메뉴 건너뛰기




Volumn 26, Issue 5, 2020, Pages 584-595

Corrigendum: “machine learning for clinical decision support in infectious diseases: a narrative review of current applications” (Clinical Microbiology and Infection (2020) 26(5) (584–595), (S1198743X1930494X), (10.1016/j.cmi.2019.09.009));Machine learning for clinical decision support in infectious diseases: a narrative review of current applications

Author keywords

Artificial intelligence; Clinical decision support system; Infectious diseases; Information technology; Machine learning

Indexed keywords

ANTIINFECTIVE AGENT;

EID: 85073072056     PISSN: 1198743X     EISSN: 14690691     Source Type: Journal    
DOI: 10.1016/j.cmi.2020.05.020     Document Type: Erratum
Times cited : (297)

References (108)
  • 1
    • 0003577987 scopus 로고
    • A.I: The tumultuous history of the search for artificial intelligence
    • Basic Books, Inc. New York, NY, USA
    • Crevier, D., A.I: The tumultuous history of the search for artificial intelligence. 1993, Basic Books, Inc., New York, NY, USA.
    • (1993)
    • Crevier, D.1
  • 2
    • 0004255908 scopus 로고    scopus 로고
    • Machine learning
    • 1st ed. McGraw-Hill, Inc. New York, NY, USA
    • Mitchell, T.M., Machine learning. 1st ed., 1997, McGraw-Hill, Inc., New York, NY, USA.
    • (1997)
    • Mitchell, T.M.1
  • 3
    • 0003810266 scopus 로고
    • Computer-based medical consultations: mycin
    • Elsevier
    • Shortliffe, E.H., Computer-based medical consultations: mycin. 1976, Elsevier, 10.1016/B978-0-444-00179-5.50008-1.
    • (1976)
    • Shortliffe, E.H.1
  • 4
    • 85053009378 scopus 로고    scopus 로고
    • Deep learning - a technology with the potential to transform health care
    • Hinton, G., Deep learning - a technology with the potential to transform health care. JAMA 320 (2018), 1101–1102, 10.1001/jama.2018.11100.
    • (2018) JAMA , vol.320 , pp. 1101-1102
    • Hinton, G.1
  • 5
    • 85044927780 scopus 로고    scopus 로고
    • Big data and machine learning in health care
    • Beam, A.L., Kohane, I.S., Big data and machine learning in health care. JAMA 319 (2018), 1317–1318, 10.1001/jama.2017.18391.
    • (2018) JAMA , vol.319 , pp. 1317-1318
    • Beam, A.L.1    Kohane, I.S.2
  • 7
    • 85017527991 scopus 로고    scopus 로고
    • A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?
    • Rawson, T.M., Moore, L.S.P., Hernandez, B., Charani, E., Castro-Sanchez, E., Herrero, P., et al. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?. Clin Microbiol Infect 23 (2017), 524–532, 10.1016/j.cmi.2017.02.028.
    • (2017) Clin Microbiol Infect , vol.23 , pp. 524-532
    • Rawson, T.M.1    Moore, L.S.P.2    Hernandez, B.3    Charani, E.4    Castro-Sanchez, E.5    Herrero, P.6
  • 8
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza, F., Rasoini, R., Gensini, G.F., Unintended consequences of machine learning in medicine. JAMA, 318, 2017, 517, 10.1001/jama.2017.7797.
    • (2017) JAMA , vol.318 , pp. 517
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 10
    • 85063495599 scopus 로고    scopus 로고
    • Artificial intelligence can improve decision-making in infection management
    • Rawson, T.M., Ahmad, R., Toumazou, C., Georgiou, P., Holmes, A.H., Artificial intelligence can improve decision-making in infection management. Nat Hum Behav 3 (2019), 543–545, 10.1038/s41562-019-0583-9.
    • (2019) Nat Hum Behav , vol.3 , pp. 543-545
    • Rawson, T.M.1    Ahmad, R.2    Toumazou, C.3    Georgiou, P.4    Holmes, A.H.5
  • 11
    • 85050347328 scopus 로고    scopus 로고
    • Current applications and future impact of machine learning in radiology
    • Choy, G., Khalilzadeh, O., Michalski, M., Do, S., Samir, A.E., Pianykh, O.S., et al. Current applications and future impact of machine learning in radiology. Radiology 288 (2018), 318–328, 10.1148/radiol.2018171820.
    • (2018) Radiology , vol.288 , pp. 318-328
    • Choy, G.1    Khalilzadeh, O.2    Michalski, M.3    Do, S.4    Samir, A.E.5    Pianykh, O.S.6
  • 13
    • 85007524689 scopus 로고    scopus 로고
    • Adapting to artificial intelligence: radiologists and pathologists as information specialists
    • Jha, S., Topol, E.J., Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA, 316, 2016, 2353, 10.1001/jama.2016.17438.
    • (2016) JAMA , vol.316 , pp. 2353
    • Jha, S.1    Topol, E.J.2
  • 14
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6
  • 15
    • 85059811921 scopus 로고    scopus 로고
    • High-performance medicine: the convergence of human and artificial intelligence
    • Topol, E.J., High-performance medicine: the convergence of human and artificial intelligence. Nat Med 25 (2019), 44–56, 10.1038/s41591-018-0300-7.
    • (2019) Nat Med , vol.25 , pp. 44-56
    • Topol, E.J.1
  • 16
    • 85095168170 scopus 로고    scopus 로고
    • Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    • Abràmoff, M.D., Lavin, P.T., Birch, M., Shah, N., Folk, J.C., Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digit Med, 1, 2018, 39, 10.1038/s41746-018-0040-6.
    • (2018) Npj Digit Med , vol.1 , pp. 39
    • Abràmoff, M.D.1    Lavin, P.T.2    Birch, M.3    Shah, N.4    Folk, J.C.5
  • 17
    • 85033777988 scopus 로고    scopus 로고
    • Machine learning: novel bioinformatics approaches for combating antimicrobial resistance
    • Macesic, N., Polubriaginof, F., Tatonetti, N.P., Machine learning: novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis 30 (2017), 511–517, 10.1097/QCO.0000000000000406.
