메뉴 건너뛰기




Volumn 30, Issue 6, 2017, Pages 511-517

Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance

Author keywords

antimicrobial resistance; antimicrobial susceptibility testing; artificial intelligence; bacteria; machine learning

Indexed keywords

ANTIINFECTIVE AGENT;

EID: 85033777988     PISSN: 09517375     EISSN: 14736527     Source Type: Journal    
DOI: 10.1097/QCO.0000000000000406     Document Type: Review
Times cited : (48)

References (46)
  • 2
    • 84983200674 scopus 로고    scopus 로고
    • How next-generation sequencing and multiscale data analysis will transform infectious disease management
    • Pak TR, Kasarskis A. How next-generation sequencing and multiscale data analysis will transform infectious disease management. Clin Infect Dis 2015; 61:1695-1702.
    • (2015) Clin Infect Dis , vol.61 , pp. 1695-1702
    • Pak, T.R.1    Kasarskis, A.2
  • 3
    • 84964694300 scopus 로고    scopus 로고
    • Whole genome sequencing in clinical and public health microbiology
    • Kwong JC, McCallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology 2015; 47:199-210.
    • (2015) Pathology , vol.47 , pp. 199-210
    • Kwong, J.C.1    McCallum, N.2    Sintchenko, V.3    Howden, B.P.4
  • 4
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future: Big data, machine learning, and clinical medicine
    • Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med 2016; 375:1216-1219.
    • (2016) N Engl J Med , vol.375 , pp. 1216-1219
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 5
    • 85033792691 scopus 로고    scopus 로고
    • [Accessed 26 July]
    • ResistanceOpen. http://www.healthmap.org/resistanceopen/results/. [Accessed 26 July 2017].
    • (2017) ResistanceOpen
  • 6
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet 2015; 16:321-332.
    • (2015) Nat Rev Genet , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 7
    • 84904242833 scopus 로고    scopus 로고
    • Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT
    • Shouval R, Bondi O, Mishan H, et al. Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone Marrow Transplant 2014; 49:332-337.
    • (2014) Bone Marrow Transplant , vol.49 , pp. 332-337
    • Shouval, R.1    Bondi, O.2    Mishan, H.3
  • 10
    • 0017132564 scopus 로고
    • Computerized consultation system for selection of antimicrobial therapy
    • Wraith SM, Aikins JS, Buchanan BG, et al. Computerized consultation system for selection of antimicrobial therapy.AmJ Hosp Pharm 1976; 33:1304-1308.
    • (1976) AmJ Hosp Pharm , vol.33 , pp. 1304-1308
    • Wraith, S.M.1    Aikins, J.S.2    Buchanan, B.G.3
  • 12
    • 84872034370 scopus 로고    scopus 로고
    • Chapter 12: Human microbiome analysis
    • Morgan XC, Huttenhower C. Chapter 12: human microbiome analysis. PLoS Comput Biol 2012; 8:e1002808.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002808
    • Morgan, X.C.1    Huttenhower, C.2
  • 13
    • 84891529869 scopus 로고    scopus 로고
    • Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples
    • Hasman H, Saputra D, Sicheritz-Ponten T, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 2014; 52:139-146.
    • (2014) J Clin Microbiol , vol.52 , pp. 139-146
    • Hasman, H.1    Saputra, D.2    Sicheritz-Ponten, T.3
  • 14
    • 84898409625 scopus 로고    scopus 로고
    • Rapid single-colony whole-genome sequencing of bacterial pathogens
    • Koser CU, Fraser LJ, Ioannou A, et al. Rapid single-colony whole-genome sequencing of bacterial pathogens. J Antimicrob Chemother 2014; 69: 1275-1281.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 1275-1281
    • Koser, C.U.1    Fraser, L.J.2    Ioannou, A.3
  • 15
    • 84942192606 scopus 로고    scopus 로고
    • Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study
    • Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 2015; 15:1193-1202.
    • (2015) Lancet Infect Dis , vol.15 , pp. 1193-1202
    • Walker, T.M.1    Kohl, T.A.2    Omar, S.V.3
  • 16
    • 84952009484 scopus 로고    scopus 로고
    • Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
    • Bradley P, Gordon NC, Walker TM, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015; 6:10063.
    • (2015) Nat Commun , vol.6 , pp. 10063
    • Bradley, P.1    Gordon, N.C.2    Walker, T.M.3
  • 17
    • 84897134429 scopus 로고    scopus 로고
    • Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing
    • Gordon NC, Price JR, Cole K, et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 2014; 52:1182-1191.
