-
1
-
-
0003577987
-
A.I: The tumultuous history of the search for artificial intelligence
-
Basic Books, Inc. New York, NY, USA
-
Crevier, D., A.I: The tumultuous history of the search for artificial intelligence. 1993, Basic Books, Inc., New York, NY, USA.
-
(1993)
-
-
Crevier, D.1
-
2
-
-
0004255908
-
Machine learning
-
1st ed. McGraw-Hill, Inc. New York, NY, USA
-
Mitchell, T.M., Machine learning. 1st ed., 1997, McGraw-Hill, Inc., New York, NY, USA.
-
(1997)
-
-
Mitchell, T.M.1
-
3
-
-
0003810266
-
Computer-based medical consultations: mycin
-
Elsevier
-
Shortliffe, E.H., Computer-based medical consultations: mycin. 1976, Elsevier, 10.1016/B978-0-444-00179-5.50008-1.
-
(1976)
-
-
Shortliffe, E.H.1
-
4
-
-
85053009378
-
Deep learning - a technology with the potential to transform health care
-
Hinton, G., Deep learning - a technology with the potential to transform health care. JAMA 320 (2018), 1101–1102, 10.1001/jama.2018.11100.
-
(2018)
JAMA
, vol.320
, pp. 1101-1102
-
-
Hinton, G.1
-
5
-
-
85044927780
-
Big data and machine learning in health care
-
Beam, A.L., Kohane, I.S., Big data and machine learning in health care. JAMA 319 (2018), 1317–1318, 10.1001/jama.2017.18391.
-
(2018)
JAMA
, vol.319
, pp. 1317-1318
-
-
Beam, A.L.1
Kohane, I.S.2
-
6
-
-
0035183616
-
Clinical decision support systems for the practice of evidence-based medicine
-
Sim, I., Gorman, P., Greenes, R.A., Haynes, R.B., Kaplan, B., Lehmann, H., et al. Clinical decision support systems for the practice of evidence-based medicine. J Am Med Inform Assoc JAMIA 8 (2001), 527–534.
-
(2001)
J Am Med Inform Assoc JAMIA
, vol.8
, pp. 527-534
-
-
Sim, I.1
Gorman, P.2
Greenes, R.A.3
Haynes, R.B.4
Kaplan, B.5
Lehmann, H.6
-
7
-
-
85017527991
-
A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?
-
Rawson, T.M., Moore, L.S.P., Hernandez, B., Charani, E., Castro-Sanchez, E., Herrero, P., et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?. Clin Microbiol Infect 23 (2017), 524–532, 10.1016/j.cmi.2017.02.028.
-
(2017)
Clin Microbiol Infect
, vol.23
, pp. 524-532
-
-
Rawson, T.M.1
Moore, L.S.P.2
Hernandez, B.3
Charani, E.4
Castro-Sanchez, E.5
Herrero, P.6
-
8
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza, F., Rasoini, R., Gensini, G.F., Unintended consequences of machine learning in medicine. JAMA, 318, 2017, 517, 10.1001/jama.2017.7797.
-
(2017)
JAMA
, vol.318
, pp. 517
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
9
-
-
85059884477
-
Artificial intelligence, bias and clinical safety
-
bmjqs-2018-008370
-
Challen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., Tsaneva-Atanasova, K., Artificial intelligence, bias and clinical safety. BMJ Qual Saf, 2019, 10.1136/bmjqs-2018-008370 bmjqs-2018-008370.
-
(2019)
BMJ Qual Saf
-
-
Challen, R.1
Denny, J.2
Pitt, M.3
Gompels, L.4
Edwards, T.5
Tsaneva-Atanasova, K.6
-
10
-
-
85063495599
-
Artificial intelligence can improve decision-making in infection management
-
Rawson, T.M., Ahmad, R., Toumazou, C., Georgiou, P., Holmes, A.H., Artificial intelligence can improve decision-making in infection management. Nat Hum Behav 3 (2019), 543–545, 10.1038/s41562-019-0583-9.
-
(2019)
Nat Hum Behav
, vol.3
, pp. 543-545
-
-
Rawson, T.M.1
Ahmad, R.2
Toumazou, C.3
Georgiou, P.4
Holmes, A.H.5
-
11
-
-
85050347328
-
Current applications and future impact of machine learning in radiology
-
Choy, G., Khalilzadeh, O., Michalski, M., Do, S., Samir, A.E., Pianykh, O.S., et al. Current applications and future impact of machine learning in radiology. Radiology 288 (2018), 318–328, 10.1148/radiol.2018171820.
-
(2018)
Radiology
, vol.288
, pp. 318-328
-
-
Choy, G.1
Khalilzadeh, O.2
Michalski, M.3
Do, S.4
Samir, A.E.5
Pianykh, O.S.6
-
12
-
-
85056131427
-
Deep neural network improves fracture detection by clinicians
-
Lindsey, R., Daluiski, A., Chopra, S., Lachapelle, A., Mozer, M., Sicular, S., et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci 115 (2018), 11591–11596, 10.1073/pnas.1806905115.
-
(2018)
Proc Natl Acad Sci
, vol.115
, pp. 11591-11596
-
-
Lindsey, R.1
Daluiski, A.2
Chopra, S.3
Lachapelle, A.4
Mozer, M.5
Sicular, S.6
-
13
-
-
85007524689
-
Adapting to artificial intelligence: radiologists and pathologists as information specialists
-
Jha, S., Topol, E.J., Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA, 316, 2016, 2353, 10.1001/jama.2016.17438.
-
(2016)
JAMA
, vol.316
, pp. 2353
-
-
Jha, S.1
Topol, E.J.2
-
14
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
-
15
-
-
85059811921
-
High-performance medicine: the convergence of human and artificial intelligence
-
Topol, E.J., High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25 (2019), 44–56, 10.1038/s41591-018-0300-7.
-
(2019)
Nat Med
, vol.25
, pp. 44-56
-
-
Topol, E.J.1
-
16
-
-
85095168170
-
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
-
Abràmoff, M.D., Lavin, P.T., Birch, M., Shah, N., Folk, J.C., Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med, 1, 2018, 39, 10.1038/s41746-018-0040-6.
-
(2018)
Npj Digit Med
, vol.1
, pp. 39
-
-
Abràmoff, M.D.1
Lavin, P.T.2
Birch, M.3
Shah, N.4
Folk, J.C.5
-
17
-
-
85033777988
-
Machine learning: novel bioinformatics approaches for combating antimicrobial resistance
-
Macesic, N., Polubriaginof, F., Tatonetti, N.P., Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis 30 (2017), 511–517, 10.1097/QCO.0000000000000406.
