메뉴 건너뛰기




Volumn 14, Issue 2, 2016, Pages 101-109

Computer- Aided optimization of combined anti-retroviral therapy for HIV: New drugs, new drug targets and drug resistance

Author keywords

Anti retroviral therapy; Drug resistance; Expert system; HIV; Statistical learning

Indexed keywords

ADEFOVIR; DOLUTEGRAVIR; EMTRICITABINE; ENFUVIRTIDE; ENTECAVIR; ETRAVIRINE; FOSAMPRENAVIR; HUMAN IMMUNODEFICIENCY VIRUS FUSION INHIBITOR; INTEGRASE INHIBITOR; LAMIVUDINE; MARAVIROC; NONNUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR; PROTEINASE INHIBITOR; RALTEGRAVIR; RILPIVIRINE; TENOFOVIR; TIPRANAVIR; ANTI HUMAN IMMUNODEFICIENCY VIRUS AGENT; ANTIRETROVIRUS AGENT; RNA DIRECTED DNA POLYMERASE INHIBITOR;

EID: 84958951455     PISSN: 1570162X     EISSN: 18734251     Source Type: Journal    
DOI: 10.2174/1570162X13666151029102254     Document Type: Article
Times cited : (19)

References (57)
  • 1
    • 84893164523 scopus 로고    scopus 로고
    • Closing the gap: Increases in life expectancy among treated HIV-positive individuals in the United States and Canada
    • Samji H, Cescon A, Hogg RS, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One 2013, 8: e81355.
    • (2013) PLoS One , vol.8
    • Samji, H.1    Cescon, A.2    Hogg, R.S.3
  • 2
    • 84875599525 scopus 로고    scopus 로고
    • Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe
    • De Luca A, Dunn D, Zazzi M, et al. Declining prevalence of HIV-1 drug resistance in antiretroviral treatment-exposed individuals in Western Europe. J Infect Dis 2013; 207: 1216-20.
    • (2013) J Infect Dis , vol.207 , pp. 1216-1220
    • De Luca, A.1    Dunn, D.2    Zazzi, M.3
  • 3
    • 84976231415 scopus 로고    scopus 로고
    • Time to virologic failure for patients taking their first antiretroviral regimen and the subsequent resistance profiles
    • Crouzat F, Benoit A, Kovacs C, et al. Time to virologic failure for patients taking their first antiretroviral regimen and the subsequent resistance profiles. J Int AIDS Soc 2014; 17: 19757.
    • (2014) J Int AIDS Soc , vol.17
    • Crouzat, F.1    Benoit, A.2    Kovacs, C.3
  • 4
    • 84940120555 scopus 로고    scopus 로고
    • Durability of first antiretroviral treatment in HIV chronically infected patients: Why change and what are the outcomes?
    • Moniz P, Alcada F, Peres S, et al. Durability of first antiretroviral treatment in HIV chronically infected patients: why change and what are the outcomes? J Int AIDS Soc 2014; 17: 19797.
    • (2014) J Int AIDS Soc , vol.17
    • Moniz, P.1    Alcada, F.2    Peres, S.3
  • 5
    • 84894173845 scopus 로고    scopus 로고
    • Durability of the first antiretroviral treatment regimen and reasons for change in patients with HIV infection
    • De La Torre-Lima J, Aguilar A, et al. Durability of the first antiretroviral treatment regimen and reasons for change in patients with HIV infection. HIV Clin Trials 2014; 15: 27-35.
    • (2014) HIV Clin Trials , vol.15 , pp. 27-35
    • De La Torre-Lima, J.1    Aguilar, A.2
  • 6
    • 84923365554 scopus 로고    scopus 로고
    • Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial
    • Baxter J, Dunn D, White E, et al. Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 2015; 16 Suppl 1: 77-87.
