-
2
-
-
84983200674
-
How next-generation sequencing and multiscale data analysis will transform infectious disease management
-
Pak TR, Kasarskis A. How next-generation sequencing and multiscale data analysis will transform infectious disease management. Clin Infect Dis 2015; 61:1695-1702.
-
(2015)
Clin Infect Dis
, vol.61
, pp. 1695-1702
-
-
Pak, T.R.1
Kasarskis, A.2
-
3
-
-
84964694300
-
Whole genome sequencing in clinical and public health microbiology
-
Kwong JC, McCallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology 2015; 47:199-210.
-
(2015)
Pathology
, vol.47
, pp. 199-210
-
-
Kwong, J.C.1
McCallum, N.2
Sintchenko, V.3
Howden, B.P.4
-
4
-
-
84990046464
-
Predicting the future: Big data, machine learning, and clinical medicine
-
Obermeyer Z, Emanuel EJ. Predicting the future: big data, machine learning, and clinical medicine. N Engl J Med 2016; 375:1216-1219.
-
(2016)
N Engl J Med
, vol.375
, pp. 1216-1219
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
5
-
-
85033792691
-
-
[Accessed 26 July]
-
ResistanceOpen. http://www.healthmap.org/resistanceopen/results/. [Accessed 26 July 2017].
-
(2017)
ResistanceOpen
-
-
-
6
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet 2015; 16:321-332.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
7
-
-
84904242833
-
Application of machine learning algorithms for clinical predictive modeling: A data-mining approach in SCT
-
Shouval R, Bondi O, Mishan H, et al. Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone Marrow Transplant 2014; 49:332-337.
-
(2014)
Bone Marrow Transplant
, vol.49
, pp. 332-337
-
-
Shouval, R.1
Bondi, O.2
Mishan, H.3
-
10
-
-
0017132564
-
Computerized consultation system for selection of antimicrobial therapy
-
Wraith SM, Aikins JS, Buchanan BG, et al. Computerized consultation system for selection of antimicrobial therapy.AmJ Hosp Pharm 1976; 33:1304-1308.
-
(1976)
AmJ Hosp Pharm
, vol.33
, pp. 1304-1308
-
-
Wraith, S.M.1
Aikins, J.S.2
Buchanan, B.G.3
-
12
-
-
84872034370
-
Chapter 12: Human microbiome analysis
-
Morgan XC, Huttenhower C. Chapter 12: human microbiome analysis. PLoS Comput Biol 2012; 8:e1002808.
-
(2012)
PLoS Comput Biol
, vol.8
, pp. e1002808
-
-
Morgan, X.C.1
Huttenhower, C.2
-
13
-
-
84891529869
-
Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples
-
Hasman H, Saputra D, Sicheritz-Ponten T, et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 2014; 52:139-146.
-
(2014)
J Clin Microbiol
, vol.52
, pp. 139-146
-
-
Hasman, H.1
Saputra, D.2
Sicheritz-Ponten, T.3
-
14
-
-
84898409625
-
Rapid single-colony whole-genome sequencing of bacterial pathogens
-
Koser CU, Fraser LJ, Ioannou A, et al. Rapid single-colony whole-genome sequencing of bacterial pathogens. J Antimicrob Chemother 2014; 69: 1275-1281.
-
(2014)
J Antimicrob Chemother
, vol.69
, pp. 1275-1281
-
-
Koser, C.U.1
Fraser, L.J.2
Ioannou, A.3
-
15
-
-
84942192606
-
Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study
-
Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis 2015; 15:1193-1202.
-
(2015)
Lancet Infect Dis
, vol.15
, pp. 1193-1202
-
-
Walker, T.M.1
Kohl, T.A.2
Omar, S.V.3
-
16
-
-
84952009484
-
Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
-
Bradley P, Gordon NC, Walker TM, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015; 6:10063.
-
(2015)
Nat Commun
, vol.6
, pp. 10063
-
-
Bradley, P.1
Gordon, N.C.2
Walker, T.M.3
-
17
-
-
84897134429
-
Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing
-
Gordon NC, Price JR, Cole K, et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 2014; 52:1182-1191.
-
(2014)
J Clin Microbiol
, vol.52
, pp. 1182-1191
-
-
Gordon, N.C.1
Price, J.R.2
Cole, K.3
-
18
-
-
85006705701
-
Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data
-
Pesesky MW, Hussain T, Wallace M, et al. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data. Front Microbiol 2016; 7:1887.