-
(2017)
Curr Opin Infect Dis
, vol.30
, pp. 511-517
-
-
Macesic, N.1
Polubriaginof, F.2
Tatonetti, N.P.3
-
18
-
-
85062287499
-
Genome-based prediction of bacterial antibiotic resistance
-
Su, M., Satola, S.W., Read, T.D., Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol, 2018, 10.1128/JCM.01405-18.
-
(2018)
J Clin Microbiol
-
-
Su, M.1
Satola, S.W.2
Read, T.D.3
-
19
-
-
84958951455
-
Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance
-
Zazzi, M., Cozzi-Lepri, A., Prosperi, M.C.F., Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance. Curr HIV Res 14 (2016), 101–109, 10.2174/1570162X13666151029102254.
-
(2016)
Curr HIV Res
, vol.14
, pp. 101-109
-
-
Zazzi, M.1
Cozzi-Lepri, A.2
Prosperi, M.C.F.3
-
20
-
-
85056208374
-
Introduction to machine learning in digital healthcare epidemiology
-
Roth, J.A., Battegay, M., Juchler, F., Vogt, J.E., Widmer, A.F., Introduction to machine learning in digital healthcare epidemiology. Infect Control Hosp Epidemiol 39 (2018), 1457–1462, 10.1017/ice.2018.265.
-
(2018)
Infect Control Hosp Epidemiol
, vol.39
, pp. 1457-1462
-
-
Roth, J.A.1
Battegay, M.2
Juchler, F.3
Vogt, J.E.4
Widmer, A.F.5
-
21
-
-
85021767773
-
Automated surveillance of healthcare-associated infections: state of the art
-
Sips, M.E., Bonten, M.J.M., van Mourik, M.S.M., Automated surveillance of healthcare-associated infections: state of the art. Curr Opin Infect Dis 30 (2017), 425–431, 10.1097/QCO.0000000000000376.
-
(2017)
Curr Opin Infect Dis
, vol.30
, pp. 425-431
-
-
Sips, M.E.1
Bonten, M.J.M.2
van Mourik, M.S.M.3
-
22
-
-
85032030361
-
What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
-
Lee, E.Y., Lee, M.W., Fulan, B.M., Ferguson, A.L., Wong, G.C.L., What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?. Interface Focus, 7, 2017, 20160153, 10.1098/rsfs.2016.0153.
-
(2017)
Interface Focus
, vol.7
, pp. 20160153
-
-
Lee, E.Y.1
Lee, M.W.2
Fulan, B.M.3
Ferguson, A.L.4
Wong, G.C.L.5
-
23
-
-
84918779199
-
Machine-learning techniques applied to antibacterial drug discovery
-
Durrant, J.D., Amaro, R.E., Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des 85 (2015), 14–21, 10.1111/cbdd.12423.
-
(2015)
Chem Biol Drug Des
, vol.85
, pp. 14-21
-
-
Durrant, J.D.1
Amaro, R.E.2
-
24
-
-
77954557662
-
Comparative pathogenesis and systems biology for biodefense virus vaccine development
-
Bowick, G.C., Barrett, A.D.T., Comparative pathogenesis and systems biology for biodefense virus vaccine development. J Biomed Biotechnol, 2010, 2010, 236528, 10.1155/2010/236528.
-
(2010)
J Biomed Biotechnol
, vol.2010
, pp. 236528
-
-
Bowick, G.C.1
Barrett, A.D.T.2
-
25
-
-
84947466043
-
Machine learning in medicine
-
Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930, 10.1161/CIRCULATIONAHA.115.001593.
-
(2015)
Circulation
, vol.132
, pp. 1920-1930
-
-
Deo, R.C.1
-
26
-
-
0003584577
-
Artificial intelligence: a modern approach
-
Third. Pearson
-
Russell, S., Norvig, P., Artificial intelligence: a modern approach. 2016, Third. Pearson.
-
(2016)
-
-
Russell, S.1
Norvig, P.2
-
27
-
-
85043773463
-
Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - a data-driven approach using machine-learning algorithms
-
Lamping, F., Jack, T., Rübsamen, N., Sasse, M., Beerbaum, P., Mikolajczyk, R.T., et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - a data-driven approach using machine-learning algorithms. BMC Pediatr, 18, 2018, 112, 10.1186/s12887-018-1082-2.
-
(2018)
BMC Pediatr
, vol.18
, pp. 112
-
-
Lamping, F.1
Jack, T.2
Rübsamen, N.3
Sasse, M.4
Beerbaum, P.5
Mikolajczyk, R.T.6
-
28
-
-
85063062224
-
Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia
-
Oonsivilai, M., Mo, Y., Luangasanatip, N., Lubell, Y., Miliya, T., Tan, P., et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia. Wellcome Open Res, 3, 2018, 10.12688/wellcomeopenres.14847.1.
-
(2018)
Wellcome Open Res
, vol.3
-
-
Oonsivilai, M.1
Mo, Y.2
Luangasanatip, N.3
Lubell, Y.4
Miliya, T.5
Tan, P.6
-
29
-
-
85044236846
-
Pediatric severe sepsis prediction using machine learning
-
Desautels, T., Hoffman, J., Barton, C., Mao, Q., Jay, M., Calvert, J., et al. Pediatric severe sepsis prediction using machine learning. bioRxiv, 2017, 223289, 10.1101/223289.
-
(2017)
bioRxiv
, pp. 223289
-
-
Desautels, T.1
Hoffman, J.2
Barton, C.3
Mao, Q.4
Jay, M.5
Calvert, J.6
-
30
-
-
85050874585
-
Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm
-
Bartz-Kurycki, M.A., Green, C., Anderson, K.T., Alder, A.C., Bucher, B.T., Cina, R.A., et al. Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm. Am J Surg 216 (2018), 764–777, 10.1016/j.amjsurg.2018.07.041.
-
(2018)
Am J Surg
, vol.216
, pp. 764-777
-
-
Bartz-Kurycki, M.A.1
Green, C.2
Anderson, K.T.3
Alder, A.C.4
Bucher, B.T.5
Cina, R.A.6
-
31
-
-
85050146504
-
Prediction of clinicians’ treatment in preterm infants with suspected late-onset sepsis - an ML approach
-
Hu, Y., Lee, V.C.S., Tan, K., Prediction of clinicians’ treatment in preterm infants with suspected late-onset sepsis - an ML approach. 2018 13th IEEE conference on industrial electronics and applications (ICIEA), 2018, 1177–1182, 10.1109/ICIEA.2018.8397888.
-
(2018)
2018 13th IEEE conference on industrial electronics and applications (ICIEA)
, pp. 1177-1182
-
-
Hu, Y.1
Lee, V.C.S.2
Tan, K.3
-
32
-
-
84894094760
-
Medical decision support using machine learning for early detection of late-onset neonatal sepsis
-
Mani, S., Ozdas, A., Aliferis, C., Varol, H.A., Chen, Q., Carnevale, R., et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc JAMIA 21 (2014), 326–336, 10.1136/amiajnl-2013-001854.