    • (2017) Curr Opin Infect Dis , vol.30 , pp. 511-517
    • Macesic, N.1    Polubriaginof, F.2    Tatonetti, N.P.3
  • 18
    • 85062287499 scopus 로고    scopus 로고
    • Genome-based prediction of bacterial antibiotic resistance
    • Su, M., Satola, S.W., Read, T.D., Genome-based prediction of bacterial antibiotic resistance. J Clin Microbiol, 2018, 10.1128/JCM.01405-18.
    • (2018) J Clin Microbiol
    • Su, M.1    Satola, S.W.2    Read, T.D.3
  • 19
    • 84958951455 scopus 로고    scopus 로고
    • Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance
    • Zazzi, M., Cozzi-Lepri, A., Prosperi, M.C.F., Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance. Curr HIV Res 14 (2016), 101–109, 10.2174/1570162X13666151029102254.
    • (2016) Curr HIV Res , vol.14 , pp. 101-109
    • Zazzi, M.1    Cozzi-Lepri, A.2    Prosperi, M.C.F.3
  • 21
    • 85021767773 scopus 로고    scopus 로고
    • Automated surveillance of healthcare-associated infections: state of the art
    • Sips, M.E., Bonten, M.J.M., van Mourik, M.S.M., Automated surveillance of healthcare-associated infections: state of the art. Curr Opin Infect Dis 30 (2017), 425–431, 10.1097/QCO.0000000000000376.
    • (2017) Curr Opin Infect Dis , vol.30 , pp. 425-431
    • Sips, M.E.1    Bonten, M.J.M.2    van Mourik, M.S.M.3
  • 22
    • 85032030361 scopus 로고    scopus 로고
    • What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?
    • Lee, E.Y., Lee, M.W., Fulan, B.M., Ferguson, A.L., Wong, G.C.L., What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?. Interface Focus, 7, 2017, 20160153, 10.1098/rsfs.2016.0153.
    • (2017) Interface Focus , vol.7 , pp. 20160153
    • Lee, E.Y.1    Lee, M.W.2    Fulan, B.M.3    Ferguson, A.L.4    Wong, G.C.L.5
  • 23
    • 84918779199 scopus 로고    scopus 로고
    • Machine-learning techniques applied to antibacterial drug discovery
    • Durrant, J.D., Amaro, R.E., Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Des 85 (2015), 14–21, 10.1111/cbdd.12423.
    • (2015) Chem Biol Drug Des , vol.85 , pp. 14-21
    • Durrant, J.D.1    Amaro, R.E.2
  • 24
    • 77954557662 scopus 로고    scopus 로고
    • Comparative pathogenesis and systems biology for biodefense virus vaccine development
    • Bowick, G.C., Barrett, A.D.T., Comparative pathogenesis and systems biology for biodefense virus vaccine development. J Biomed Biotechnol, 2010, 2010, 236528, 10.1155/2010/236528.
    • (2010) J Biomed Biotechnol , vol.2010 , pp. 236528
    • Bowick, G.C.1    Barrett, A.D.T.2
  • 25
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo, R.C., Machine learning in medicine. Circulation 132 (2015), 1920–1930, 10.1161/CIRCULATIONAHA.115.001593.
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 26
    • 0003584577 scopus 로고    scopus 로고
    • Artificial intelligence: a modern approach
    • Third. Pearson
    • Russell, S., Norvig, P., Artificial intelligence: a modern approach. 2016, Third. Pearson.
    • (2016)
    • Russell, S.1    Norvig, P.2
  • 27
    • 85043773463 scopus 로고    scopus 로고
    • Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - a data-driven approach using machine-learning algorithms
    • Lamping, F., Jack, T., Rübsamen, N., Sasse, M., Beerbaum, P., Mikolajczyk, R.T., et al. Development and validation of a diagnostic model for early differentiation of sepsis and non-infectious SIRS in critically ill children - a data-driven approach using machine-learning algorithms. BMC Pediatr, 18, 2018, 112, 10.1186/s12887-018-1082-2.
    • (2018) BMC Pediatr , vol.18 , pp. 112
    • Lamping, F.1    Jack, T.2    Rübsamen, N.3    Sasse, M.4    Beerbaum, P.5    Mikolajczyk, R.T.6
  • 28
    • 85063062224 scopus 로고    scopus 로고
    • Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia
    • Oonsivilai, M., Mo, Y., Luangasanatip, N., Lubell, Y., Miliya, T., Tan, P., et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a children's hospital in Cambodia. Wellcome Open Res, 3, 2018, 10.12688/wellcomeopenres.14847.1.
    • (2018) Wellcome Open Res , vol.3
    • Oonsivilai, M.1    Mo, Y.2    Luangasanatip, N.3    Lubell, Y.4    Miliya, T.5    Tan, P.6
  • 29
    • 85044236846 scopus 로고    scopus 로고
    • Pediatric severe sepsis prediction using machine learning
    • Desautels, T., Hoffman, J., Barton, C., Mao, Q., Jay, M., Calvert, J., et al. Pediatric severe sepsis prediction using machine learning. bioRxiv, 2017, 223289, 10.1101/223289.
    • (2017) bioRxiv , pp. 223289
    • Desautels, T.1    Hoffman, J.2    Barton, C.3    Mao, Q.4    Jay, M.5    Calvert, J.6
  • 30
    • 85050874585 scopus 로고    scopus 로고
    • Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm
    • Bartz-Kurycki, M.A., Green, C., Anderson, K.T., Alder, A.C., Bucher, B.T., Cina, R.A., et al. Enhanced neonatal surgical site infection prediction model utilizing statistically and clinically significant variables in combination with a machine learning algorithm. Am J Surg 216 (2018), 764–777, 10.1016/j.amjsurg.2018.07.041.