-
(2016)
Front Microbiol
, vol.7
, pp. 1887
-
-
Pesesky, M.W.1
Hussain, T.2
Wallace, M.3
-
19
-
-
84957433508
-
Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study
-
Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16:161-168.
-
(2016)
Lancet Infect Dis
, vol.16
, pp. 161-168
-
-
Liu, Y.Y.1
Wang, Y.2
Walsh, T.R.3
-
20
-
-
84893770252
-
Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus
-
Rishishwar L, Petit RA, Kraft CS, Jordan IK. Genome sequence-based discriminator for vancomycin-intermediate Staphylococcus aureus. J Bacteriol 2014; 196:940-948.
-
(2014)
J Bacteriol
, vol.196
, pp. 940-948
-
-
Rishishwar, L.1
Petit, R.A.2
Kraft, C.S.3
Jordan, I.K.4
-
21
-
-
84992053162
-
Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
-
Drouin A, Giguère S, Déraspe M, et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 2016; 17:754.
-
(2016)
BMC Genomics
, vol.17
, pp. 754
-
-
Drouin, A.1
Giguère, S.2
Déraspe, M.3
-
23
-
-
84974799196
-
Antimicrobial resistance prediction in PATRIC and RAST
-
Davis JJ, Boisvert S, Brettin T, et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 2016; 6:27930.
-
(2016)
Sci Rep
, vol.6
, pp. 27930
-
-
Davis, J.J.1
Boisvert, S.2
Brettin, T.3
-
24
-
-
85033786900
-
-
[Accessed 27 July]
-
PATRIC 3.4.2. https://www.patricbrc.org/view/DataType/AntibioticResistance. [Accessed 27 July 2017].
-
(2017)
PATRIC 3. 4. 2
-
-
-
25
-
-
84946751229
-
Recent updates on the role of pharmacokinetics-pharmacodynamics in antimicrobial susceptibility testing as applied to clinical practice
-
Labreche MJ, Graber CJ, Nguyen HM. Recent updates on the role of pharmacokinetics-pharmacodynamics in antimicrobial susceptibility testing as applied to clinical practice. Clin Infect Dis 2015; 61:1446-1452.
-
(2015)
Clin Infect Dis
, vol.61
, pp. 1446-1452
-
-
Labreche, M.J.1
Graber, C.J.2
Nguyen, H.M.3
-
26
-
-
84905992620
-
The pyrazinamide susceptibility breakpoint above which combination therapy fails
-
Gumbo T, Chigutsa E, Pasipanodya J, et al. The pyrazinamide susceptibility breakpoint above which combination therapy fails. J Antimicrob Chemother 2014; 69:2420-2425.
-
(2014)
J Antimicrob Chemother
, vol.69
, pp. 2420-2425
-
-
Gumbo, T.1
Chigutsa, E.2
Pasipanodya, J.3
-
27
-
-
67749118211
-
Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: A paradigm for faster assessment of new antituberculosis drugs
-
Gumbo T, Dona CS, Meek C, Leff R. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother 2009; 53:3197-3204.
-
(2009)
Antimicrob Agents Chemother
, vol.53
, pp. 3197-3204
-
-
Gumbo, T.1
Dona, C.S.2
Meek, C.3
Leff, R.4
-
28
-
-
84940941884
-
MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis
-
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791.
-
(2015)
Front Microbiol
, vol.6
, pp. 791
-
-
Singhal, N.1
Kumar, M.2
Kanaujia, P.K.3
Virdi, J.S.4
-
29
-
-
84990879579
-
Mass spectrometry methods for predicting antibiotic resistance
-
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981.
-
(2016)
Proteomics Clin Appl
, vol.10
, pp. 964-981
-
-
Charretier, Y.1
Schrenzel, J.2
-
30
-
-
84962539419
-
Rapid detection of vancomycinintermediate staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry
-
Mather CA, Werth BJ, Sivagnanam S, et al. Rapid detection of vancomycinintermediate staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2016; 54: 883-890.
-
(2016)
J Clin Microbiol
, vol.54
, pp. 883-890
-
-
Mather, C.A.1
Werth, B.J.2
Sivagnanam, S.3
-
31
-
-
84878278251
-
10 x '20 progress: Development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America
-
BoucherHW,Talbot GH, BenjaminDK Jr, et al. 10 x '20 progress: development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 2013; 56:1685-1694.