-
(2014)
J Am Med Inform Assoc JAMIA
, vol.21
, pp. 326-336
-
-
Mani, S.1
Ozdas, A.2
Aliferis, C.3
Varol, H.A.4
Chen, Q.5
Carnevale, R.6
-
33
-
-
85008247993
-
From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis
-
Tsoukalas, A., Albertson, T., Tagkopoulos, I., From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. JMIR Med Inform, 3, 2015, e11, 10.2196/medinform.3445.
-
(2015)
JMIR Med Inform
, vol.3
, pp. e11
-
-
Tsoukalas, A.1
Albertson, T.2
Tagkopoulos, I.3
-
34
-
-
85059747197
-
Combining kernel and model based learning for HIV therapy selection
-
Parbhoo, S., Bogojeska, J., Zazzi, M., Roth, V., Doshi-Velez, F., Combining kernel and model based learning for HIV therapy selection. AMIA Summits Transl Sci Proc 2017 (2017), 239–248.
-
(2017)
AMIA Summits Transl Sci Proc
, vol.2017
, pp. 239-248
-
-
Parbhoo, S.1
Bogojeska, J.2
Zazzi, M.3
Roth, V.4
Doshi-Velez, F.5
-
35
-
-
85073066551
-
Toward automated early sepsis alerting: identifying infection patients from nursing notes
-
ArXiv180903995 Cs (Accessed 20 February 2019)
-
Apostolova, E., Velez, T., Toward automated early sepsis alerting: identifying infection patients from nursing notes. ArXiv180903995 Cs, 2018 http://arxiv.org/abs/1809.03995. (Accessed 20 February 2019)
-
(2018)
-
-
Apostolova, E.1
Velez, T.2
-
36
-
-
85073072943
-
Predicting severe sepsis using text from the electronic health record
-
ArXiv171111536 Cs (Accessed 30 January 2019)
-
Culliton, P., Levinson, M., Ehresman, A., Wherry, J., Steingrub, J.S., Gallant, S.I., Predicting severe sepsis using text from the electronic health record. ArXiv171111536 Cs, 2017 http://arxiv.org/abs/1711.11536. (Accessed 30 January 2019)
-
(2017)
-
-
Culliton, P.1
Levinson, M.2
Ehresman, A.3
Wherry, J.4
Steingrub, J.S.5
Gallant, S.I.6
-
37
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.H., Feng, M., Ghassemi, M., et al. MIMIC-III, a freely accessible critical care database. Sci Data, 3, 2016, 160035, 10.1038/sdata.2016.35.
-
(2016)
Sci Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.W.1
Pollard, T.J.2
Shen, L.3
Lehman, L.H.4
Feng, M.5
Ghassemi, M.6
-
38
-
-
84969271438
-
A computational approach to early sepsis detection
-
Calvert, J.S., Price, D.A., Chettipally, U.K., Barton, C.W., Feldman, M.D., Hoffman, J.L., et al. A computational approach to early sepsis detection. Comput Biol Med 74 (2016), 69–73, 10.1016/j.compbiomed.2016.05.003.
-
(2016)
Comput Biol Med
, vol.74
, pp. 69-73
-
-
Calvert, J.S.1
Price, D.A.2
Chettipally, U.K.3
Barton, C.W.4
Feldman, M.D.5
Hoffman, J.L.6
-
39
-
-
85044240544
-
Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
-
McCoy, A., Das, R., Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual, 6, 2017, e000158, 10.1136/bmjoq-2017-000158.
-
(2017)
BMJ Open Qual
, vol.6
-
-
McCoy, A.1
Das, R.2
-
40
-
-
85073050036
-
Evaluating a sepsis prediction machine learning algorithm in the emergency department and intensive care unit: a before and after comparative study
-
Burdick, H., Pino, E., Gabel-Comeau, D., Gu, C., Huang, H., Lynn-Palevsky, A., et al. Evaluating a sepsis prediction machine learning algorithm in the emergency department and intensive care unit: a before and after comparative study. bioRxiv, 2018, 10.1101/224014.
-
(2018)
bioRxiv
-
-
Burdick, H.1
Pino, E.2
Gabel-Comeau, D.3
Gu, C.4
Huang, H.5
Lynn-Palevsky, A.6
-
41
-
-
85073053227
-
Effect of a sepsis prediction algorithm on patient mortality, length of stay, and readmission
-
Burdick, H., Pino, E., Gabel-Comeau, D., McCoy, A., Gu, C., Roberts, J., et al. Effect of a sepsis prediction algorithm on patient mortality, length of stay, and readmission. bioRxiv, 2018, 10.1101/457465.
-
(2018)
bioRxiv
-
-
Burdick, H.1
Pino, E.2
Gabel-Comeau, D.3
McCoy, A.4
Gu, C.5
Roberts, J.6
-
42
-
-
85026253282
-
Quasi-experimental study designs series-paper 7: assessing the assumptions
-
Bärnighausen, T., Oldenburg, C., Tugwell, P., Bommer, C., Ebert, C., Barreto, M., et al. Quasi-experimental study designs series-paper 7: assessing the assumptions. J Clin Epidemiol 89 (2017), 53–66, 10.1016/j.jclinepi.2017.02.017.
-
(2017)
J Clin Epidemiol
, vol.89
, pp. 53-66
-
-
Bärnighausen, T.1
Oldenburg, C.2
Tugwell, P.3
Bommer, C.4
Ebert, C.5
Barreto, M.6
-
43
-
-
85048779527
-
Bias in before-after studies: narrative overview for anesthesiologists
-
Ho, A.M.H., Phelan, R., Mizubuti, G.B., Murdoch, J.A.C., Wickett, S., Ho, A.K., et al. Bias in before-after studies: narrative overview for anesthesiologists. Anesth Analg 126 (2018), 1755–1762, 10.1213/ANE.0000000000002705.
-
(2018)
Anesth Analg
, vol.126
, pp. 1755-1762
-
-
Ho, A.M.H.1
Phelan, R.2
Mizubuti, G.B.3
Murdoch, J.A.C.4
Wickett, S.5
Ho, A.K.6
-
44
-
-
85052147470
-
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
-
Shimabukuro, D.W., Barton, C.W., Feldman, M.D., Mataraso, S.J., Das, R., Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res, 4, 2017, e000234, 10.1136/bmjresp-2017-000234.
-
(2017)
BMJ Open Respir Res
, vol.4
-
-
Shimabukuro, D.W.1
Barton, C.W.2
Feldman, M.D.3
Mataraso, S.J.4
Das, R.5
-
45
-
-
84961223381
-
Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system
-
Saybani, M.R., Shamshirband, S., Golzari Hormozi, S., Wah, T.Y., Aghabozorgi, S., Pourhoseingholi, M.A., et al. Diagnosing tuberculosis with a novel support vector machine-based artificial immune recognition system. Iran Red Crescent Med J, 17, 2015, 10.5812/ircmj.17(4)2015.24557.