    • (2015) HIV Med , vol.16 , pp. 77-87
    • Baxter, J.1    Dunn, D.2    White, E.3
  • 8
    • 84871921929 scopus 로고    scopus 로고
    • Emerging HIV-1 drug resistance after roll-out of antiretroviral therapy in sub-Saharan Africa
    • Hamers RL, Sigaloff KC, Kityo C, Mugyenyi P, de Wit TF. Emerging HIV-1 drug resistance after roll-out of antiretroviral therapy in sub-Saharan Africa. Curr Opin HIV AIDS 2013; 8: 19- 26.
    • (2013) Curr Opin HIV AIDS , vol.8 , pp. 19-26
    • Hamers, R.L.1    Sigaloff, K.C.2    Kityo, C.3    Mugyenyi, P.4    de Wit, T.F.5
  • 9
    • 84856433482 scopus 로고    scopus 로고
    • Predicting response to antiretroviral treatment by machine learning: The EuResist project
    • Zazzi M, Incardona F, Rosen-Zvi M, et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology 2012; 55: 123-7.
    • (2012) Intervirology , vol.55 , pp. 123-127
    • Zazzi, M.1    Incardona, F.2    Rosen-Zvi, M.3
  • 10
    • 0038162585 scopus 로고    scopus 로고
    • Decline in the AIDS and death rates in the EuroSIDA study: An observational study
    • Mocroft A, Ledergerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 2003; 362: 22-9.
    • (2003) Lancet , vol.362 , pp. 22-29
    • Mocroft, A.1    Ledergerber, B.2    Katlama, C.3
  • 11
    • 84856426049 scopus 로고    scopus 로고
    • The HIVdb system for HIV-1 genotypic resistance interpretation
    • Tang MW, Liu TF, Shafer RW. The HIVdb system for HIV-1 genotypic resistance interpretation. Intervirology 2012; 55: 98-101.
    • (2012) Intervirology , vol.55 , pp. 98-101
    • Tang, M.W.1    Liu, T.F.2    Shafer, R.W.3
  • 12
    • 0036892381 scopus 로고    scopus 로고
    • HIVdb: A database of the structures of human immunodeficiency virus protease
    • Vondrasek J, Wlodawer A. HIVdb: a database of the structures of human immunodeficiency virus protease. Proteins 2002; 49: 429- 31.
    • (2002) Proteins , vol.49 , pp. 429-431
    • Vondrasek, J.1    Wlodawer, A.2
  • 14
    • 84862576498 scopus 로고    scopus 로고
    • Computational models for prediction of response to antiretroviral therapies
    • Prosperi MC, De Luca A. Computational models for prediction of response to antiretroviral therapies. AIDS Rev 2012; 14: 145-53.
    • (2012) AIDS Rev , vol.14 , pp. 145-153
    • Prosperi, M.C.1    De Luca, A.2
  • 16
    • 84929755856 scopus 로고    scopus 로고
    • Cross-resistance to elvitegravir and dolutegravir in 502 patients failing on raltegravir: A French national study of raltegravir-experienced HIV-1-infected patients
    • Fourati S, Charpentier C, Amiel C, et al. Cross-resistance to elvitegravir and dolutegravir in 502 patients failing on raltegravir: A French national study of raltegravir-experienced HIV-1-infected patients. J Antimicrob Chemother 2015; 70(5): 1507-12.
    • (2015) J Antimicrob Chemother , vol.70 , Issue.5 , pp. 1507-1512
    • Fourati, S.1    Charpentier, C.2    Amiel, C.3
  • 17
    • 84872043600 scopus 로고    scopus 로고
    • A review of rilpivirine and elvitegravir resistance features and implications for treatment sequencing
    • Bourgeois A, Womack S, Newsom D, Caldwell D. A review of rilpivirine and elvitegravir resistance features and implications for treatment sequencing. HIV Clin 2012; 24: 12-5.