    • (2018) Am J Surg , vol.216 , pp. 764-777
    • Bartz-Kurycki, M.A.1    Green, C.2    Anderson, K.T.3    Alder, A.C.4    Bucher, B.T.5    Cina, R.A.6
  • 31
    • 85050146504 scopus 로고    scopus 로고
    • Prediction of clinicians’ treatment in preterm infants with suspected late-onset sepsis - an ML approach
    • Hu, Y., Lee, V.C.S., Tan, K., Prediction of clinicians’ treatment in preterm infants with suspected late-onset sepsis - an ML approach. 2018 13th IEEE conference on industrial electronics and applications (ICIEA), 2018, 1177–1182, 10.1109/ICIEA.2018.8397888.
    • (2018) 2018 13th IEEE conference on industrial electronics and applications (ICIEA) , pp. 1177-1182
    • Hu, Y.1    Lee, V.C.S.2    Tan, K.3
  • 32
    • 84894094760 scopus 로고    scopus 로고
    • Medical decision support using machine learning for early detection of late-onset neonatal sepsis
    • Mani, S., Ozdas, A., Aliferis, C., Varol, H.A., Chen, Q., Carnevale, R., et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc JAMIA 21 (2014), 326–336, 10.1136/amiajnl-2013-001854.
    • (2014) J Am Med Inform Assoc JAMIA , vol.21 , pp. 326-336
    • Mani, S.1    Ozdas, A.2    Aliferis, C.3    Varol, H.A.4    Chen, Q.5    Carnevale, R.6
  • 33
    • 85008247993 scopus 로고    scopus 로고
    • From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis
    • Tsoukalas, A., Albertson, T., Tagkopoulos, I., From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. JMIR Med Inform, 3, 2015, e11, 10.2196/medinform.3445.
    • (2015) JMIR Med Inform , vol.3 , pp. e11
    • Tsoukalas, A.1    Albertson, T.2    Tagkopoulos, I.3
  • 35
    • 85073066551 scopus 로고    scopus 로고
    • Toward automated early sepsis alerting: identifying infection patients from nursing notes
    • ArXiv180903995 Cs (Accessed 20 February 2019)
    • Apostolova, E., Velez, T., Toward automated early sepsis alerting: identifying infection patients from nursing notes. ArXiv180903995 Cs, 2018 http://arxiv.org/abs/1809.03995. (Accessed 20 February 2019)
    • (2018)
    • Apostolova, E.1    Velez, T.2
  • 36
    • 85073072943 scopus 로고    scopus 로고
    • Predicting severe sepsis using text from the electronic health record
    • ArXiv171111536 Cs (Accessed 30 January 2019)
    • Culliton, P., Levinson, M., Ehresman, A., Wherry, J., Steingrub, J.S., Gallant, S.I., Predicting severe sepsis using text from the electronic health record. ArXiv171111536 Cs, 2017 http://arxiv.org/abs/1711.11536. (Accessed 30 January 2019)
    • (2017)
    • Culliton, P.1    Levinson, M.2    Ehresman, A.3    Wherry, J.4    Steingrub, J.S.5    Gallant, S.I.6
  • 39
    • 85044240544 scopus 로고    scopus 로고
    • Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
    • McCoy, A., Das, R., Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual, 6, 2017, e000158, 10.1136/bmjoq-2017-000158.
    • (2017) BMJ Open Qual , vol.6
    • McCoy, A.1    Das, R.2
  • 40
    • 85073050036 scopus 로고    scopus 로고
    • Evaluating a sepsis prediction machine learning algorithm in the emergency department and intensive care unit: a before and after comparative study
    • Burdick, H., Pino, E., Gabel-Comeau, D., Gu, C., Huang, H., Lynn-Palevsky, A., et al. Evaluating a sepsis prediction machine learning algorithm in the emergency department and intensive care unit: a before and after comparative study. bioRxiv, 2018, 10.1101/224014.
    • (2018) bioRxiv
    • Burdick, H.1    Pino, E.2    Gabel-Comeau, D.3    Gu, C.4    Huang, H.5    Lynn-Palevsky, A.6
  • 41
    • 85073053227 scopus 로고    scopus 로고
    • Effect of a sepsis prediction algorithm on patient mortality, length of stay, and readmission
    • Burdick, H., Pino, E., Gabel-Comeau, D., McCoy, A., Gu, C., Roberts, J., et al. Effect of a sepsis prediction algorithm on patient mortality, length of stay, and readmission. bioRxiv, 2018, 10.1101/457465.
    • (2018) bioRxiv
    • Burdick, H.1    Pino, E.2    Gabel-Comeau, D.3    McCoy, A.4    Gu, C.5    Roberts, J.6
  • 42
    • 85026253282 scopus 로고    scopus 로고
    • Quasi-experimental study designs series-paper 7: assessing the assumptions
    • Bärnighausen, T., Oldenburg, C., Tugwell, P., Bommer, C., Ebert, C., Barreto, M., et al. Quasi-experimental study designs series-paper 7: assessing the assumptions. J Clin Epidemiol 89 (2017), 53–66, 10.1016/j.jclinepi.2017.02.017.
    • (2017) J Clin Epidemiol , vol.89 , pp. 53-66
    • Bärnighausen, T.1    Oldenburg, C.2    Tugwell, P.3    Bommer, C.4    Ebert, C.5    Barreto, M.6
  • 43
    • 85048779527 scopus 로고    scopus 로고
    • Bias in before-after studies: narrative overview for anesthesiologists
    • Ho, A.M.H., Phelan, R., Mizubuti, G.B., Murdoch, J.A.C., Wickett, S., Ho, A.K., et al. Bias in before-after studies: narrative overview for anesthesiologists. Anesth Analg 126 (2018), 1755–1762, 10.1213/ANE.0000000000002705.