-
(2015)
Iran Red Crescent Med J
, vol.17
-
-
Saybani, M.R.1
Shamshirband, S.2
Golzari Hormozi, S.3
Wah, T.Y.4
Aghabozorgi, S.5
Pourhoseingholi, M.A.6
-
46
-
-
0032694357
-
Predicting active pulmonary tuberculosis using an artificial neural network
-
El-Solh, A.A., Hsiao, C.-B., Goodnough, S., Serghani, J., Grant, B.J.B., Predicting active pulmonary tuberculosis using an artificial neural network. Chest 116 (1999), 968–973, 10.1378/chest.116.4.968.
-
(1999)
Chest
, vol.116
, pp. 968-973
-
-
El-Solh, A.A.1
Hsiao, C.-B.2
Goodnough, S.3
Serghani, J.4
Grant, B.J.B.5
-
47
-
-
84874444268
-
Adaptive neurofuzzy system for tuberculosis
-
Ansari, A.Q., Gupta, N.K., Ekata, Adaptive neurofuzzy system for tuberculosis. 2012 2nd IEEE international conference on parallel, distributed and grid computing, 2012, 568–573, 10.1109/PDGC.2012.6449883.
-
(2012)
2012 2nd IEEE international conference on parallel, distributed and grid computing
, pp. 568-573
-
-
Ansari, A.Q.1
Gupta, N.K.2
Ekata3
-
48
-
-
84964906479
-
An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
-
Melendez, J., Sánchez, C.I., Philipsen, R.H.H.M., Maduskar, P., Dawson, R., Theron, G., et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep, 6, 2016, 10.1038/srep25265.
-
(2016)
Sci Rep
, vol.6
-
-
Melendez, J.1
Sánchez, C.I.2
Philipsen, R.H.H.M.3
Maduskar, P.4
Dawson, R.5
Theron, G.6
-
49
-
-
77954067701
-
Tuberculosis disease diagnosis using artificial neural networks
-
Er, O., Temurtas, F., Tanrıkulu, A.Ç., Tuberculosis disease diagnosis using artificial neural networks. J Med Syst 34 (2010), 299–302, 10.1007/s10916-008-9241-x.
-
(2010)
J Med Syst
, vol.34
, pp. 299-302
-
-
Er, O.1
Temurtas, F.2
Tanrıkulu, A.Ç.3
-
50
-
-
77954537625
-
Neural networks: an application for predicting smear negative pulmonary tuberculosis
-
J.-L. Auget N. Balakrishnan M. Mesbah G. Molenberghs Birkhäuser Boston Boston, MA
-
Santos, A.M., Pereira, B.B., Seixas, J.M., Mello, F.C.Q., Kritski, A.L., Neural networks: an application for predicting smear negative pulmonary tuberculosis. Auget, J.-L., Balakrishnan, N., Mesbah, M., Molenberghs, G., (eds.) Advances in statistical methods for the health sciences, 2007, Birkhäuser Boston, Boston, MA, 275–287, 10.1007/978-0-8176-4542-7_18.
-
(2007)
Advances in statistical methods for the health sciences
, pp. 275-287
-
-
Santos, A.M.1
Pereira, B.B.2
Seixas, J.M.3
Mello, F.C.Q.4
Kritski, A.L.5
-
51
-
-
85064006555
-
Prediction of healthcare associated infections in an intensive care unit using machine learning and big data tools
-
E. Kyriacou S. Christofides C.S. Pattichis Springer International Publishing Cham
-
Revuelta-Zamorano, P., Sánchez, A., Rojo-Álvarez, J.L., Álvarez-Rodríguez, J., Ramos-López, J., Soguero-Ruiz, C., Prediction of healthcare associated infections in an intensive care unit using machine learning and big data tools. Kyriacou, E., Christofides, S., Pattichis, C.S., (eds.) XIV mediterranean conference on medical and biological engineering and computing 2016, vol. 57, 2016, Springer International Publishing, Cham, 840–845, 10.1007/978-3-319-32703-7_163.
-
(2016)
XIV mediterranean conference on medical and biological engineering and computing 2016
, vol.57
, pp. 840-845
-
-
Revuelta-Zamorano, P.1
Sánchez, A.2
Rojo-Álvarez, J.L.3
Álvarez-Rodríguez, J.4
Ramos-López, J.5
Soguero-Ruiz, C.6
-
52
-
-
85051698855
-
Early prediction of MRSA infections using electronic health records
-
Hartvigsen, T., Sen, C., Brownell, S., Teeple, E., Kong, X., Rundensteiner, E., Early prediction of MRSA infections using electronic health records. Proceedings of the 11th international joint conference on biomedical engineering systems and technologies, 2018, 156–167, 10.5220/0006599601560167.
-
(2018)
Proceedings of the 11th international joint conference on biomedical engineering systems and technologies
, pp. 156-167
-
-
Hartvigsen, T.1
Sen, C.2
Brownell, S.3
Teeple, E.4
Kong, X.5
Rundensteiner, E.6
-
53
-
-
85044242845
-
Supervised learning for infection risk inference using pathology data
-
Hernandez, B., Herrero, P., Rawson, T.M., Moore, L.S.P., Evans, B., Toumazou, C., et al. Supervised learning for infection risk inference using pathology data. BMC Med Inform Decis Mak, 17, 2017, 10.1186/s12911-017-0550-1.
-
(2017)
BMC Med Inform Decis Mak
, vol.17
-
-
Hernandez, B.1
Herrero, P.2
Rawson, T.M.3
Moore, L.S.P.4
Evans, B.5
Toumazou, C.6
-
54
-
-
85056333942
-
Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks
-
Van Steenkiste, T., Ruyssinck, J., De Baets, L., Decruyenaere, J., De Turck, F., Ongenae, F., et al. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif Intell Med, 2018, 10.1016/j.artmed.2018.10.008.
-
(2018)
Artif Intell Med
-
-
Van Steenkiste, T.1
Ruyssinck, J.2
De Baets, L.3
Decruyenaere, J.4
De Turck, F.5
Ongenae, F.6
-
55
-
-
84991259481
-
A prognostic model of surgical site infection using daily clinical wound assessment
-
e2
-
Sanger, P.C., van Ramshorst, G.H., Mercan, E., Huang, S., Hartzler, A.L., Armstrong, C.A.L., et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surg 223 (2016), 259–270, 10.1016/j.jamcollsurg.2016.04.046 e2.