    • (2012) HIV Clin , vol.24 , pp. 12-15
    • Bourgeois, A.1    Womack, S.2    Newsom, D.3    Caldwell, D.4
  • 18
    • 84916600896 scopus 로고    scopus 로고
    • Low concordance and resistance mutation emergence in the HIV protease gene among circulating and cell-associated viruses at viral replication episodes during darunavir/ritonavir monotherapy
    • Torres-Cornejo A, Benmarzouk-Hidalgo OJ, Gutierrez-Valencia A, Ruiz-Valderas R, Viciana P, Lopez-Cortes LF. Low concordance and resistance mutation emergence in the HIV protease gene among circulating and cell-associated viruses at viral replication episodes during darunavir/ritonavir monotherapy. HIV Med 2015; 16: 57-61.
    • (2015) HIV Med , vol.16 , pp. 57-61
    • Torres-Cornejo, A.1    Benmarzouk-Hidalgo, O.J.2    Gutierrez-Valencia, A.3    Ruiz-Valderas, R.4    Viciana, P.5    Lopez-Cortes, L.F.6
  • 19
    • 84865476835 scopus 로고    scopus 로고
    • Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes
    • Bethell R, Scherer J, Witvrouw M, Paquet A, Coakley E, Hall D. Short communication: Phenotypic protease inhibitor resistance and cross-resistance in the clinic from 2006 to 2008 and mutational prevalences in HIV from patients with discordant tipranavir and darunavir susceptibility phenotypes. AIDS Res Hum Retroviruses 2012; 28: 1019-24.
    • (2012) AIDS Res Hum Retroviruses , vol.28 , pp. 1019-1024
    • Bethell, R.1    Scherer, J.2    Witvrouw, M.3    Paquet, A.4    Coakley, E.5    Hall, D.6
  • 20
    • 80052636995 scopus 로고    scopus 로고
    • The higher barrier of darunavir and tipranavir resistance for HIV-1 protease
    • Wang Y, Liu Z, Brunzelle JS, et al. The higher barrier of darunavir and tipranavir resistance for HIV-1 protease. Biochem Biophys Res Commun 2011; 412: 737-42.
    • (2011) Biochem Biophys Res Commun , vol.412 , pp. 737-742
    • Wang, Y.1    Liu, Z.2    Brunzelle, J.S.3
  • 21
    • 84920173597 scopus 로고    scopus 로고
    • Prevalence in the USA of rilpivirine resistanceassociated mutations in clinical samples and effects on phenotypic susceptibility to rilpivirine and etravirine
    • Picchio GR, Rimsky LT, Van Eygen V, Haddad M, Napolitano LA, Vingerhoets J. Prevalence in the USA of rilpivirine resistanceassociated mutations in clinical samples and effects on phenotypic susceptibility to rilpivirine and etravirine. Antivir Ther 2014; 19: 819-23.
    • (2014) Antivir Ther , vol.19 , pp. 819-823
    • Picchio, G.R.1    Rimsky, L.T.2    Van Eygen, V.3    Haddad, M.4    Napolitano, L.A.5    Vingerhoets, J.6
  • 22
    • 84896444299 scopus 로고    scopus 로고
    • Rilpivirine, emtricitabine and tenofovir resistance in HIV-1-infected rilpivirinenaive patients failing antiretroviral therapy
    • Lambert-Niclot S, Charpentier C, Storto A, et al. Rilpivirine, emtricitabine and tenofovir resistance in HIV-1-infected rilpivirinenaive patients failing antiretroviral therapy. J Antimicrob Chemother 2014; 69: 1086-9.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 1086-1089
    • Lambert-Niclot, S.1    Charpentier, C.2    Storto, A.3
  • 23
    • 84905735621 scopus 로고    scopus 로고
    • 2014 Update of the drug resistance mutations in HIV-1
    • Wensing AM, Calvez V, Gunthard HF, et al. 2014 Update of the drug resistance mutations in HIV-1. Top Antivir Med 2014; 22: 642-50.
    • (2014) Top Antivir Med , vol.22 , pp. 642-650
    • Wensing, A.M.1    Calvez, V.2    Gunthard, H.F.3
  • 24
    • 33846623260 scopus 로고    scopus 로고
    • Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism
    • Whitcomb JM, Huang W, Fransen S, et al. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 2007; 51: 566-75.
    • (2007) Antimicrob Agents Chemother , vol.51 , pp. 566-575
    • Whitcomb, J.M.1    Huang, W.2    Fransen, S.3
  • 25
    • 84856432470 scopus 로고    scopus 로고
    • HIV-GRADE: A publicly available, rules-based drug resistance interpretation algorithm integrating bioinformatic knowledge
    • Obermeier M, Pironti A, Berg T, et al. HIV-GRADE: a publicly available, rules-based drug resistance interpretation algorithm integrating bioinformatic knowledge. Intervirology 2012; 55: 102- 7.
    • (2012) Intervirology , vol.55 , pp. 102-107
    • Obermeier, M.1    Pironti, A.2    Berg, T.3
  • 26
    • 84877255280 scopus 로고    scopus 로고
    • HIV-2EU: Supporting standardized HIV-2 drug resistance interpretation in Europe
    • Charpentier C, Camacho R, Ruelle J, et al. HIV-2EU: supporting standardized HIV-2 drug resistance interpretation in Europe. Clin Infect Dis 2013; 56: 1654-8.
    • (2013) Clin Infect Dis , vol.56 , pp. 1654-1658
    • Charpentier, C.1    Camacho, R.2    Ruelle, J.3
  • 27
    • 69049111044 scopus 로고    scopus 로고
    • Rules-based HIV-1 genotypic resistance interpretation systems predict 8 week and 24 week virological antiretroviral treatment outcome and benefit from drug potency weighting
    • Zazzi M, Prosperi M, Vicenti I, et al. Rules-based HIV-1 genotypic resistance interpretation systems predict 8 week and 24 week virological antiretroviral treatment outcome and benefit from drug potency weighting. J Antimicrob Chemother 2009; 64: 616-24.
    • (2009) J Antimicrob Chemother , vol.64 , pp. 616-624
    • Zazzi, M.1    Prosperi, M.2    Vicenti, I.3
  • 28
    • 1242307487 scopus 로고    scopus 로고
    • Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype
    • Zazzi M, Romano L, Venturi G, et al. Comparative evaluation of three computerized algorithms for prediction of antiretroviral susceptibility from HIV type 1 genotype. J Antimicrob Chemother 2004; 53: 356-60.
    • (2004) J Antimicrob Chemother , vol.53 , pp. 356-360
    • Zazzi, M.1    Romano, L.2    Venturi, G.3
  • 29
    • 84976216291 scopus 로고    scopus 로고
    • Improved therapy-success prediction with GSS estimated from clinical HIV-1 sequences
    • Pironti A, Pfeifer N, Kaiser R, Walter H, Lengauer T. Improved therapy-success prediction with GSS estimated from clinical HIV-1 sequences. J Int AIDS Soc 2014; 17: 19743.
    • (2014) J Int AIDS Soc , vol.17
    • Pironti, A.1    Pfeifer, N.2    Kaiser, R.3    Walter, H.4    Lengauer, T.5
  • 30
    • 84876273802 scopus 로고    scopus 로고
    • Clinical evaluation of Rega 8: An updated genotypic interpretation system that significantly predicts HIV-therapy response
    • Vercauteren J, Beheydt G, Prosperi M, et al. Clinical evaluation of Rega 8: an updated genotypic interpretation system that significantly predicts HIV-therapy response. PLoS One 2013; 8: e61436.
    • (2013) PLoS One , vol.8
    • Vercauteren, J.1    Beheydt, G.2    Prosperi, M.3
  • 31
    • 84958977469 scopus 로고    scopus 로고
    • Algorithm evolution for drug resistance prediction: Comparison of systems for HIV-1 genotyping
    • the Swiss HIVCS. E-pub ahead of print
    • Wagner S, Kurz M, Klimkait T, the Swiss HIVCS. Algorithm evolution for drug resistance prediction: comparison of systems for HIV-1 genotyping. Antivir Ther 2015, E-pub ahead of print.
