-
1
-
-
85033379122
-
The Simple Economics of Machine Intelligence
-
[cited 2017 18th/Jan/]; Available from:
-
Agrawal, A., Gans, J., Goldfarb, A., The Simple Economics of Machine Intelligence. 2016 [cited 2017 18th/Jan/]; Available from: https://hbr.org/2016/11/the-simple-economics-of-machine-intelligence.
-
(2016)
-
-
Agrawal, A.1
Gans, J.2
Goldfarb, A.3
-
2
-
-
84937801713
-
Machine learning: trends, perspectives, and prospects
-
Jordan, M., Mitchell, T., Machine learning: trends, perspectives, and prospects. Science 349:6245 (2015), 255–260.
-
(2015)
Science
, vol.349
, Issue.6245
, pp. 255-260
-
-
Jordan, M.1
Mitchell, T.2
-
3
-
-
33747839059
-
Development and verification of a “virtual” cohort using the national VA health information system
-
Fultz, S.L., et al. Development and verification of a “virtual” cohort using the national VA health information system. Med. Care 44:8 Suppl 2 (2006), S25–S30.
-
(2006)
Med. Care
, vol.44
, Issue.8
, pp. S25-S30
-
-
Fultz, S.L.1
-
4
-
-
84901259802
-
Developing predictive models using electronic medical records: challenges and pitfalls
-
AMIA Annu. Symp. Proc. 2013
-
Paxton, C., Niculescu-Mizil, A., Saria, S., Developing predictive models using electronic medical records: challenges and pitfalls. AMIA Annu. Symp. Proc. 2013, 1109–1115 2013.
-
(2013)
, pp. 1109-1115
-
-
Paxton, C.1
Niculescu-Mizil, A.2
Saria, S.3
-
5
-
-
84990046464
-
Predicting the future—big data, machine learning, and clinical medicine
-
Obermeyer, Z., Emanuel, E.J., Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med., 375(13), 2016, 1216.
-
(2016)
N. Engl. J. Med.
, vol.375
, Issue.13
, pp. 1216
-
-
Obermeyer, Z.1
Emanuel, E.J.2
-
6
-
-
84947466043
-
Machine learning in medicine
-
Deo, R.C., Machine learning in medicine. Circulation 132:20 (2015), 1920–1930.
-
(2015)
Circulation
, vol.132
, Issue.20
, pp. 1920-1930
-
-
Deo, R.C.1
-
7
-
-
85033369215
-
-
WHO. HIV/AIDS fact sheet. July 2017 31-Sept-2017; Available from
-
WHO. HIV/AIDS fact sheet. July 2017 31-Sept-2017; Available from: http://www.who.int/features/factfiles/hiv/en/.
-
-
-
-
8
-
-
0031697526
-
Complexity of human immunodeficiency virus management in developing countries
-
White, A.D., Complexity of human immunodeficiency virus management in developing countries. Epidemiology 9:6 (1998), 593–595.
-
(1998)
Epidemiology
, vol.9
, Issue.6
, pp. 593-595
-
-
White, A.D.1
-
9
-
-
84942612935
-
Machine learning applications in cancer prognosis and prediction
-
Kourou, K., et al. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13 (2015), 8–17.
-
(2015)
Comput. Struct. Biotechnol. J.
, vol.13
, pp. 8-17
-
-
Kourou, K.1
-
10
-
-
0002096055
-
Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances
-
Barnard, G.A., B, T., Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances. Biometika 45:3/4 (1958), 293–315.
-
(1958)
Biometika
, vol.45
, Issue.3-4
, pp. 293-315
-
-
Barnard, G.A.1
-
11
-
-
0003684449
-
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
Springer New York
-
Hastie, T., Tibshirani, R., F, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009, Springer, New York.
-
(2009)
-
-
Hastie, T.1
Tibshirani, R.2
-
12
-
-
84984671961
-
Automated prediction of HIV drug resistance from genotype data
-
Shen, C., et al. Automated prediction of HIV drug resistance from genotype data. BMC Bioinforma., 17(8), 2016, 278.
-
(2016)
BMC Bioinforma.
, vol.17
, Issue.8
, pp. 278
-
-
Shen, C.1
-
13
-
-
78049525526
-
Support vector machines to forecast changes in CD4 count of HIV-1 positive patients
-
Singh, Y., Mars, M., Support vector machines to forecast changes in CD4 count of HIV-1 positive patients. Sci. Res. Essays 5:17 (2010), 2384–2390.
-
(2010)
Sci. Res. Essays
, vol.5
, Issue.17
, pp. 2384-2390
-
-
Singh, Y.1
Mars, M.2
-
15
-
-
84946582355
-
Applying machine learning to predict patient-specific current CD 4 cell count in order to determine the progression of human immunodeficiency virus (HIV) infection
-
Singh, Y., Narsai, N., Mars, M., Applying machine learning to predict patient-specific current CD 4 cell count in order to determine the progression of human immunodeficiency virus (HIV) infection. Afr. J. Biotechnol., 12(23), 2013.