-
(2016)
J Am Coll Surg
, vol.223
, pp. 259-270
-
-
Sanger, P.C.1
van Ramshorst, G.H.2
Mercan, E.3
Huang, S.4
Hartzler, A.L.5
Armstrong, C.A.L.6
-
56
-
-
85042731124
-
Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer
-
Kuo, P-J, Wu, S-C, Chien, P-C, Chang, S-S, Rau, C-S, Tai, H-L, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 9 (2018), 13768–13782, 10.18632/oncotarget.24468.
-
(2018)
Oncotarget
, vol.9
, pp. 13768-13782
-
-
Kuo, P.-J.1
Wu, S.-C.2
Chien, P.-C.3
Chang, S.-S.4
Rau, C.-S.5
Tai, H.-L.6
-
57
-
-
84997820960
-
Prognostics of surgical site infections using dynamic health data
-
Ke, C., Jin, Y., Evans, H., Lober, B., Qian, X., Liu, J., et al. Prognostics of surgical site infections using dynamic health data. J Biomed Inform 65 (2017), 22–33, 10.1016/j.jbi.2016.10.021.
-
(2017)
J Biomed Inform
, vol.65
, pp. 22-33
-
-
Ke, C.1
Jin, Y.2
Evans, H.3
Lober, B.4
Qian, X.5
Liu, J.6
-
58
-
-
85063012496
-
Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study
-
Rawson, T.M., Hernandez, B., Moore, L.S.P., Blandy, O., Herrero, P., Gilchrist, M., et al. Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study. J Antimicrob Chemother 74 (2019), 1108–1115, 10.1093/jac/dky514.
-
(2019)
J Antimicrob Chemother
, vol.74
, pp. 1108-1115
-
-
Rawson, T.M.1
Hernandez, B.2
Moore, L.S.P.3
Blandy, O.4
Herrero, P.5
Gilchrist, M.6
-
59
-
-
85017113914
-
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. Groza T, ed
-
Horng, S., Sontag, D.A., Halpern, Y., Jernite, Y., Shapiro, N.I., Nathanson, L.A., Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. Groza T, ed. PLoS One, 12, 2017, e0174708, 10.1371/journal.pone.0174708.
-
(2017)
PLoS One
, vol.12
-
-
Horng, S.1
Sontag, D.A.2
Halpern, Y.3
Jernite, Y.4
Shapiro, N.I.5
Nathanson, L.A.6
-
60
-
-
85042925770
-
Predicting urinary tract infections in the emergency department with machine learning
-
Taylor, R.A., Moore, C.L., Cheung, K.-H., Brandt, C., Predicting urinary tract infections in the emergency department with machine learning. PLoS One, 13, 2018, e0194085, 10.1371/journal.pone.0194085.
-
(2018)
PLoS One
, vol.13
, pp. e0194085
-
-
Taylor, R.A.1
Moore, C.L.2
Cheung, K.-H.3
Brandt, C.4
-
61
-
-
34547650594
-
A machine learning approach to differentiating bacterial from viral meningitis
-
IEEE
-
Revett, K., Gorunescu, F., Ene, M., A machine learning approach to differentiating bacterial from viral meningitis. 2006, IEEE, 155–162, 10.1109/JVA.2006.2.
-
(2006)
, pp. 155-162
-
-
Revett, K.1
Gorunescu, F.2
Ene, M.3
-
62
-
-
85059543858
-
A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees
-
D'Angelo, G., Pilla, R., Tascini, C., Rampone, S., A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees. Soft Comput, 2019, 10.1007/s00500-018-03729-y.
-
(2019)
Soft Comput
-
-
D'Angelo, G.1
Pilla, R.2
Tascini, C.3
Rampone, S.4
-
63
-
-
84898480467
-
Tuberculosis disease diagnosis using artificial immune recognition system
-
Shamshirband, S., Hessam, S., Javidnia, H., Amiribesheli, M., Vahdat, S., Petković, D., et al. Tuberculosis disease diagnosis using artificial immune recognition system. Int J Med Sci 11 (2014), 508–514, 10.7150/ijms.8249.
-
(2014)
Int J Med Sci
, vol.11
, pp. 508-514
-
-
Shamshirband, S.1
Hessam, S.2
Javidnia, H.3
Amiribesheli, M.4
Vahdat, S.5
Petković, D.6
-
64
-
-
39049179056
-
Neural network-longitudinal assessment of the Electronic Anti-Retroviral THerapy (EARTH) cohort to follow response to HIV-treatment
-
Hatzakis, G.E., Mathur, M., Gilbert, L., Panos, G., Wanchu, A., Patel, A.K., et al. Neural network-longitudinal assessment of the Electronic Anti-Retroviral THerapy (EARTH) cohort to follow response to HIV-treatment. AMIA Annu Symp Proc AMIA Symp, 2005, 301–305.
-
(2005)
AMIA Annu Symp Proc AMIA Symp
, pp. 301-305
-
-
Hatzakis, G.E.1
Mathur, M.2
Gilbert, L.3
Panos, G.4
Wanchu, A.5
Patel, A.K.6
-
65
-
-
0344808232
-
Methods for optimizing antiviral combination therapies
-
Beerenwinkel, N., Lengauer, T., Däumer, M., Kaiser, R., Walter, H., Korn, K., et al. Methods for optimizing antiviral combination therapies. Bioinforma Oxf Engl 19 (2003), i16–i25.
-
(2003)
Bioinforma Oxf Engl
, vol.19
, pp. i16-i25
-
-
Beerenwinkel, N.1
Lengauer, T.2
Däumer, M.3
Kaiser, R.4
Walter, H.5
Korn, K.6
-
66
-
-
84856433482
-
Predicting response to antiretroviral treatment by machine learning: the EuResist project
-
Zazzi, M., Incardona, F., Rosen-Zvi, M., Prosperi, M., Lengauer, T., Altmann, A., et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology 55 (2012), 123–127, 10.1159/000332008.
-
(2012)
Intervirology
, vol.55
, pp. 123-127
-
-
Zazzi, M.1
Incardona, F.2
Rosen-Zvi, M.3
Prosperi, M.4
Lengauer, T.5
Altmann, A.6
-
67
-
-
85055130629
-
2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings
-
Revell, A.D., Wang, D., Perez-Elias, M-J, Wood, R., Cogill, D., Tempelman, H., et al. 2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings. J Antimicrob Chemother 73 (2018), 2186–2196, 10.1093/jac/dky179.
-
(2018)
J Antimicrob Chemother
, vol.73
, pp. 2186-2196
-
-
Revell, A.D.1
Wang, D.2
Perez-Elias, M.-J.3
Wood, R.4
Cogill, D.5
Tempelman, H.6
-
68
-
-
84928390562
-
Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring
-
Petersen, M.L., LeDell, E., Schwab, J., Sarovar, V., Gross, R., Reynolds, N., et al. Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring. J Acquir Immune Defic Syndr 1999 69 (2015), 109–118, 10.1097/QAI.0000000000000548.