    • (2018) Anesth Analg , vol.126 , pp. 1755-1762
    • Ho, A.M.H.1    Phelan, R.2    Mizubuti, G.B.3    Murdoch, J.A.C.4    Wickett, S.5    Ho, A.K.6
  • 44
    • 85052147470 scopus 로고    scopus 로고
    • Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial
    • Shimabukuro, D.W., Barton, C.W., Feldman, M.D., Mataraso, S.J., Das, R., Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res, 4, 2017, e000234, 10.1136/bmjresp-2017-000234.
    • (2017) BMJ Open Respir Res , vol.4
    • Shimabukuro, D.W.1    Barton, C.W.2    Feldman, M.D.3    Mataraso, S.J.4    Das, R.5
  • 46
    • 0032694357 scopus 로고    scopus 로고
    • Predicting active pulmonary tuberculosis using an artificial neural network
    • El-Solh, A.A., Hsiao, C.-B., Goodnough, S., Serghani, J., Grant, B.J.B., Predicting active pulmonary tuberculosis using an artificial neural network. Chest 116 (1999), 968–973, 10.1378/chest.116.4.968.
    • (1999) Chest , vol.116 , pp. 968-973
    • El-Solh, A.A.1    Hsiao, C.-B.2    Goodnough, S.3    Serghani, J.4    Grant, B.J.B.5
  • 48
    • 84964906479 scopus 로고    scopus 로고
    • An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
    • Melendez, J., Sánchez, C.I., Philipsen, R.H.H.M., Maduskar, P., Dawson, R., Theron, G., et al. An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci Rep, 6, 2016, 10.1038/srep25265.
    • (2016) Sci Rep , vol.6
    • Melendez, J.1    Sánchez, C.I.2    Philipsen, R.H.H.M.3    Maduskar, P.4    Dawson, R.5    Theron, G.6
  • 49
    • 77954067701 scopus 로고    scopus 로고
    • Tuberculosis disease diagnosis using artificial neural networks
    • Er, O., Temurtas, F., Tanrıkulu, A.Ç., Tuberculosis disease diagnosis using artificial neural networks. J Med Syst 34 (2010), 299–302, 10.1007/s10916-008-9241-x.
    • (2010) J Med Syst , vol.34 , pp. 299-302
    • Er, O.1    Temurtas, F.2    Tanrıkulu, A.Ç.3
  • 50
    • 77954537625 scopus 로고    scopus 로고
    • Neural networks: an application for predicting smear negative pulmonary tuberculosis
    • J.-L. Auget N. Balakrishnan M. Mesbah G. Molenberghs Birkhäuser Boston Boston, MA
    • Santos, A.M., Pereira, B.B., Seixas, J.M., Mello, F.C.Q., Kritski, A.L., Neural networks: an application for predicting smear negative pulmonary tuberculosis. Auget, J.-L., Balakrishnan, N., Mesbah, M., Molenberghs, G., (eds.) Advances in statistical methods for the health sciences, 2007, Birkhäuser Boston, Boston, MA, 275–287, 10.1007/978-0-8176-4542-7_18.
    • (2007) Advances in statistical methods for the health sciences , pp. 275-287
    • Santos, A.M.1    Pereira, B.B.2    Seixas, J.M.3    Mello, F.C.Q.4    Kritski, A.L.5
  • 54
    • 85056333942 scopus 로고    scopus 로고
    • Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks
    • Van Steenkiste, T., Ruyssinck, J., De Baets, L., Decruyenaere, J., De Turck, F., Ongenae, F., et al. Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks. Artif Intell Med, 2018, 10.1016/j.artmed.2018.10.008.
    • (2018) Artif Intell Med
    • Van Steenkiste, T.1    Ruyssinck, J.2    De Baets, L.3    Decruyenaere, J.4    De Turck, F.5    Ongenae, F.6
  • 55
    • 84991259481 scopus 로고    scopus 로고
    • A prognostic model of surgical site infection using daily clinical wound assessment
    • e2
    • Sanger, P.C., van Ramshorst, G.H., Mercan, E., Huang, S., Hartzler, A.L., Armstrong, C.A.L., et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surg 223 (2016), 259–270, 10.1016/j.jamcollsurg.2016.04.046 e2.
    • (2016) J Am Coll Surg , vol.223 , pp. 259-270
    • Sanger, P.C.1    van Ramshorst, G.H.2    Mercan, E.3    Huang, S.4    Hartzler, A.L.5    Armstrong, C.A.L.6
  • 56
    • 85042731124 scopus 로고    scopus 로고
    • Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer
    • Kuo, P-J, Wu, S-C, Chien, P-C, Chang, S-S, Rau, C-S, Tai, H-L, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 9 (2018), 13768–13782, 10.18632/oncotarget.24468.
    • (2018) Oncotarget , vol.9 , pp. 13768-13782
    • Kuo, P.-J.1    Wu, S.-C.2    Chien, P.-C.3    Chang, S.-S.4    Rau, C.-S.5    Tai, H.-L.6
  • 57
    • 84997820960 scopus 로고    scopus 로고
    • Prognostics of surgical site infections using dynamic health data
    • Ke, C., Jin, Y., Evans, H., Lober, B., Qian, X., Liu, J., et al. Prognostics of surgical site infections using dynamic health data. J Biomed Inform 65 (2017), 22–33, 10.1016/j.jbi.2016.10.021.
    • (2017) J Biomed Inform , vol.65 , pp. 22-33
    • Ke, C.1    Jin, Y.2    Evans, H.3    Lober, B.4    Qian, X.5    Liu, J.6
  • 58
    • 85063012496 scopus 로고    scopus 로고
    • Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study
    • Rawson, T.M., Hernandez, B., Moore, L.S.P., Blandy, O., Herrero, P., Gilchrist, M., et al. Supervised machine learning for the prediction of infection on admission to hospital: a prospective observational cohort study. J Antimicrob Chemother 74 (2019), 1108–1115, 10.1093/jac/dky514.