-
(2013)
Afr. J. Biotechnol.
, vol.12
, Issue.23
-
-
Singh, Y.1
Narsai, N.2
Mars, M.3
-
16
-
-
68249110722
-
A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy
-
Wang, D., et al. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif. Intell. Med. 47:1 (2009), 63–74.
-
(2009)
Artif. Intell. Med.
, vol.47
, Issue.1
, pp. 63-74
-
-
Wang, D.1
-
17
-
-
78651308727
-
Application of artificial neural networks for decision support in medicine
-
Larder, B., Wang, D., Revell, A., Application of artificial neural networks for decision support in medicine. Artif. Neural Netw. Methods Appl., 2009, 119–132.
-
(2009)
Artif. Neural Netw. Methods Appl.
, pp. 119-132
-
-
Larder, B.1
Wang, D.2
Revell, A.3
-
18
-
-
70349337186
-
Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS
-
Li, Y., Rapkin, B., Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS. J. Clin. Epidemiol. 62:11 (2009), 1138–1147.
-
(2009)
J. Clin. Epidemiol.
, vol.62
, Issue.11
, pp. 1138-1147
-
-
Li, Y.1
Rapkin, B.2
-
19
-
-
84907190364
-
Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables
-
Muñoz-Moreno, J.A., et al. Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables. PLoS One, 9(9), 2014, e107625.
-
(2014)
PLoS One
, vol.9
, Issue.9
, pp. e107625
-
-
Muñoz-Moreno, J.A.1
-
20
-
-
84929485998
-
Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees
-
Choi, I., et al. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput. Biol., 11(4), 2015, e1004185.
-
(2015)
PLoS Comput. Biol.
, vol.11
, Issue.4
, pp. e1004185
-
-
Choi, I.1
-
21
-
-
84879801366
-
The use of computational models to predict response to HIV therapy for clinical cases in Romania
-
Revell, A.D., et al. The use of computational models to predict response to HIV therapy for clinical cases in Romania. Germs, 2(1), 2012, 6.
-
(2012)
Germs
, vol.2
, Issue.1
, pp. 6
-
-
Revell, A.D.1
-
22
-
-
85033401760
-
-
Ensemble Methods in Machine Learning. [cited 2016 30th/Aug/]; Available from
-
Dietterich, T.G. Ensemble Methods in Machine Learning. [cited 2016 30th/Aug/]; Available from: http://www.cs.orst.edu/∼tgd.
-
-
-
Dietterich, T.G.1
-
23
-
-
67650272548
-
Introduction to semi-supervised learning
-
Zhu, X., Goldberg, A.B., Introduction to semi-supervised learning. Synthesis Lect. Artif. Intell. Mach. Learn. 3:1 (2009), 1–130.
-
(2009)
Synthesis Lect. Artif. Intell. Mach. Learn.
, vol.3
, Issue.1
, pp. 1-130
-
-
Zhu, X.1
Goldberg, A.B.2
-
24
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih, V., et al. Human-level control through deep reinforcement learning. Nature 518:7540 (2015), 529–533.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
-
25
-
-
79955859296
-
Algorithms for Reinforcement Learning
-
Morgan & Claypool Publishers
-
Szepesv´ari, C., Algorithms for Reinforcement Learning. 2009, Morgan & Claypool Publishers.
-
(2009)
-
-
Szepesv´ari, C.1
-
26
-
-
25144439604
-
Introduction to Data Mining
-
Pearson Education, Limited
-
Tan, Pang-ning, Steinbach, Michael, Kumar, V., Introduction to Data Mining. 2014, Pearson Education, Limited.
-
(2014)
-
-
Tan, P.-N.1
Steinbach, M.2
Kumar, V.3
-
27
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23:19 (2007), 2507–2517.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
28
-
-
33745561205
-
An introduction to variable and feature selection. Journal of Machine Learning Research
-
Guyon, I., Elisseeff, A., An introduction to variable and feature selection. Journal of Machine Learning Research., 3(Mar), 2003, 1157–1182.
-
(2003)
, vol.3
, Issue.Mar
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
29
-
-
85033390321
-
A comparison of several feature encoding techniques for MHC class I binding prediction
-
Gök, M., A comparison of several feature encoding techniques for MHC class I binding prediction. Int. J. Biosci. Biochem. Bioinforma., 3(2), 2013.
-
(2013)
Int. J. Biosci. Biochem. Bioinforma.
, vol.3
, Issue.2
-
-
Gök, M.1
-
30
-
-
84878554324
-
A new feature encoding scheme for HIV-1 protease cleavage site prediction
-
Gök, M., Özcerit, A.T., A new feature encoding scheme for HIV-1 protease cleavage site prediction. Neural Comput. Appl. 22:7–8 (2013), 1757–1761.
-
(2013)
Neural Comput. Appl.
, vol.22
, