메뉴 건너뛰기




Volumn 25, Issue 1, 2019, Pages 30-36

The practical implementation of artificial intelligence technologies in medicine

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTIFICIAL INTELLIGENCE; CHINA; DRUG SAFETY; EUROPE; HUMAN; PATIENT SAFETY; PRIVACY; REVIEW; STANDARDIZATION; UNITED STATES; WORKFLOW; ALGORITHM; MEDICINE; SOCIAL CONTROL; STANDARD;

EID: 85059735798     PISSN: 10788956     EISSN: 1546170X     Source Type: Journal    
DOI: 10.1038/s41591-018-0307-0     Document Type: Review
Times cited : (1301)

References (37)
  • 1
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402 (2016)
    • (2016) JAMA , vol.316 , pp. 2402
    • Gulshan, V.1
  • 2
    • 85042389905 scopus 로고    scopus 로고
    • Identifying medical diagnoses and treatable diseases by image-based deep learning
    • COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D
    • Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e9 (2018)
    • (2018) Cell , vol.172 , pp. 1122-1131.e9
    • Kermany, D.S.1
  • 3
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 4
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
    • COI: 1:CAS:528:DC%2BC28Xmt1eitLo%3D
    • Cheng, J.-Z. et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
    • (2016) Sci. Rep. , vol.6
    • Cheng, J.Z.1
  • 6
    • 84875646817 scopus 로고    scopus 로고
    • The inevitable application of big data to health care
    • COI: 1:CAS:528:DC%2BC3sXlvVSkur4%3D
    • Murdoch, T. B. & Detsky, A. S. The inevitable application of big data to health care. JAMA 309, 1351–1352 (2013)
    • (2013) JAMA , vol.309 , pp. 1351-1352
    • Murdoch, T.B.1    Detsky, A.S.2
  • 7
    • 85050483912 scopus 로고    scopus 로고
    • Artificial intelligence in healthcare: Past, present and future
    • Jiang, F. et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 21, 230–243 (2017)
    • (2017) Stroke Vasc. Neurol. , vol.21 , pp. 230-243
    • Jiang, F.1
  • 8
    • 85047558352 scopus 로고    scopus 로고
    • Artificial intelligence in cardiology
    • Johnson, K. W. et al. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71, 2668–2679 (2018)
    • (2018) J. Am. Coll. Cardiol. , vol.71 , pp. 2668-2679
    • Johnson, K.W.1
  • 9
    • 85045189457 scopus 로고    scopus 로고
    • Canadian association of radiologists white paper on artificial intelligence in radiology
    • Tang, A. et al. Canadian association of radiologists white paper on artificial intelligence in radiology. Can. Assoc. Radiol. J. J. Assoc. Can. Radiol. 69, 120–135 (2018)
    • (2018) Can. Assoc. Radiol. J. J. Assoc. Can. Radiol. , vol.69 , pp. 120-135
    • Tang, A.1
  • 10
    • 85059742228 scopus 로고    scopus 로고
    • Artificial intelligence in healthcare: Babylon Health & IBM Watson take the lead
    • Pelcyger, B. Artificial intelligence in healthcare: Babylon Health & IBM Watson take the lead. Prescouter https://prescouter.com/2017/12/artificial-intelligence-healthcare/ (2017)
    • (2017) Prescouter
    • Pelcyger, B.1
  • 11
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018)
    • (2018) Nat. Med. , vol.24 , pp. 1342-1350
    • De Fauw, J.1
  • 12
    • 85015190048 scopus 로고    scopus 로고
    • Cardiac imaging: working towards fully-automated machine analysis & interpretation
    • COI: 1:CAS:528:DC%2BC2sXkt1Wnurc%3D
    • Slomka, P. J. et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev. Med. Devices 14, 197–212 (2017)
    • (2017) Expert Rev. Med. Devices , vol.14 , pp. 197-212
    • Slomka, P.J.1
  • 14
    • 85025112337 scopus 로고    scopus 로고
    • Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
    • Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017)
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 15
    • 85013347498 scopus 로고    scopus 로고
    • Integrated precision medicine: the role of electronic health records in delivering personalized treatment. Wiley Interdiscip
    • Sitapati, A. et al. Integrated precision medicine: the role of electronic health records in delivering personalized treatment. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, 1–12 (2017)
    • (2017) Rev. Syst. Biol. Med. , vol.9 , pp. 1-12
    • Sitapati, A.1
  • 17
    • 85034856540 scopus 로고    scopus 로고
    • When machines think: radiology’s next frontier
    • Dreyer, K. J. & Geis, J. R. When machines think: radiology’s next frontier. Radiology 285, 713–718 (2017)
