-
1
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402 (2016)
-
(2016)
JAMA
, vol.316
, pp. 2402
-
-
Gulshan, V.1
-
2
-
-
85042389905
-
Identifying medical diagnoses and treatable diseases by image-based deep learning
-
COI: 1:CAS:528:DC%2BC1cXjt12ltr0%3D
-
Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122–1131.e9 (2018)
-
(2018)
Cell
, vol.172
, pp. 1122-1131.e9
-
-
Kermany, D.S.1
-
3
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
-
4
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
-
COI: 1:CAS:528:DC%2BC28Xmt1eitLo%3D
-
Cheng, J.-Z. et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6, 24454 (2016)
-
(2016)
Sci. Rep.
, vol.6
-
-
Cheng, J.Z.1
-
5
-
-
84944735469
-
-
The MIT Press, Cambridge, MA, USA
-
Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, Cambridge, MA, USA, 2016)
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
6
-
-
84875646817
-
The inevitable application of big data to health care
-
COI: 1:CAS:528:DC%2BC3sXlvVSkur4%3D
-
Murdoch, T. B. & Detsky, A. S. The inevitable application of big data to health care. JAMA 309, 1351–1352 (2013)
-
(2013)
JAMA
, vol.309
, pp. 1351-1352
-
-
Murdoch, T.B.1
Detsky, A.S.2
-
7
-
-
85050483912
-
Artificial intelligence in healthcare: Past, present and future
-
Jiang, F. et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 21, 230–243 (2017)
-
(2017)
Stroke Vasc. Neurol.
, vol.21
, pp. 230-243
-
-
Jiang, F.1
-
8
-
-
85047558352
-
Artificial intelligence in cardiology
-
Johnson, K. W. et al. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 71, 2668–2679 (2018)
-
(2018)
J. Am. Coll. Cardiol.
, vol.71
, pp. 2668-2679
-
-
Johnson, K.W.1
-
9
-
-
85045189457
-
Canadian association of radiologists white paper on artificial intelligence in radiology
-
Tang, A. et al. Canadian association of radiologists white paper on artificial intelligence in radiology. Can. Assoc. Radiol. J. J. Assoc. Can. Radiol. 69, 120–135 (2018)
-
(2018)
Can. Assoc. Radiol. J. J. Assoc. Can. Radiol.
, vol.69
, pp. 120-135
-
-
Tang, A.1
-
10
-
-
85059742228
-
Artificial intelligence in healthcare: Babylon Health & IBM Watson take the lead
-
Pelcyger, B. Artificial intelligence in healthcare: Babylon Health & IBM Watson take the lead. Prescouter https://prescouter.com/2017/12/artificial-intelligence-healthcare/ (2017)
-
(2017)
Prescouter
-
-
Pelcyger, B.1
-
11
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342–1350 (2018)
-
(2018)
Nat. Med.
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
-
12
-
-
85015190048
-
Cardiac imaging: working towards fully-automated machine analysis & interpretation
-
COI: 1:CAS:528:DC%2BC2sXkt1Wnurc%3D
-
Slomka, P. J. et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev. Med. Devices 14, 197–212 (2017)
-
(2017)
Expert Rev. Med. Devices
, vol.14
, pp. 197-212
-
-
Slomka, P.J.1
-
13
-
-
85014442834
-
-
Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep learning for identifying metastatic breast cancer. Preprint at https://arxiv.org/abs/1606.05718 (2016)
-
(2016)
Deep learning for identifying metastatic breast cancer
-
-
Wang, D.1
Khosla, A.2
Gargeya, R.3
Irshad, H.4
Beck, A.H.5
-
14
-
-
85025112337
-
Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
-
Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017)
-
(2017)
Radiology
, vol.284
, pp. 574-582
-
-
Lakhani, P.1
Sundaram, B.2
-
15
-
-
85013347498
-
Integrated precision medicine: the role of electronic health records in delivering personalized treatment. Wiley Interdiscip
-
Sitapati, A. et al. Integrated precision medicine: the role of electronic health records in delivering personalized treatment. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, 1–12 (2017)
-
(2017)
Rev. Syst. Biol. Med.