    • (2015) Antivir Ther
    • Wagner, S.1    Kurz, M.2    Klimkait, T.3
  • 32
    • 84867681935 scopus 로고    scopus 로고
    • Comparison of predicted susceptibility between genotype and virtual phenotype HIV drug resistance interpretation systems among treatment-naive HIVinfected patients in Asia: TASER-M cohort analysis
    • Jiamsakul A, Kantor R, Li PC, et al. Comparison of predicted susceptibility between genotype and virtual phenotype HIV drug resistance interpretation systems among treatment-naive HIVinfected patients in Asia: TASER-M cohort analysis. BMC Res Notes 2012; 5: 582.
    • (2012) BMC Res Notes , vol.5 , pp. 582
    • Jiamsakul, A.1    Kantor, R.2    Li, P.C.3
  • 33
    • 77955385229 scopus 로고    scopus 로고
    • Comparison of HIV-1 genotypic resistance test interpretation systems in predicting virological outcomes over time
    • Frentz D, Boucher CA, Assel M, et al. Comparison of HIV-1 genotypic resistance test interpretation systems in predicting virological outcomes over time. PLoS One 2010; 5: e11505.
    • (2010) PLoS One , vol.5
    • Frentz, D.1    Boucher, C.A.2    Assel, M.3
  • 34
    • 79958286526 scopus 로고    scopus 로고
    • A prognostic model for estimating the time to virologic failure in HIV-1 infected patients undergoing a new combination antiretroviral therapy regimen
    • Prosperi MC, Di Giambenedetto S, Fanti I, et al. A prognostic model for estimating the time to virologic failure in HIV-1 infected patients undergoing a new combination antiretroviral therapy regimen. BMC Med Inform Decis Mak 2011; 11: 40.
    • (2011) BMC Med Inform Decis Mak , vol.11 , pp. 40
    • Prosperi, M.C.1    Di Giambenedetto, S.2    Fanti, I.3
  • 35
    • 84888391090 scopus 로고    scopus 로고
    • HIV-1 genetic variation and drug resistance development
    • Megens S, Laethem KV. HIV-1 genetic variation and drug resistance development. Expert Rev Anti Infect Ther 2013; 11: 1159-78.
    • (2013) Expert Rev Anti Infect Ther , vol.11 , pp. 1159-1178
    • Megens, S.1    Laethem, K.V.2
  • 36
    • 46249127515 scopus 로고    scopus 로고
    • Selecting anti-HIV therapies based on a variety of genomic and clinical factors
    • Rosen-Zvi M, Altmann A, Prosperi M, et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 2008; 24: i399-406.
    • (2008) Bioinformatics , vol.24 , pp. i399-i406
    • Rosen-Zvi, M.1    Altmann, A.2    Prosperi, M.3
  • 37
    • 67649191714 scopus 로고    scopus 로고
    • Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment
    • Prosperi MC, Altmann A, Rosen-Zvi M, et al. Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment. Antivir Ther 2009; 14: 433-42.
    • (2009) Antivir Ther , vol.14 , pp. 433-442
    • Prosperi, M.C.1    Altmann, A.2    Rosen-Zvi, M.3
  • 38
    • 81255179310 scopus 로고    scopus 로고
    • Can linear regression modeling help clinicians in the interpretation of genotypic resistance data? An application to derive a lopinavir-score
    • Cozzi-Lepri A, Prosperi MC, Kjaer J, et al. Can linear regression modeling help clinicians in the interpretation of genotypic resistance data? An application to derive a lopinavir-score. PLoS One 2011; 6: e25665.
    • (2011) PLoS One , vol.6
    • Cozzi-Lepri, A.1    Prosperi, M.C.2    Kjaer, J.3
  • 39
    • 68249110722 scopus 로고    scopus 로고
    • A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy
    • Wang D, Larder B, Revell A, et al. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif Intell Med 2009; 47: 63-74.
    • (2009) Artif Intell Med , vol.47 , pp. 63-74
    • Wang, D.1    Larder, B.2    Revell, A.3
  • 40
    • 58149381236 scopus 로고    scopus 로고
    • Application of artificial neural networks for decision support in medicine
    • Larder B, Wang D, Revell A. Application of artificial neural networks for decision support in medicine. Methods Mol Biol 2008; 458: 123-36.