-
(2015)
J Acquir Immune Defic Syndr 1999
, vol.69
, pp. 109-118
-
-
Petersen, M.L.1
LeDell, E.2
Schwab, J.3
Sarovar, V.4
Gross, R.5
Reynolds, N.6
-
69
-
-
3042684526
-
Artificial neural networks for the prediction of response to interferon plus ribavirin treatment in patients with chronic hepatitis C
-
Maiellaro, P.A., Cozzolongo, R., Marino, P., Artificial neural networks for the prediction of response to interferon plus ribavirin treatment in patients with chronic hepatitis C. Curr Pharm Des 10 (2004), 2101–2109.
-
(2004)
Curr Pharm Des
, vol.10
, pp. 2101-2109
-
-
Maiellaro, P.A.1
Cozzolongo, R.2
Marino, P.3
-
70
-
-
82555168483
-
Prediction of effect of pegylated interferon alpha-2b plus ribavirin combination therapy in patients with chronic hepatitis C infection
-
Takayama, T., Ebinuma, H., Tada, S., Yamagishi, Y., Wakabayashi, K., Ojiro, K., et al. Prediction of effect of pegylated interferon alpha-2b plus ribavirin combination therapy in patients with chronic hepatitis C infection. PLoS One, 6, 2011, e27223, 10.1371/journal.pone.0027223.
-
(2011)
PLoS One
, vol.6
, pp. e27223
-
-
Takayama, T.1
Ebinuma, H.2
Tada, S.3
Yamagishi, Y.4
Wakabayashi, K.5
Ojiro, K.6
-
71
-
-
84903518925
-
Predicting the outcomes of combination therapy in patients with chronic hepatitis C using artificial neural network
-
Sargolzaee Aval, F., Behnaz, N., Raoufy, M.R., Alavian, S.M., Predicting the outcomes of combination therapy in patients with chronic hepatitis C using artificial neural network. Hepat Mon, 14, 2014, e17028, 10.5812/hepatmon.17028.
-
(2014)
Hepat Mon
, vol.14
, pp. e17028
-
-
Sargolzaee Aval, F.1
Behnaz, N.2
Raoufy, M.R.3
Alavian, S.M.4
-
72
-
-
85042218244
-
Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models
-
Hussain, O.A., Junejo, K.N., Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models. Inform Health Soc Care, 2018, 1–17, 10.1080/17538157.2018.1433676.
-
(2018)
Inform Health Soc Care
, pp. 1-17
-
-
Hussain, O.A.1
Junejo, K.N.2
-
73
-
-
85056803154
-
Feature selection and prediction of treatment failure in tuberculosis. Huang Z, ed
-
Sauer, C.M., Sasson, D., Paik, K.E., McCague, N., Celi, L.A., Sánchez Fernández, I., et al. Feature selection and prediction of treatment failure in tuberculosis. Huang Z, ed. PLoS One, 13, 2018, e0207491, 10.1371/journal.pone.0207491.
-
(2018)
PLoS One
, vol.13
-
-
Sauer, C.M.1
Sasson, D.2
Paik, K.E.3
McCague, N.4
Celi, L.A.5
Sánchez Fernández, I.6
-
74
-
-
85067183658
-
Using machine learning and the electronic health record to predict complicated Clostridium difficile infection
-
Li, B.Y., Oh, J., Young, V.B., Rao, K., Wiens, J., Using machine learning and the electronic health record to predict complicated Clostridium difficile infection. Open Forum Infect Dis, 6, 2019, ofz186, 10.1093/ofid/ofz186.
-
(2019)
Open Forum Infect Dis
, vol.6
, pp. ofz186
-
-
Li, B.Y.1
Oh, J.2
Young, V.B.3
Rao, K.4
Wiens, J.5
-
75
-
-
84939544431
-
A prediction model for Clostridium difficile recurrence
-
LaBarbera, F.D., Nikiforov, I., Parvathenani, A., Pramil, V., Gorrepati, S., A prediction model for Clostridium difficile recurrence. J Community Hosp Intern Med Perspect, 5, 2015, 26033, 10.3402/jchimp.v5.26033.
-
(2015)
J Community Hosp Intern Med Perspect
, vol.5
, pp. 26033
-
-
LaBarbera, F.D.1
Nikiforov, I.2
Parvathenani, A.3
Pramil, V.4
Gorrepati, S.5
-
76
-
-
85029857162
-
Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system
-
Escobar, G.J., Baker, J.M., Kipnis, P., Greene, J.D., Mast, T.C., Gupta, S.B., et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol 38 (2017), 1196–1203, 10.1017/ice.2017.176.
-
(2017)
Infect Control Hosp Epidemiol
, vol.38
, pp. 1196-1203
-
-
Escobar, G.J.1
Baker, J.M.2
Kipnis, P.3
Greene, J.D.4
Mast, T.C.5
Gupta, S.B.6
-
77
-
-
84971647404
-
An imbalanced learning based MDR-TB early warning system
-
Li, S., Tang, B., He, H., An imbalanced learning based MDR-TB early warning system. J Med Syst, 40, 2016, 10.1007/s10916-016-0517-2.
-
(2016)
J Med Syst
, vol.40
-
-
Li, S.1
Tang, B.2
He, H.3
-
78
-
-
85068773007
-
Personal clinical history predicts antibiotic resistance of urinary tract infections
-
Yelin, I., Snitser, O., Novich, G., Katz, R., Tal, O., Parizade, M., et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med 25 (2019), 1143–1152, 10.1038/s41591-019-0503-6.
-
(2019)
Nat Med
, vol.25
, pp. 1143-1152
-
-
Yelin, I.1
Snitser, O.2
Novich, G.3
Katz, R.4
Tal, O.5
Parizade, M.6
-
79
-
-
85068874561
-
Estimating the association between antibiotic exposure and colonization with extended-spectrum β-lactamase-producing Gram-negative bacteria using machine learning methods: a multicentre, prospective cohort study
-
Tacconelli, E., Górska, A., De Angelis, G., Lammens, C., Restuccia, G., Schrenzel, J., et al. Estimating the association between antibiotic exposure and colonization with extended-spectrum β-lactamase-producing Gram-negative bacteria using machine learning methods: a multicentre, prospective cohort study. Clin Microbiol Infect 26 (2020), 87–94.
-
(2020)
Clin Microbiol Infect
, vol.26
, pp. 87-94
-
-
Tacconelli, E.1
Górska, A.2
De Angelis, G.3
Lammens, C.4
Restuccia, G.5
Schrenzel, J.6
-
80
-
-
84959562185
-
Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs
-
Beaudoin, M., Kabanza, F., Nault, V., Valiquette, L., Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif Intell Med 68 (2016), 29–36, 10.1016/j.artmed.2016.02.001.