    • (2019) J Antimicrob Chemother , vol.74 , pp. 1108-1115
    • Rawson, T.M.1    Hernandez, B.2    Moore, L.S.P.3    Blandy, O.4    Herrero, P.5    Gilchrist, M.6
  • 59
    • 85017113914 scopus 로고    scopus 로고
    • Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. Groza T, ed
    • Horng, S., Sontag, D.A., Halpern, Y., Jernite, Y., Shapiro, N.I., Nathanson, L.A., Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. Groza T, ed. PLoS One, 12, 2017, e0174708, 10.1371/journal.pone.0174708.
    • (2017) PLoS One , vol.12
    • Horng, S.1    Sontag, D.A.2    Halpern, Y.3    Jernite, Y.4    Shapiro, N.I.5    Nathanson, L.A.6
  • 60
    • 85042925770 scopus 로고    scopus 로고
    • Predicting urinary tract infections in the emergency department with machine learning
    • Taylor, R.A., Moore, C.L., Cheung, K.-H., Brandt, C., Predicting urinary tract infections in the emergency department with machine learning. PLoS One, 13, 2018, e0194085, 10.1371/journal.pone.0194085.
    • (2018) PLoS One , vol.13 , pp. e0194085
    • Taylor, R.A.1    Moore, C.L.2    Cheung, K.-H.3    Brandt, C.4
  • 61
    • 34547650594 scopus 로고    scopus 로고
    • A machine learning approach to differentiating bacterial from viral meningitis
    • IEEE
    • Revett, K., Gorunescu, F., Ene, M., A machine learning approach to differentiating bacterial from viral meningitis. 2006, IEEE, 155–162, 10.1109/JVA.2006.2.
    • (2006) , pp. 155-162
    • Revett, K.1    Gorunescu, F.2    Ene, M.3
  • 62
    • 85059543858 scopus 로고    scopus 로고
    • A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees
    • D'Angelo, G., Pilla, R., Tascini, C., Rampone, S., A proposal for distinguishing between bacterial and viral meningitis using genetic programming and decision trees. Soft Comput, 2019, 10.1007/s00500-018-03729-y.
    • (2019) Soft Comput
    • D'Angelo, G.1    Pilla, R.2    Tascini, C.3    Rampone, S.4
  • 64
    • 39049179056 scopus 로고    scopus 로고
    • Neural network-longitudinal assessment of the Electronic Anti-Retroviral THerapy (EARTH) cohort to follow response to HIV-treatment
    • Hatzakis, G.E., Mathur, M., Gilbert, L., Panos, G., Wanchu, A., Patel, A.K., et al. Neural network-longitudinal assessment of the Electronic Anti-Retroviral THerapy (EARTH) cohort to follow response to HIV-treatment. AMIA Annu Symp Proc AMIA Symp, 2005, 301–305.
    • (2005) AMIA Annu Symp Proc AMIA Symp , pp. 301-305
    • Hatzakis, G.E.1    Mathur, M.2    Gilbert, L.3    Panos, G.4    Wanchu, A.5    Patel, A.K.6
  • 66
    • 84856433482 scopus 로고    scopus 로고
    • Predicting response to antiretroviral treatment by machine learning: the EuResist project
    • Zazzi, M., Incardona, F., Rosen-Zvi, M., Prosperi, M., Lengauer, T., Altmann, A., et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology 55 (2012), 123–127, 10.1159/000332008.
    • (2012) Intervirology , vol.55 , pp. 123-127
    • Zazzi, M.1    Incardona, F.2    Rosen-Zvi, M.3    Prosperi, M.4    Lengauer, T.5    Altmann, A.6
  • 67
    • 85055130629 scopus 로고    scopus 로고
    • 2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings
    • Revell, A.D., Wang, D., Perez-Elias, M-J, Wood, R., Cogill, D., Tempelman, H., et al. 2018 update to the HIV-TRePS system: the development of new computational models to predict HIV treatment outcomes, with or without a genotype, with enhanced usability for low-income settings. J Antimicrob Chemother 73 (2018), 2186–2196, 10.1093/jac/dky179.
    • (2018) J Antimicrob Chemother , vol.73 , pp. 2186-2196
    • Revell, A.D.1    Wang, D.2    Perez-Elias, M.-J.3    Wood, R.4    Cogill, D.5    Tempelman, H.6
  • 68
    • 84928390562 scopus 로고    scopus 로고
    • Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring
    • Petersen, M.L., LeDell, E., Schwab, J., Sarovar, V., Gross, R., Reynolds, N., et al. Super learner analysis of electronic adherence data improves viral prediction and may provide strategies for selective HIV RNA monitoring. J Acquir Immune Defic Syndr 1999 69 (2015), 109–118, 10.1097/QAI.0000000000000548.
    • (2015) J Acquir Immune Defic Syndr 1999 , vol.69 , pp. 109-118
    • Petersen, M.L.1    LeDell, E.2    Schwab, J.3    Sarovar, V.4    Gross, R.5    Reynolds, N.6
  • 69
    • 3042684526 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of response to interferon plus ribavirin treatment in patients with chronic hepatitis C
    • Maiellaro, P.A., Cozzolongo, R., Marino, P., Artificial neural networks for the prediction of response to interferon plus ribavirin treatment in patients with chronic hepatitis C. Curr Pharm Des 10 (2004), 2101–2109.
    • (2004) Curr Pharm Des , vol.10 , pp. 2101-2109
    • Maiellaro, P.A.1    Cozzolongo, R.2    Marino, P.3
  • 70
    • 82555168483 scopus 로고    scopus 로고
    • Prediction of effect of pegylated interferon alpha-2b plus ribavirin combination therapy in patients with chronic hepatitis C infection
    • Takayama, T., Ebinuma, H., Tada, S., Yamagishi, Y., Wakabayashi, K., Ojiro, K., et al. Prediction of effect of pegylated interferon alpha-2b plus ribavirin combination therapy in patients with chronic hepatitis C infection. PLoS One, 6, 2011, e27223, 10.1371/journal.pone.0027223.
    • (2011) PLoS One , vol.6 , pp. e27223
    • Takayama, T.1    Ebinuma, H.2    Tada, S.3    Yamagishi, Y.4    Wakabayashi, K.5    Ojiro, K.6
  • 71
    • 84903518925 scopus 로고    scopus 로고
    • Predicting the outcomes of combination therapy in patients with chronic hepatitis C using artificial neural network
    • Sargolzaee Aval, F., Behnaz, N., Raoufy, M.R., Alavian, S.M., Predicting the outcomes of combination therapy in patients with chronic hepatitis C using artificial neural network. Hepat Mon, 14, 2014, e17028, 10.5812/hepatmon.17028.
    • (2014) Hepat Mon , vol.14 , pp. e17028
    • Sargolzaee Aval, F.1    Behnaz, N.2    Raoufy, M.R.3    Alavian, S.M.4
  • 72
    • 85042218244 scopus 로고    scopus 로고
    • Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models
    • Hussain, O.A., Junejo, K.N., Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models. Inform Health Soc Care, 2018, 1–17, 10.1080/17538157.2018.1433676.
    • (2018) Inform Health Soc Care , pp. 1-17
    • Hussain, O.A.1    Junejo, K.N.2
  • 73
    • 85056803154 scopus 로고    scopus 로고
    • Feature selection and prediction of treatment failure in tuberculosis. Huang Z, ed
    • Sauer, C.M., Sasson, D., Paik, K.E., McCague, N., Celi, L.A., Sánchez Fernández, I., et al. Feature selection and prediction of treatment failure in tuberculosis. Huang Z, ed. PLoS One, 13, 2018, e0207491, 10.1371/journal.pone.0207491.
    • (2018) PLoS One , vol.13
    • Sauer, C.M.1    Sasson, D.2    Paik, K.E.3    McCague, N.4    Celi, L.A.5    Sánchez Fernández, I.6
  • 74
    • 85067183658 scopus 로고    scopus 로고
    • Using machine learning and the electronic health record to predict complicated Clostridium difficile infection
    • Li, B.Y., Oh, J., Young, V.B., Rao, K., Wiens, J., Using machine learning and the electronic health record to predict complicated Clostridium difficile infection. Open Forum Infect Dis, 6, 2019, ofz186, 10.1093/ofid/ofz186.
    • (2019) Open Forum Infect Dis , vol.6 , pp. ofz186
    • Li, B.Y.1    Oh, J.2    Young, V.B.3    Rao, K.4    Wiens, J.5
  • 76
    • 85029857162 scopus 로고    scopus 로고
    • Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system
    • Escobar, G.J., Baker, J.M., Kipnis, P., Greene, J.D., Mast, T.C., Gupta, S.B., et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol 38 (2017), 1196–1203, 10.1017/ice.2017.176.
    • (2017) Infect Control Hosp Epidemiol , vol.38 , pp. 1196-1203
    • Escobar, G.J.1    Baker, J.M.2    Kipnis, P.3    Greene, J.D.4    Mast, T.C.5    Gupta, S.B.6
  • 77
    • 84971647404 scopus 로고    scopus 로고
    • An imbalanced learning based MDR-TB early warning system
    • Li, S., Tang, B., He, H., An imbalanced learning based MDR-TB early warning system. J Med Syst, 40, 2016, 10.1007/s10916-016-0517-2.
    • (2016) J Med Syst , vol.40
    • Li, S.1    Tang, B.2    He, H.3
  • 78
    • 85068773007 scopus 로고    scopus 로고
    • Personal clinical history predicts antibiotic resistance of urinary tract infections
    • Yelin, I., Snitser, O., Novich, G., Katz, R., Tal, O., Parizade, M., et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat Med 25 (2019), 1143–1152, 10.1038/s41591-019-0503-6.
    • (2019) Nat Med , vol.25 , pp. 1143-1152
    • Yelin, I.1    Snitser, O.2    Novich, G.3    Katz, R.4    Tal, O.5    Parizade, M.6
  • 79
    • 85068874561 scopus 로고    scopus 로고
    • Estimating the association between antibiotic exposure and colonization with extended-spectrum β-lactamase-producing Gram-negative bacteria using machine learning methods: a multicentre, prospective cohort study
    • Tacconelli, E., Górska, A., De Angelis, G., Lammens, C., Restuccia, G., Schrenzel, J., et al. Estimating the association between antibiotic exposure and colonization with extended-spectrum β-lactamase-producing Gram-negative bacteria using machine learning methods: a multicentre, prospective cohort study. Clin Microbiol Infect 26 (2020), 87–94.
    • (2020) Clin Microbiol Infect , vol.26 , pp. 87-94
    • Tacconelli, E.1    Górska, A.2    De Angelis, G.3    Lammens, C.4    Restuccia, G.5    Schrenzel, J.6
  • 80
    • 84959562185 scopus 로고    scopus 로고
    • Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs
    • Beaudoin, M., Kabanza, F., Nault, V., Valiquette, L., Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif Intell Med 68 (2016), 29–36, 10.1016/j.artmed.2016.02.001.
    • (2016) Artif Intell Med , vol.68 , pp. 29-36
    • Beaudoin, M.1    Kabanza, F.2    Nault, V.3    Valiquette, L.4
  • 81
    • 85041532672 scopus 로고    scopus 로고
    • An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription
    • Shen, Y., Yuan, K., Chen, D., Colloc, J., Yang, M., Li, Y., et al. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artif Intell Med 86 (2018), 20–32, 10.1016/j.artmed.2018.01.003.
    • (2018) Artif Intell Med , vol.86 , pp. 20-32
    • Shen, Y.1    Yuan, K.2    Chen, D.3    Colloc, J.4    Yang, M.5    Li, Y.6
  • 83
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316, 2016, 2402, 10.1001/jama.2016.17216.