    • (2008) Methods Mol Biol , vol.458 , pp. 123-136
    • Larder, B.1    Wang, D.2    Revell, A.3
  • 41
    • 85162541305 scopus 로고    scopus 로고
    • History distribution matching method for predicting effectiveness of HIV combination therapies
    • Edited by Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira FCN, Weinberger KQ
    • Bogojeska J. History distribution matching method for predicting effectiveness of HIV combination therapies. In: NIPS. Edited by Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira FCN, Weinberger KQ; 2011: 424-32.
    • (2011) NIPS. , pp. 424-432
    • Bogojeska, J.1
  • 42
    • 33748848279 scopus 로고    scopus 로고
    • Bioinformatics-assisted anti-HIV therapy
    • Lengauer T, Sing T. Bioinformatics-assisted anti-HIV therapy. Nat Rev Microbiol 2006; 4: 790-7.
    • (2006) Nat Rev Microbiol , vol.4 , pp. 790-797
    • Lengauer, T.1    Sing, T.2
  • 43
    • 79955483926 scopus 로고    scopus 로고
    • European guidelines on the clinical management of HIV-1 tropism testing
    • Vandekerckhove LP, Wensing AM, Kaiser R, et al. European guidelines on the clinical management of HIV-1 tropism testing. Lancet Infect Dis 2011; 11: 394-407.
    • (2011) Lancet Infect Dis , vol.11 , pp. 394-407
    • Vandekerckhove, L.P.1    Wensing, A.M.2    Kaiser, R.3
  • 44
    • 54949085407 scopus 로고    scopus 로고
    • Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy
    • Altmann A, Rosen-Zvi M, Prosperi M, et al. Comparison of classifier fusion methods for predicting response to anti HIV-1 therapy. PLoS One 2008; 3: e3470.
    • (2008) PLoS One , vol.3
    • Altmann, A.1    Rosen-Zvi, M.2    Prosperi, M.3
  • 45
    • 84856474362 scopus 로고    scopus 로고
    • Efficacy of antiretroviral therapy switch in HIV-infected patients: A 10-year analysis of the EuResist Cohort
    • Oette M, Schulter E, Rosen-Zvi M, et al. Efficacy of antiretroviral therapy switch in HIV-infected patients: a 10-year analysis of the EuResist Cohort. Intervirology 2012; 55: 160-6.
    • (2012) Intervirology , vol.55 , pp. 160-166
    • Oette, M.1    Schulter, E.2    Rosen-Zvi, M.3
  • 46
    • 79952286134 scopus 로고    scopus 로고
    • Prediction of response to antiretroviral therapy by human experts and by the EuResist datadriven expert system (the EVE study)
    • Zazzi M, Kaiser R, Sonnerborg A, et al. Prediction of response to antiretroviral therapy by human experts and by the EuResist datadriven expert system (the EVE study). HIV Med 2011; 12: 211-8.
    • (2011) HIV Med , vol.12 , pp. 211-218
    • Zazzi, M.1    Kaiser, R.2    Sonnerborg, A.3
  • 47
    • 78149442148 scopus 로고    scopus 로고
    • Antiretroviral therapy optimisation without genotype resistance testing: A perspective on treatment history based models
    • Prosperi MC, Rosen-Zvi M, Altmann A, et al. Antiretroviral therapy optimisation without genotype resistance testing: a perspective on treatment history based models. PLoS One 2010; 5: e13753.
    • (2010) PLoS One , vol.5
    • Prosperi, M.C.1    Rosen-Zvi, M.2    Altmann, A.3
  • 49
    • 80052936444 scopus 로고    scopus 로고
    • The development of an expert system to predict virological response to HIV therapy as part of an online treatment support tool
    • Revell AD, Wang D, Boyd MA, et al. The development of an expert system to predict virological response to HIV therapy as part of an online treatment support tool. AIDS 2011; 25: 1855-63.