-
(2016)
Artif Intell Med
, vol.68
, pp. 29-36
-
-
Beaudoin, M.1
Kabanza, F.2
Nault, V.3
Valiquette, L.4
-
81
-
-
85041532672
-
An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription
-
Shen, Y., Yuan, K., Chen, D., Colloc, J., Yang, M., Li, Y., et al. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artif Intell Med 86 (2018), 20–32, 10.1016/j.artmed.2018.01.003.
-
(2018)
Artif Intell Med
, vol.86
, pp. 20-32
-
-
Shen, Y.1
Yuan, K.2
Chen, D.3
Colloc, J.4
Yang, M.5
Li, Y.6
-
82
-
-
34547097512
-
A self-learning fuzzy discrete event system for HIV/AIDS treatment regimen selection
-
Ying, Hao, Lin, Feng, MacArthur, Rodger D., Cohn, Jonathan A., Barth-Jones, Daniel C., Ye Hong, et al. A self-learning fuzzy discrete event system for HIV/AIDS treatment regimen selection. IEEE Trans Syst MAN Cybern B Cybern, 37, 2007, 10.1109/TSMCB.2007.895360.
-
(2007)
IEEE Trans Syst MAN Cybern B Cybern
, vol.37
-
-
Ying, H.1
Lin, F.2
MacArthur, R.D.3
Cohn, J.A.4
Barth-Jones, D.C.5
Ye Hong6
-
83
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316, 2016, 2402, 10.1001/jama.2016.17216.
-
(2016)
JAMA
, vol.316
, pp. 2402
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
-
84
-
-
85058771359
-
Ensuring fairness in machine learning to advance health equity
-
Rajkomar, A., Hardt, M., Howell, M.D., Corrado, G., Chin, M.H., Ensuring fairness in machine learning to advance health equity. Ann Intern Med, 169, 2018, 866, 10.7326/M18-1990.
-
(2018)
Ann Intern Med
, vol.169
, pp. 866
-
-
Rajkomar, A.1
Hardt, M.2
Howell, M.D.3
Corrado, G.4
Chin, M.H.5
-
85
-
-
85053019174
-
Potential biases in machine learning algorithms using electronic health record data
-
Gianfrancesco, M.A., Tamang, S., Yazdany, J., Schmajuk, G., Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 178 (2018), 1544–1547, 10.1001/jamainternmed.2018.3763.
-
(2018)
JAMA Intern Med
, vol.178
, pp. 1544-1547
-
-
Gianfrancesco, M.A.1
Tamang, S.2
Yazdany, J.3
Schmajuk, G.4
-
86
-
-
85054776504
-
Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases
-
Osakunor, D.N.M., Sengeh, D.M., Mutapi, F., Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases. PLoS Negl Trop Dis, 12, 2018, 10.1371/journal.pntd.0006711.
-
(2018)
PLoS Negl Trop Dis
, vol.12
-
-
Osakunor, D.N.M.1
Sengeh, D.M.2
Mutapi, F.3
-
87
-
-
85029125816
-
Combining biomarkers with EMR data to identify patients in different phases of sepsis
-
Taneja, I., Reddy, B., Damhorst, G., Dave Zhao, S., Hassan, U., Price, Z., et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis. Sci Rep, 7, 2017, 10800, 10.1038/s41598-017-09766-1.
-
(2017)
Sci Rep
, vol.7
, pp. 10800
-
-
Taneja, I.1
Reddy, B.2
Damhorst, G.3
Dave Zhao, S.4
Hassan, U.5
Price, Z.6
-
88
-
-
84995810431
-
Extracting information from the text of electronic medical records to improve case detection: a systematic review
-
Ford, E., Carroll, J.A., Smith, H.E., Scott, D., Cassell, J.A., Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 23 (2016), 1007–1015, 10.1093/jamia/ocv180.
-
(2016)
J Am Med Inform Assoc
, vol.23
, pp. 1007-1015
-
-
Ford, E.1
Carroll, J.A.2
Smith, H.E.3
Scott, D.4
Cassell, J.A.5
-
89
-
-
85034861727
-
Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies
-
Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., A'Court, C., et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res, 19, 2017, e367, 10.2196/jmir.8775.
-
(2017)
J Med Internet Res
, vol.19
, pp. e367
-
-
Greenhalgh, T.1
Wherton, J.2
Papoutsi, C.3
Lynch, J.4
Hughes, G.5
A'Court, C.6
-
90
-
-
85053003464
-
Clinical implications and challenges of artificial intelligence and deep learning
-
Stead, W.W., Clinical implications and challenges of artificial intelligence and deep learning. JAMA 320 (2018), 1107–1108, 10.1001/jama.2018.11029.
-
(2018)
JAMA
, vol.320
, pp. 1107-1108
-
-
Stead, W.W.1
-
91
-
-
85003633058
-
Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study
-
Rawson, T.M., Charani, E., Moore, L.S.P., Hernandez, B., Castro-Sánchez, E., Herrero, P., et al. Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study. BMC Med, 14, 2016, 10.1186/s12916-016-0751-y0751-y.
-
(2016)
BMC Med
, vol.14
-
-
Rawson, T.M.1
Charani, E.2
Moore, L.S.P.3
Hernandez, B.4
Castro-Sánchez, E.5
Herrero, P.6
-
92
-
-
85058155533
-
Questions for artificial intelligence in health care
-
Maddox, T.M., Rumsfeld, J.S., Payne, P.R.O., Questions for artificial intelligence in health care. JAMA, 2018, 10.1001/jama.2018.18932.
-
(2018)
JAMA
-
-
Maddox, T.M.1
Rumsfeld, J.S.2
Payne, P.R.O.3
-
93
-
-
85059735798
-
The practical implementation of artificial intelligence technologies in medicine
-
He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., Zhang, K., The practical implementation of artificial intelligence technologies in medicine. Nat Med 25 (2019), 30–36, 10.1038/s41591-018-0307-0.
-
(2019)
Nat Med
, vol.25
, pp. 30-36
-
-
He, J.1
Baxter, S.L.2
Xu, J.3
Xu, J.4
Zhou, X.5
Zhang, K.6
-
94
-
-
84922961555
-
More screen time, less face time – implications for EHR design
-
Asan, O., Smith, P., Montague, E., More screen time, less face time – implications for EHR design. J Eval Clin Pract 20 (2014), 896–901, 10.1111/jep.12182.
-
(2014)
J Eval Clin Pract
, vol.20
, pp. 896-901
-
-
Asan, O.1
Smith, P.2
Montague, E.3
-
95
-
-
33644890465
-
Electronic medical record use and physician–patient communication: an observational study of Israeli primary care encounters
-
Margalit, R.S., Roter, D., Dunevant, M.A., Larson, S., Reis, S., Electronic medical record use and physician–patient communication: an observational study of Israeli primary care encounters. Patient Educ Couns 61 (2006), 134–141, 10.1016/j.pec.2005.03.004.