    • (2016) JAMA , vol.316 , pp. 2402
    • Gulshan, V.1    Peng, L.2    Coram, M.3    Stumpe, M.C.4    Wu, D.5    Narayanaswamy, A.6
  • 84
    • 85058771359 scopus 로고    scopus 로고
    • Ensuring fairness in machine learning to advance health equity
    • Rajkomar, A., Hardt, M., Howell, M.D., Corrado, G., Chin, M.H., Ensuring fairness in machine learning to advance health equity. Ann Intern Med, 169, 2018, 866, 10.7326/M18-1990.
    • (2018) Ann Intern Med , vol.169 , pp. 866
    • Rajkomar, A.1    Hardt, M.2    Howell, M.D.3    Corrado, G.4    Chin, M.H.5
  • 85
    • 85053019174 scopus 로고    scopus 로고
    • Potential biases in machine learning algorithms using electronic health record data
    • Gianfrancesco, M.A., Tamang, S., Yazdany, J., Schmajuk, G., Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med 178 (2018), 1544–1547, 10.1001/jamainternmed.2018.3763.
    • (2018) JAMA Intern Med , vol.178 , pp. 1544-1547
    • Gianfrancesco, M.A.1    Tamang, S.2    Yazdany, J.3    Schmajuk, G.4
  • 86
    • 85054776504 scopus 로고    scopus 로고
    • Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases
    • Osakunor, D.N.M., Sengeh, D.M., Mutapi, F., Coinfections and comorbidities in African health systems: at the interface of infectious and noninfectious diseases. PLoS Negl Trop Dis, 12, 2018, 10.1371/journal.pntd.0006711.
    • (2018) PLoS Negl Trop Dis , vol.12
    • Osakunor, D.N.M.1    Sengeh, D.M.2    Mutapi, F.3
  • 87
    • 85029125816 scopus 로고    scopus 로고
    • Combining biomarkers with EMR data to identify patients in different phases of sepsis
    • Taneja, I., Reddy, B., Damhorst, G., Dave Zhao, S., Hassan, U., Price, Z., et al. Combining biomarkers with EMR data to identify patients in different phases of sepsis. Sci Rep, 7, 2017, 10800, 10.1038/s41598-017-09766-1.
    • (2017) Sci Rep , vol.7 , pp. 10800
    • Taneja, I.1    Reddy, B.2    Damhorst, G.3    Dave Zhao, S.4    Hassan, U.5    Price, Z.6
  • 88
    • 84995810431 scopus 로고    scopus 로고
    • Extracting information from the text of electronic medical records to improve case detection: a systematic review
    • Ford, E., Carroll, J.A., Smith, H.E., Scott, D., Cassell, J.A., Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 23 (2016), 1007–1015, 10.1093/jamia/ocv180.
    • (2016) J Am Med Inform Assoc , vol.23 , pp. 1007-1015
    • Ford, E.1    Carroll, J.A.2    Smith, H.E.3    Scott, D.4    Cassell, J.A.5
  • 89
    • 85034861727 scopus 로고    scopus 로고
    • Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies
    • Greenhalgh, T., Wherton, J., Papoutsi, C., Lynch, J., Hughes, G., A'Court, C., et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res, 19, 2017, e367, 10.2196/jmir.8775.
    • (2017) J Med Internet Res , vol.19 , pp. e367
    • Greenhalgh, T.1    Wherton, J.2    Papoutsi, C.3    Lynch, J.4    Hughes, G.5    A'Court, C.6
  • 90
    • 85053003464 scopus 로고    scopus 로고
    • Clinical implications and challenges of artificial intelligence and deep learning
    • Stead, W.W., Clinical implications and challenges of artificial intelligence and deep learning. JAMA 320 (2018), 1107–1108, 10.1001/jama.2018.11029.
    • (2018) JAMA , vol.320 , pp. 1107-1108
    • Stead, W.W.1
  • 91
    • 85003633058 scopus 로고    scopus 로고
    • Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study
    • Rawson, T.M., Charani, E., Moore, L.S.P., Hernandez, B., Castro-Sánchez, E., Herrero, P., et al. Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study. BMC Med, 14, 2016, 10.1186/s12916-016-0751-y0751-y.
    • (2016) BMC Med , vol.14
    • Rawson, T.M.1    Charani, E.2    Moore, L.S.P.3    Hernandez, B.4    Castro-Sánchez, E.5    Herrero, P.6
  • 92
    • 85058155533 scopus 로고    scopus 로고
    • Questions for artificial intelligence in health care
    • Maddox, T.M., Rumsfeld, J.S., Payne, P.R.O., Questions for artificial intelligence in health care. JAMA, 2018, 10.1001/jama.2018.18932.
    • (2018) JAMA
    • Maddox, T.M.1    Rumsfeld, J.S.2    Payne, P.R.O.3
  • 93
    • 85059735798 scopus 로고    scopus 로고
    • The practical implementation of artificial intelligence technologies in medicine
    • He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., Zhang, K., The practical implementation of artificial intelligence technologies in medicine. Nat Med 25 (2019), 30–36, 10.1038/s41591-018-0307-0.
    • (2019) Nat Med , vol.25 , pp. 30-36
    • He, J.1    Baxter, S.L.2    Xu, J.3    Xu, J.4    Zhou, X.5    Zhang, K.6
  • 94
    • 84922961555 scopus 로고    scopus 로고
    • More screen time, less face time – implications for EHR design
    • Asan, O., Smith, P., Montague, E., More screen time, less face time – implications for EHR design. J Eval Clin Pract 20 (2014), 896–901, 10.1111/jep.12182.
    • (2014) J Eval Clin Pract , vol.20 , pp. 896-901
    • Asan, O.1    Smith, P.2    Montague, E.3
  • 95
    • 33644890465 scopus 로고    scopus 로고
    • Electronic medical record use and physician–patient communication: an observational study of Israeli primary care encounters
    • Margalit, R.S., Roter, D., Dunevant, M.A., Larson, S., Reis, S., Electronic medical record use and physician–patient communication: an observational study of Israeli primary care encounters. Patient Educ Couns 61 (2006), 134–141, 10.1016/j.pec.2005.03.004.