    • (2014) J Clin Microbiol , vol.52 , pp. 1182-1191
    • Gordon, N.C.1    Price, J.R.2    Cole, K.3
  • 18
    • 85006705701 scopus 로고    scopus 로고
    • Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data
    • Pesesky MW, Hussain T, Wallace M, et al. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data. Front Microbiol 2016; 7:1887.
    • (2016) Front Microbiol , vol.7 , pp. 1887
    • Pesesky, M.W.1    Hussain, T.2    Wallace, M.3
  • 19
    • 84957433508 scopus 로고    scopus 로고
    • Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study
    • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16:161-168.
    • (2016) Lancet Infect Dis , vol.16 , pp. 161-168
    • Liu, Y.Y.1    Wang, Y.2    Walsh, T.R.3
  • 20
    • 84893770252 scopus 로고    scopus 로고
    • Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus
    • Rishishwar L, Petit RA, Kraft CS, Jordan IK. Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus. J Bacteriol 2014; 196:940-948.
    • (2014) J Bacteriol , vol.196 , pp. 940-948
    • Rishishwar, L.1    Petit, R.A.2    Kraft, C.S.3    Jordan, I.K.4
  • 21
    • 84992053162 scopus 로고    scopus 로고
    • Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
    • Drouin A, Giguère S, Déraspe M, et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 2016; 17:754.
    • (2016) BMC Genomics , vol.17 , pp. 754
    • Drouin, A.1    Giguère, S.2    Déraspe, M.3
  • 23
    • 84974799196 scopus 로고    scopus 로고
    • Antimicrobial resistance prediction in PATRIC and RAST
    • Davis JJ, Boisvert S, Brettin T, et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 2016; 6:27930.
    • (2016) Sci Rep , vol.6 , pp. 27930
    • Davis, J.J.1    Boisvert, S.2    Brettin, T.3
  • 24
    • 85033786900 scopus 로고    scopus 로고
    • [Accessed 27 July]
    • PATRIC 3.4.2. https://www.patricbrc.org/view/DataType/AntibioticResistance. [Accessed 27 July 2017].
    • (2017) PATRIC 3. 4. 2
  • 25
    • 84946751229 scopus 로고    scopus 로고
    • Recent updates on the role of pharmacokinetics-pharmacodynamics in antimicrobial susceptibility testing as applied to clinical practice
    • Labreche MJ, Graber CJ, Nguyen HM. Recent updates on the role of pharmacokinetics-pharmacodynamics in antimicrobial susceptibility testing as applied to clinical practice. Clin Infect Dis 2015; 61:1446-1452.
    • (2015) Clin Infect Dis , vol.61 , pp. 1446-1452
    • Labreche, M.J.1    Graber, C.J.2    Nguyen, H.M.3
  • 26
    • 84905992620 scopus 로고    scopus 로고
    • The pyrazinamide susceptibility breakpoint above which combination therapy fails
    • Gumbo T, Chigutsa E, Pasipanodya J, et al. The pyrazinamide susceptibility breakpoint above which combination therapy fails. J Antimicrob Chemother 2014; 69:2420-2425.
    • (2014) J Antimicrob Chemother , vol.69 , pp. 2420-2425
    • Gumbo, T.1    Chigutsa, E.2    Pasipanodya, J.3
  • 27
    • 67749118211 scopus 로고    scopus 로고
    • Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: A paradigm for faster assessment of new antituberculosis drugs
    • Gumbo T, Dona CS, Meek C, Leff R. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother 2009; 53:3197-3204.
    • (2009) Antimicrob Agents Chemother , vol.53 , pp. 3197-3204
    • Gumbo, T.1    Dona, C.S.2    Meek, C.3    Leff, R.4
  • 28
    • 84940941884 scopus 로고    scopus 로고
    • MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis
    • Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791.
    • (2015) Front Microbiol , vol.6 , pp. 791
    • Singhal, N.1    Kumar, M.2    Kanaujia, P.K.3    Virdi, J.S.4
  • 29
    • 84990879579 scopus 로고    scopus 로고
    • Mass spectrometry methods for predicting antibiotic resistance
    • Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981.
    • (2016) Proteomics Clin Appl , vol.10 , pp. 964-981
    • Charretier, Y.1    Schrenzel, J.2
  • 30
    • 84962539419 scopus 로고    scopus 로고
    • Rapid detection of vancomycinintermediate staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry
    • Mather CA, Werth BJ, Sivagnanam S, et al. Rapid detection of vancomycinintermediate staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2016; 54: 883-890.
    • (2016) J Clin Microbiol , vol.54 , pp. 883-890
    • Mather, C.A.1    Werth, B.J.2    Sivagnanam, S.3
  • 31
    • 84878278251 scopus 로고    scopus 로고
    • 10 x '20 progress: Development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America