-
(2006)
Patient Educ Couns
, vol.61
, pp. 134-141
-
-
Margalit, R.S.1
Roter, D.2
Dunevant, M.A.3
Larson, S.4
Reis, S.5
-
96
-
-
85063999048
-
An interpretable machine learning model for accurate prediction of sepsis in the ICU
-
Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D., Buchman, T.G., An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med 46 (2018), 547–553, 10.1097/CCM.0000000000002936.
-
(2018)
Crit Care Med
, vol.46
, pp. 547-553
-
-
Nemati, S.1
Holder, A.2
Razmi, F.3
Stanley, M.D.4
Clifford, G.D.5
Buchman, T.G.6
-
97
-
-
85059805583
-
Privacy in the age of medical big data
-
Price, W.N., Cohen, I.G., Privacy in the age of medical big data. Nat Med 25 (2019), 37–43, 10.1038/s41591-018-0272-7.
-
(2019)
Nat Med
, vol.25
, pp. 37-43
-
-
Price, W.N.1
Cohen, I.G.2
-
98
-
-
85017001414
-
Cost and mortality impact of an algorithm-driven sepsis prediction system
-
Calvert, J., Hoffman, J., Barton, C., Shimabukuro, D., Ries, M., Chettipally, U., et al. Cost and mortality impact of an algorithm-driven sepsis prediction system. J Med Econ 20 (2017), 646–651, 10.1080/13696998.2017.1307203.
-
(2017)
J Med Econ
, vol.20
, pp. 646-651
-
-
Calvert, J.1
Hoffman, J.2
Barton, C.3
Shimabukuro, D.4
Ries, M.5
Chettipally, U.6
-
99
-
-
85044174430
-
Emerging technologies for molecular diagnosis of sepsis
-
e00089-17
-
Sinha, M., Jupe, J., Mack, H., Coleman, T.P., Lawrence, S.M., Fraley, S.I., Emerging technologies for molecular diagnosis of sepsis. Clin Microbiol Rev, 31, 2018, 10.1128/CMR.00089-17 e00089-17.
-
(2018)
Clin Microbiol Rev
, vol.31
-
-
Sinha, M.1
Jupe, J.2
Mack, H.3
Coleman, T.P.4
Lawrence, S.M.5
Fraley, S.I.6
-
100
-
-
85033376054
-
A survey of machine learning applications in HIV clinical research and care
-
Bisaso, K.R., Anguzu, G.T., Karungi, S.A., Kiragga, A., Castelnuovo, B., A survey of machine learning applications in HIV clinical research and care. Comput Biol Med 91 (2017), 366–371, 10.1016/j.compbiomed.2017.11.001.
-
(2017)
Comput Biol Med
, vol.91
, pp. 366-371
-
-
Bisaso, K.R.1
Anguzu, G.T.2
Karungi, S.A.3
Kiragga, A.4
Castelnuovo, B.5
-
101
-
-
84958951455
-
Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance
-
Zazzi, M., Cozzi-Lepri, A., Prosperi, M.C.F., Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance. Curr HIV Res 14 (2016), 101–109.
-
(2016)
Curr HIV Res
, vol.14
, pp. 101-109
-
-
Zazzi, M.1
Cozzi-Lepri, A.2
Prosperi, M.C.F.3
-
102
-
-
84969677626
-
Using online social networks to track a pandemic: a systematic review
-
Al-Garadi, M.A., Khan, M.S., Varathan, K.D., Mujtaba, G., Al-Kabsi, A.M., Using online social networks to track a pandemic: a systematic review. J Biomed Inform 62 (2016), 1–11, 10.1016/j.jbi.2016.05.005.
-
(2016)
J Biomed Inform
, vol.62
, pp. 1-11
-
-
Al-Garadi, M.A.1
Khan, M.S.2
Varathan, K.D.3
Mujtaba, G.4
Al-Kabsi, A.M.5
-
103
-
-
84927516180
-
Computational approaches for prediction of pathogen-host protein-protein interactions
-
Nourani, E., Khunjush, F., Durmuş, S., Computational approaches for prediction of pathogen-host protein-protein interactions. Front Microbiol, 6, 2015, 94, 10.3389/fmicb.2015.00094.
-
(2015)
Front Microbiol
, vol.6
, pp. 94
-
-
Nourani, E.1
Khunjush, F.2
Durmuş, S.3
-
104
-
-
84874363340
-
Progress in computational studies of host-pathogen interactions
-
Zhou, H., Jin, J., Wong, L., Progress in computational studies of host-pathogen interactions. J Bioinform Comput Biol, 11, 2013, 1230001, 10.1142/S0219720012300018.
-
(2013)
J Bioinform Comput Biol
, vol.11
, pp. 1230001
-
-
Zhou, H.1
Jin, J.2
Wong, L.3
-
105
-
-
84872091657
-
Identification of legionella effectors using bioinformatic approaches
-
Segal, G., Identification of legionella effectors using bioinformatic approaches. Methods Mol Biol Clifton NJ 954 (2013), 595–602, 10.1007/978-1-62703-161-5_37.
-
(2013)
Methods Mol Biol Clifton NJ
, vol.954
, pp. 595-602
-
-
Segal, G.1
-
106
-
-
85010875145
-
Systems serology for evaluation of HIV vaccine trials
-
Ackerman, M.E., Barouch, D.H., Alter, G., Systems serology for evaluation of HIV vaccine trials. Immunol Rev 275 (2017), 262–270, 10.1111/imr.12503.
-
(2017)
Immunol Rev
, vol.275
, pp. 262-270
-
-
Ackerman, M.E.1
Barouch, D.H.2
Alter, G.3
-
107
-
-
83555177603
-
Computer-assisted detection of infectious lung diseases: a review
-
Bağcı, U., Bray, M., Caban, J., Yao, J., Mollura, D.J., Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph Off J Comput Med Imaging Soc 36 (2012), 72–84, 10.1016/j.compmedimag.2011.06.002.
-
(2012)
Comput Med Imaging Graph Off J Comput Med Imaging Soc
, vol.36
, pp. 72-84
-
-
Bağcı, U.1
Bray, M.2
Caban, J.3
Yao, J.4
Mollura, D.J.5
-
108
-
-
85048883549
-
Microscopy in infectious disease research - imaging across scales
-
Laketa, V., Microscopy in infectious disease research - imaging across scales. J Mol Biol 430 (2018), 2612–2625, 10.1016/j.jmb.2018.06.018.
-
(2018)
J Mol Biol
, vol.430
, pp. 2612-2625
-
-
Laketa, V.1
|