    • (2017) Radiology , vol.285 , pp. 713-718
    • Dreyer, K.J.1    Geis, J.R.2
  • 18
    • 85008869327 scopus 로고    scopus 로고
    • Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis
    • Niu, J., Tang, W., Xu, F., Zhou, X. & Song, Y. Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis. ISPRS Int. J. Geo-Inf. 5, 66 (2016)
    • (2016) ISPRS Int. J. Geo-Inf. , vol.5 , pp. 66
    • Niu, J.1    Tang, W.2    Xu, F.3    Zhou, X.4    Song, Y.5
  • 21
    • 85044137182 scopus 로고    scopus 로고
    • Implementing machine learning in health care—addressing ethical challenges
    • Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care—addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018)
    • (2018) N. Engl. J. Med. , vol.378 , pp. 981-983
    • Char, D.S.1    Shah, N.H.2    Magnus, D.3
  • 23
    • 79961177806 scopus 로고    scopus 로고
    • The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart
    • COI: 1:CAS:528:DC%2BC3MXhtVSiurnN
    • Fonseca, C. G. et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinforma. Oxf. Engl. 27, 2288–2295 (2011)
    • (2011) Bioinforma. Oxf. Engl. , vol.27 , pp. 2288-2295
    • Fonseca, C.G.1
  • 24
    • 84994495874 scopus 로고    scopus 로고
    • Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks
    • Jimenez-Del-Toro, O. et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans. Med. Imaging 35, 2459–2475 (2016)
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 2459-2475
    • Jimenez-Del-Toro, O.1
  • 26
    • 85049736728 scopus 로고    scopus 로고
    • Artificial intelligence in surgery: promises and perils
    • &
    • Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018)
    • (2018) Ann. Surg. , vol.268 , pp. 70-76
    • Hashimoto, D.A.1    Rosman, G.2    Rus, D.3    Meireles, O.R.4
  • 27
    • 85059749462 scopus 로고    scopus 로고
    • Human-like machines: Transparency and comprehensibility
    • Patrzyk, P. M., Link, D. & Marewski, J. N. Human-like machines: transparency and comprehensibility. Behav. Brain Sci. 40, e276 (2017)
    • (2017) Behav. Brain Sci. , vol.40
    • Patrzyk, P.M.1    Link, D.2    Marewski, J.N.3
  • 28
    • 84877827546 scopus 로고    scopus 로고
    • Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
    • Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013)
    • (2013) Neural Comput. , vol.25 , pp. 626-649
    • Sussillo, D.1    Barak, O.2
  • 29
    • 85102429043 scopus 로고    scopus 로고
    • Challenges and opportunities of big data in health care: a systematic review
    • Kruse, C. S., Goswamy, R., Raval, Y. & Marawi, S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med. Inform. 4, e38 (2016)
    • (2016) JMIR Med. Inform. , vol.4
    • Kruse, C.S.1    Goswamy, R.2    Raval, Y.3    Marawi, S.4
  • 32
    • 85059777645 scopus 로고    scopus 로고
    • United States Food and Drug Administration
    • US Food & Drug Administration & Center for Devices & Radiological Health Digital Health Program. Digital Health Innovation Action Plan (United States Food and Drug Administration, 2018)
    • (2018) Digital Health Innovation Action Plan
  • 34
    • 85059785549 scopus 로고    scopus 로고
    • University of Iowa Health Care First to Adopt IDx-DR in a Diabetes Care Setting
    • IDx
    • IDx. University of Iowa Health Care First to Adopt IDx-DR in a Diabetes Care Setting. Cision PR Newswire https://www.prnewswire.com/news-releases/university-of-iowa-health-care-first-to-adopt-idx-dr-in-a-diabetes-care-setting-300672070.html (2018)
    • (2018) Cision PR Newswire
  • 36
    • 85030554293 scopus 로고    scopus 로고
    • European Union regulations on algorithmic decision-making and a ‘right to explanation’
    • Goodman, B. & Flaxman, S. European Union regulations on algorithmic decision-making and a ‘right to explanation’. AI Mag. 38, 50 (2017)
    • (2017) AI Mag. , vol.38 , pp. 50
    • Goodman, B.1    Flaxman, S.2
  • 37
    • 85059753358 scopus 로고    scopus 로고
    • 4 ways the ACR’s Data Science Institute is looking to implement AI in clinical practice
    • Thakar, S. 4 ways the ACR’s Data Science Institute is looking to implement AI in clinical practice. Radiology Business http://www.radiologybusiness.com/topics/artificial-intelligence/4-ways-acrs-data-science-institute-looking-implement-ai-clinica (2018)
    • (2018) Radiology Business
    • Thakar, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.