods Med. Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 27
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1
  • 28
    • 84962119091 scopus 로고    scopus 로고
    • Discrete distributional differential expression (D3E)-A tool for gene expression analysis of single-cell RNA-seq data
    • Delmans, M. & Hemberg, M. Discrete distributional differential expression (D3E)-A tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinformatics 17, 110 (2016).
    • (2016) BMC Bioinformatics , vol.17 , pp. 110
    • Delmans, M.1    Hemberg, M.2
  • 29
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, e3 (2004).
    • (2004) Stat. Appl. Genet. Mol. Biol , vol.3 , pp. e3
    • Smyth, G.K.1
  • 31
    • 84984845042 scopus 로고    scopus 로고
    • Beta-Poisson model for single-cell RNA-seq data analyses
    • Vu, T.N. et al. Beta-Poisson model for single-cell RNA-seq data analyses. Bioinformatics 32, 2128-2135 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 2128-2135
    • Vu, T.N.1
  • 32
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-Throughput genomic analysis with Bioconductor
    • Huber, W. et al. Orchestrating high-Throughput genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 115-121
    • Huber, W.1
  • 33
    • 85037705797 scopus 로고    scopus 로고
    • The Ensembl gene annotation system
    • Aken, B.L. et al. The Ensembl gene annotation system. Database 2016, baw093 (2016).
    • (2016) Database , vol.2016 , pp. baw093
    • Aken, B.L.1
  • 35
    • 85042546527 scopus 로고    scopus 로고
    • Towards unified quality verification of synthetic count data with countsimQC
    • Soneson, C. & Robinson, M.D. Towards unified quality verification of synthetic count data with countsimQC. Bioinformatics https://dx.doi. org/10.1093/bioinformatics/btx631 (2017).
    • (2017) Bioinformatics
    • Soneson, C.1    Robinson, M.D.2
  • 36
    • 85010908291 scopus 로고    scopus 로고
    • Differential analyses for RNAseq: Transcript-level estimates improve gene-level inferences
    • Soneson, C., Love, M.I. & Robinson, M.D. Differential analyses for RNAseq: Transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2015).
    • (2015) F1000Res , vol.4 , pp. 1521
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 37
    • 84921466417 scopus 로고    scopus 로고
    • Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
    • Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145-153 (2015).
    • (2015) Nat. Neurosci , vol.18 , pp. 145-153
    • Usoskin, D.1
  • 38
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy, D.J., Chen, Y. & Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 39
    • 84930003332 scopus 로고    scopus 로고
    • Differential expression analysis of complex RNA-seq experiments using EdgeR
    • Springer International Publishing(eds. Datta, S. & Nettleton, D
    • Chen, Y., Lun, A.T.L. & Smyth, G.K. Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR. in Statistical Analysis of Next Generation Sequencing Data (eds. Datta, S. & Nettleton, D.) 51-74 (Springer International Publishing, 2014).
    • (2014) Statistical Analysis of Next Generation Sequencing Data , pp. 51-74
    • Chen, Y.1    Lun, A.T.L.2    Smyth, G.K.3
  • 40
    • 84903146127 scopus 로고    scopus 로고
    • Robustly detecting differential expression in RNA sequencing data using observation weights
    • Zhou, X., Lindsay, H. & Robinson, M.D. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 42, e91 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. e91
    • Zhou, X.1    Lindsay, H.2    Robinson, M.D.3
  • 41
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 42
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun, A.T.L., Bach, K. & Marioni, J.C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17, 75 (2016).
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.L.1    Bach, K.2    Marioni, J.C.3
  • 43
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1, 80-83 (1945).
    • (1945) Biom. Bull , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 44
    • 84874321000 scopus 로고    scopus 로고
    • Data exploration, quality control and testing in singlecell qPCR-based gene expression experiments
    • McDavid, A. et al. Data exploration, quality control and testing in singlecell qPCR-based gene expression experiments. Bioinformatics 29, 461-467 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 461-467
    • McDavid, A.1
  • 45
    • 84870267223 scopus 로고
    • The generalisation of student?s problems when several different population variances are involved
    • Welch, B.L. The generalisation of student?s problems when several different population variances are involved. Biometrika 34, 28-35 (1947).
    • (1947) Biometrika , vol.34 , pp. 28-35
    • Welch, B.L.1
  • 46
    • 18244384210 scopus 로고    scopus 로고
    • Multiple-laboratory comparison of microarray platforms
    • Irizarry, R.A. et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2, 345-350 (2005).
    • (2005) Nat. Methods , vol.2 , pp. 345-350
    • Irizarry, R.A.1
  • 48
    • 85014549629 scopus 로고    scopus 로고
    • Salmon provides fast and bias-Aware quantification of transcript expression
    • Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and bias-Aware quantification of transcript expression. Nat. Methods 14, 417-419 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 417-419
    • Patro, R.1    Duggal, G.2    Love, M.I.3    Irizarry, R.A.4    Kingsford, C.5
  • 49
    • 84988570649 scopus 로고    scopus 로고
    • MultiQC: Summarize analysis results for multiple tools and samples in a single report
    • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048 (2016).
    • (2016) Bioinformatics , vol.32 , pp. 3047-3048
    • Ewels, P.1    Magnusson, M.2    Lundin, S.3    Käller, M.4
  • 51
    • 84978699234 scopus 로고    scopus 로고
    • ICOBRA: Open, reproducible, standardized and live method benchmarking
    • Soneson, C. & Robinson, M.D. iCOBRA: open, reproducible, standardized and live method benchmarking. Nat. Methods 13, 283 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 283
    • Soneson, C.1    Robinson, M.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.