    • BoucherHW,Talbot GH, BenjaminDK Jr, et al. 10 x '20 progress: development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 2013; 56:1685-1694.
    • (2013) Clin Infect Dis , vol.56 , pp. 1685-1694
    • Boucher, H.W.1    Talbot, G.H.2    Benjamin, D.K.3
  • 32
    • 84918779199 scopus 로고    scopus 로고
    • Machine-learning techniques applied to antibacterial drug discovery
    • Durrant JD, Amaro RE. Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Design 2014; 85:14-21.
    • (2014) Chem Biol Drug Design , vol.85 , pp. 14-21
    • Durrant, J.D.1    Amaro, R.E.2
  • 33
    • 84958543290 scopus 로고    scopus 로고
    • Use of machine learning approaches for novel drug discovery
    • Lima AN, Philot EA, Trossini GH, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 2016; 11:225-239.
    • (2016) Expert Opin Drug Discov , vol.11 , pp. 225-239
    • Lima, A.N.1    Philot, E.A.2    Trossini, G.H.3
  • 34
    • 84937893066 scopus 로고    scopus 로고
    • World Health Organization Geneva, Switzerland: World Health Organization
    • World Health Organization. Global action plan on antimicrobial resistance. Geneva, Switzerland: World Health Organization; 2015.
    • (2015) Global Action Plan on Antimicrobial Resistance
  • 35
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine: Beyond the peak of inflated expectations
    • Chen JH, Asch SM. Machine learning and prediction in medicine: beyond the peak of inflated expectations. N Engl J Med 2017; 376:2507-2509.
    • (2017) N Engl J Med , vol.376 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 36
    • 84990909262 scopus 로고    scopus 로고
    • A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum blactamase-producing organism
    • Goodman KE, Lessler J, Cosgrove SE, et al. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum blactamase-producing organism. Clin Infect Dis 2016; 63:896-903.
    • (2016) Clin Infect Dis , vol.63 , pp. 896-903
    • Goodman, K.E.1    Lessler, J.2    Cosgrove, S.E.3
  • 37
    • 85032731379 scopus 로고    scopus 로고
    • Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria
    • cix612
    • Guillamet MCV, Vazquez R, Micek S, Kollef MH. Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria. Clin Infect Dis 2017; cix612. doi: 10.1093/cid/cix612.
    • (2017) Clin Infect Dis
    • Guillamet, M.C.V.1    Vazquez, R.2    Micek, S.3    Kollef, M.H.4
  • 38
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372:793-795.
    • (2015) N Engl J Med , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 39
    • 84946040296 scopus 로고    scopus 로고
    • Identification of type 2 diabetes subgroups through topological analysis of patient similarity
    • Li L, Cheng W-y, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015; 7:311ra174.
    • (2015) Sci Transl Med , vol.7 , pp. 311ra174
    • Li, L.1    Cheng, W.-Y.2    Glicksberg, B.S.3
  • 40
    • 79952590347 scopus 로고    scopus 로고
    • The n-of-1 clinical trial: The ultimate strategy for individualizing medicine
    • Lillie EO, Patay B, Diamant J, et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per Med 2011; 8:161-173.
    • (2011) Per Med , vol.8 , pp. 161-173
    • Lillie, E.O.1    Patay, B.2    Diamant, J.3
  • 41
    • 84994514607 scopus 로고    scopus 로고
    • Artificial intelligence and amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients
    • Modongo C, Pasipanodya JG, Magazi BT, et al. Artificial intelligence and amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother 2016; 60:5928-5932.
    • (2016) Antimicrob Agents Chemother , vol.60 , pp. 5928-5932
    • Modongo, C.1    Pasipanodya, J.G.2    Magazi, B.T.3
  • 42
    • 85011710081 scopus 로고    scopus 로고
    • The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship
    • Feb 4
    • Kollef MH, Bassetti M, Francois B, et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med 2017; Feb 4. doi: 10.1007/s00134-017-4682-7. [Epub ahead of print]
    • (2017) Intensive Care Med
    • Kollef, M.H.1    Bassetti, M.2    Francois, B.3
  • 43
    • 84979996637 scopus 로고    scopus 로고
    • NLLSS: Predicting synergistic drug combinations based on semi-supervised learning
    • Chen X, Ren B, Chen M, et al. NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol 2016; 12:e1004975-e1005023.
    • (2016) PLoS Comput Biol , vol.12 , pp. e1004975-e1005023
    • Chen, X.1    Ren, B.2    Chen, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.