, vol.9
, pp. 1-12
-
-
Sitapati, A.1
-
17
-
-
85034856540
-
When machines think: radiology’s next frontier
-
Dreyer, K. J. & Geis, J. R. When machines think: radiology’s next frontier. Radiology 285, 713–718 (2017)
-
(2017)
Radiology
, vol.285
, pp. 713-718
-
-
Dreyer, K.J.1
Geis, J.R.2
-
18
-
-
85008869327
-
Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis
-
Niu, J., Tang, W., Xu, F., Zhou, X. & Song, Y. Global research on artificial intelligence from 1990–2014: spatially-explicit bibliometric analysis. ISPRS Int. J. Geo-Inf. 5, 66 (2016)
-
(2016)
ISPRS Int. J. Geo-Inf.
, vol.5
, pp. 66
-
-
Niu, J.1
Tang, W.2
Xu, F.3
Zhou, X.4
Song, Y.5
-
21
-
-
85044137182
-
Implementing machine learning in health care—addressing ethical challenges
-
Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care—addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018)
-
(2018)
N. Engl. J. Med.
, vol.378
, pp. 981-983
-
-
Char, D.S.1
Shah, N.H.2
Magnus, D.3
-
23
-
-
79961177806
-
The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart
-
COI: 1:CAS:528:DC%2BC3MXhtVSiurnN
-
Fonseca, C. G. et al. The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart. Bioinforma. Oxf. Engl. 27, 2288–2295 (2011)
-
(2011)
Bioinforma. Oxf. Engl.
, vol.27
, pp. 2288-2295
-
-
Fonseca, C.G.1
-
24
-
-
84994495874
-
Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks
-
Jimenez-Del-Toro, O. et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans. Med. Imaging 35, 2459–2475 (2016)
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 2459-2475
-
-
Jimenez-Del-Toro, O.1
-
26
-
-
85049736728
-
Artificial intelligence in surgery: promises and perils
-
&
-
Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018)
-
(2018)
Ann. Surg.
, vol.268
, pp. 70-76
-
-
Hashimoto, D.A.1
Rosman, G.2
Rus, D.3
Meireles, O.R.4
-
27
-
-
85059749462
-
Human-like machines: Transparency and comprehensibility
-
Patrzyk, P. M., Link, D. & Marewski, J. N. Human-like machines: transparency and comprehensibility. Behav. Brain Sci. 40, e276 (2017)
-
(2017)
Behav. Brain Sci.
, vol.40
-
-
Patrzyk, P.M.1
Link, D.2
Marewski, J.N.3
-
28
-
-
84877827546
-
Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
-
Sussillo, D. & Barak, O. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, 626–649 (2013)
-
(2013)
Neural Comput.
, vol.25
, pp. 626-649
-
-
Sussillo, D.1
Barak, O.2
-
29
-
-
85102429043
-
Challenges and opportunities of big data in health care: a systematic review
-
Kruse, C. S., Goswamy, R., Raval, Y. & Marawi, S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med. Inform. 4, e38 (2016)
-
(2016)
JMIR Med. Inform.
, vol.4
-
-
Kruse, C.S.1
Goswamy, R.2
Raval, Y.3
Marawi, S.4
-
32
-
-
85059777645
-
-
United States Food and Drug Administration
-
US Food & Drug Administration & Center for Devices & Radiological Health Digital Health Program. Digital Health Innovation Action Plan (United States Food and Drug Administration, 2018)
-
(2018)
Digital Health Innovation Action Plan
-
-
-
34
-
-
85059785549
-
University of Iowa Health Care First to Adopt IDx-DR in a Diabetes Care Setting
-
IDx
-
IDx. University of Iowa Health Care First to Adopt IDx-DR in a Diabetes Care Setting. Cision PR Newswire https://www.prnewswire.com/news-releases/university-of-iowa-health-care-first-to-adopt-idx-dr-in-a-diabetes-care-setting-300672070.html (2018)
-
(2018)
Cision PR Newswire
-
-
-
36
-
-
85030554293
-
European Union regulations on algorithmic decision-making and a ‘right to explanation’
-
Goodman, B. & Flaxman, S. European Union regulations on algorithmic decision-making and a ‘right to explanation’. AI Mag. 38, 50 (2017)
-
(2017)
AI Mag.
, vol.38
, pp. 50
-
-
Goodman, B.1
Flaxman, S.2
-
37
-
-
85059753358
-
4 ways the ACR’s Data Science Institute is looking to implement AI in clinical practice
-
Thakar, S. 4 ways the ACR’s Data Science Institute is looking to implement AI in clinical practice. Radiology Business http://www.radiologybusiness.com/topics/artificial-intelligence/4-ways-acrs-data-science-institute-looking-implement-ai-clinica (2018)
-
(2018)
Radiology Business
-
-
Thakar, S.1
|