    • (2006) Patient Educ Couns , vol.61 , pp. 134-141
    • Margalit, R.S.1    Roter, D.2    Dunevant, M.A.3    Larson, S.4    Reis, S.5
  • 96
    • 85063999048 scopus 로고    scopus 로고
    • An interpretable machine learning model for accurate prediction of sepsis in the ICU
    • Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D., Buchman, T.G., An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med 46 (2018), 547–553, 10.1097/CCM.0000000000002936.
    • (2018) Crit Care Med , vol.46 , pp. 547-553
    • Nemati, S.1    Holder, A.2    Razmi, F.3    Stanley, M.D.4    Clifford, G.D.5    Buchman, T.G.6
  • 97
    • 85059805583 scopus 로고    scopus 로고
    • Privacy in the age of medical big data
    • Price, W.N., Cohen, I.G., Privacy in the age of medical big data. Nat Med 25 (2019), 37–43, 10.1038/s41591-018-0272-7.
    • (2019) Nat Med , vol.25 , pp. 37-43
    • Price, W.N.1    Cohen, I.G.2
  • 98
    • 85017001414 scopus 로고    scopus 로고
    • Cost and mortality impact of an algorithm-driven sepsis prediction system
    • Calvert, J., Hoffman, J., Barton, C., Shimabukuro, D., Ries, M., Chettipally, U., et al. Cost and mortality impact of an algorithm-driven sepsis prediction system. J Med Econ 20 (2017), 646–651, 10.1080/13696998.2017.1307203.
    • (2017) J Med Econ , vol.20 , pp. 646-651
    • Calvert, J.1    Hoffman, J.2    Barton, C.3    Shimabukuro, D.4    Ries, M.5    Chettipally, U.6
  • 100
    • 85033376054 scopus 로고    scopus 로고
    • A survey of machine learning applications in HIV clinical research and care
    • Bisaso, K.R., Anguzu, G.T., Karungi, S.A., Kiragga, A., Castelnuovo, B., A survey of machine learning applications in HIV clinical research and care. Comput Biol Med 91 (2017), 366–371, 10.1016/j.compbiomed.2017.11.001.
    • (2017) Comput Biol Med , vol.91 , pp. 366-371
    • Bisaso, K.R.1    Anguzu, G.T.2    Karungi, S.A.3    Kiragga, A.4    Castelnuovo, B.5
  • 101
    • 84958951455 scopus 로고    scopus 로고
    • Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance
    • Zazzi, M., Cozzi-Lepri, A., Prosperi, M.C.F., Computer-aided optimization of combined anti-retroviral therapy for HIV: new drugs, new drug targets and drug resistance. Curr HIV Res 14 (2016), 101–109.
    • (2016) Curr HIV Res , vol.14 , pp. 101-109
    • Zazzi, M.1    Cozzi-Lepri, A.2    Prosperi, M.C.F.3
  • 102
    • 84969677626 scopus 로고    scopus 로고
    • Using online social networks to track a pandemic: a systematic review
    • Al-Garadi, M.A., Khan, M.S., Varathan, K.D., Mujtaba, G., Al-Kabsi, A.M., Using online social networks to track a pandemic: a systematic review. J Biomed Inform 62 (2016), 1–11, 10.1016/j.jbi.2016.05.005.
    • (2016) J Biomed Inform , vol.62 , pp. 1-11
    • Al-Garadi, M.A.1    Khan, M.S.2    Varathan, K.D.3    Mujtaba, G.4    Al-Kabsi, A.M.5
  • 103
    • 84927516180 scopus 로고    scopus 로고
    • Computational approaches for prediction of pathogen-host protein-protein interactions
    • Nourani, E., Khunjush, F., Durmuş, S., Computational approaches for prediction of pathogen-host protein-protein interactions. Front Microbiol, 6, 2015, 94, 10.3389/fmicb.2015.00094.
    • (2015) Front Microbiol , vol.6 , pp. 94
    • Nourani, E.1    Khunjush, F.2    Durmuş, S.3
  • 104
    • 84874363340 scopus 로고    scopus 로고
    • Progress in computational studies of host-pathogen interactions
    • Zhou, H., Jin, J., Wong, L., Progress in computational studies of host-pathogen interactions. J Bioinform Comput Biol, 11, 2013, 1230001, 10.1142/S0219720012300018.
    • (2013) J Bioinform Comput Biol , vol.11 , pp. 1230001
    • Zhou, H.1    Jin, J.2    Wong, L.3
  • 105
    • 84872091657 scopus 로고    scopus 로고
    • Identification of legionella effectors using bioinformatic approaches
    • Segal, G., Identification of legionella effectors using bioinformatic approaches. Methods Mol Biol Clifton NJ 954 (2013), 595–602, 10.1007/978-1-62703-161-5_37.
    • (2013) Methods Mol Biol Clifton NJ , vol.954 , pp. 595-602
    • Segal, G.1
  • 106
    • 85010875145 scopus 로고    scopus 로고
    • Systems serology for evaluation of HIV vaccine trials
    • Ackerman, M.E., Barouch, D.H., Alter, G., Systems serology for evaluation of HIV vaccine trials. Immunol Rev 275 (2017), 262–270, 10.1111/imr.12503.
    • (2017) Immunol Rev , vol.275 , pp. 262-270
    • Ackerman, M.E.1    Barouch, D.H.2    Alter, G.3
  • 108
    • 85048883549 scopus 로고    scopus 로고
    • Microscopy in infectious disease research - imaging across scales
    • Laketa, V., Microscopy in infectious disease research - imaging across scales. J Mol Biol 430 (2018), 2612–2625, 10.1016/j.jmb.2018.06.018.
    • (2018) J Mol Biol , vol.430 , pp. 2612-2625
    • Laketa, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.