-
(2013)
Clin Infect Dis
, vol.56
, pp. 1685-1694
-
-
Boucher, H.W.1
Talbot, G.H.2
Benjamin, D.K.3
-
32
-
-
84918779199
-
Machine-learning techniques applied to antibacterial drug discovery
-
Durrant JD, Amaro RE. Machine-learning techniques applied to antibacterial drug discovery. Chem Biol Drug Design 2014; 85:14-21.
-
(2014)
Chem Biol Drug Design
, vol.85
, pp. 14-21
-
-
Durrant, J.D.1
Amaro, R.E.2
-
33
-
-
84958543290
-
Use of machine learning approaches for novel drug discovery
-
Lima AN, Philot EA, Trossini GH, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov 2016; 11:225-239.
-
(2016)
Expert Opin Drug Discov
, vol.11
, pp. 225-239
-
-
Lima, A.N.1
Philot, E.A.2
Trossini, G.H.3
-
34
-
-
84937893066
-
-
World Health Organization Geneva, Switzerland: World Health Organization
-
World Health Organization. Global action plan on antimicrobial resistance. Geneva, Switzerland: World Health Organization; 2015.
-
(2015)
Global Action Plan on Antimicrobial Resistance
-
-
-
35
-
-
85021635595
-
Machine learning and prediction in medicine: Beyond the peak of inflated expectations
-
Chen JH, Asch SM. Machine learning and prediction in medicine: beyond the peak of inflated expectations. N Engl J Med 2017; 376:2507-2509.
-
(2017)
N Engl J Med
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
36
-
-
84990909262
-
A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum blactamase-producing organism
-
Goodman KE, Lessler J, Cosgrove SE, et al. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum blactamase-producing organism. Clin Infect Dis 2016; 63:896-903.
-
(2016)
Clin Infect Dis
, vol.63
, pp. 896-903
-
-
Goodman, K.E.1
Lessler, J.2
Cosgrove, S.E.3
-
37
-
-
85032731379
-
Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria
-
cix612
-
Guillamet MCV, Vazquez R, Micek S, Kollef MH. Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria. Clin Infect Dis 2017; cix612. doi: 10.1093/cid/cix612.
-
(2017)
Clin Infect Dis
-
-
Guillamet, M.C.V.1
Vazquez, R.2
Micek, S.3
Kollef, M.H.4
-
38
-
-
84923762812
-
A new initiative on precision medicine
-
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372:793-795.
-
(2015)
N Engl J Med
, vol.372
, pp. 793-795
-
-
Collins, F.S.1
Varmus, H.2
-
39
-
-
84946040296
-
Identification of type 2 diabetes subgroups through topological analysis of patient similarity
-
Li L, Cheng W-y, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015; 7:311ra174.
-
(2015)
Sci Transl Med
, vol.7
, pp. 311ra174
-
-
Li, L.1
Cheng, W.-Y.2
Glicksberg, B.S.3
-
40
-
-
79952590347
-
The n-of-1 clinical trial: The ultimate strategy for individualizing medicine
-
Lillie EO, Patay B, Diamant J, et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per Med 2011; 8:161-173.
-
(2011)
Per Med
, vol.8
, pp. 161-173
-
-
Lillie, E.O.1
Patay, B.2
Diamant, J.3
-
41
-
-
84994514607
-
Artificial intelligence and amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients
-
Modongo C, Pasipanodya JG, Magazi BT, et al. Artificial intelligence and amikacin exposures predictive of outcomes in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother 2016; 60:5928-5932.
-
(2016)
Antimicrob Agents Chemother
, vol.60
, pp. 5928-5932
-
-
Modongo, C.1
Pasipanodya, J.G.2
Magazi, B.T.3
-
42
-
-
85011710081
-
The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship
-
Feb 4
-
Kollef MH, Bassetti M, Francois B, et al. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship. Intensive Care Med 2017; Feb 4. doi: 10.1007/s00134-017-4682-7. [Epub ahead of print]
-
(2017)
Intensive Care Med
-
-
Kollef, M.H.1
Bassetti, M.2
Francois, B.3
-
43
-
-
84979996637
-
NLLSS: Predicting synergistic drug combinations based on semi-supervised learning
-
Chen X, Ren B, Chen M, et al. NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol 2016; 12:e1004975-e1005023.
-
(2016)
PLoS Comput Biol
, vol.12
, pp. e1004975-e1005023
-
-
Chen, X.1
Ren, B.2
Chen, M.3
|