    • (2011) AIDS , vol.25 , pp. 1855-1863
    • Revell, A.D.1    Wang, D.2    Boyd, M.A.3
  • 50
    • 78651264714 scopus 로고    scopus 로고
    • Clinical evaluation of the potential utility of computational modeling as an HIV treatment selection tool by physicians with considerable HIV experience
    • Larder BA, Revell A, Mican JM, et al. Clinical evaluation of the potential utility of computational modeling as an HIV treatment selection tool by physicians with considerable HIV experience. AIDS Patient Care STDS 2011; 25: 29-36.
    • (2011) AIDS Patient Care STDS , vol.25 , pp. 29-36
    • Larder, B.A.1    Revell, A.2    Mican, J.M.3
  • 51
    • 84885165650 scopus 로고    scopus 로고
    • Computational models can predict response to HIV therapy without a genotype and may reduce treatment failure in different resource-limited settings
    • Revell AD, Wang D, Wood R, et al. Computational models can predict response to HIV therapy without a genotype and may reduce treatment failure in different resource-limited settings. J Antimicrob Chemother 2013; 68: 1406-14.
    • (2013) J Antimicrob Chemother , vol.68 , pp. 1406-1414
    • Revell, A.D.1    Wang, D.2    Wood, R.3
  • 52
    • 84896477071 scopus 로고    scopus 로고
    • An update to the HIV-TRePS system: The development of new computational models that do not require a genotype to predict HIV treatment outcomes
    • Revell AD, Wang D, Wood R, et al. An update to the HIV-TRePS system: the development of new computational models that do not require a genotype to predict HIV treatment outcomes. J Antimicrob Chemother 2014; 69: 1104-10.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 1104-1110
    • Revell, A.D.1    Wang, D.2    Wood, R.3
  • 53
    • 84885599493 scopus 로고    scopus 로고
    • Potential impact of a free online HIV treatment response prediction system for reducing virological failures and drug costs after antiretroviral therapy failure in a resource-limited setting
    • Revell AD, Alvarez-Uria G, Wang D, et al. Potential impact of a free online HIV treatment response prediction system for reducing virological failures and drug costs after antiretroviral therapy failure in a resource-limited setting. Biomed Res Int 2013; 2013: 579741.
    • (2013) Biomed Res Int , vol.2013
    • Revell, A.D.1    Alvarez-Uria, G.2    Wang, D.3
  • 54
    • 84904055237 scopus 로고    scopus 로고
    • A comparison of computational models with and without genotyping for prediction of response to second-line HIV therapy
    • Revell AD, Boyd MA, Wang D, et al. A comparison of computational models with and without genotyping for prediction of response to second-line HIV therapy. HIV Med 2014; 15: 442-8.
    • (2014) HIV Med , vol.15 , pp. 442-448
    • Revell, A.D.1    Boyd, M.A.2    Wang, D.3
  • 55
    • 34547841291 scopus 로고    scopus 로고
    • Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling
    • Vermeiren H, Van Craenenbroeck E, Alen P, et al. Prediction of HIV-1 drug susceptibility phenotype from the viral genotype using linear regression modeling. J Virol Methods 2007; 145: 47-55.
    • (2007) J Virol Methods , vol.145 , pp. 47-55
    • Vermeiren, H.1    Van Craenenbroeck, E.2    Alen, P.3
  • 56
    • 69949166547 scopus 로고    scopus 로고
    • A comparison of HIV-1 drug susceptibility as provided by conventional phenotyping and by a phenotype prediction tool based on viral genotype
    • Van Houtte M, Picchio G, Van Der Borght K, Pattery T, Lecocq P, Bacheler LT. A comparison of HIV-1 drug susceptibility as provided by conventional phenotyping and by a phenotype prediction tool based on viral genotype. J Med Virol 2009; 81: 1702-9.
    • (2009) J Med Virol , vol.81 , pp. 1702-1709
    • Van Houtte, M.1    Picchio, G.2    Van Der Borght, K.3    Pattery, T.4    Lecocq, P.5    Bacheler, L.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.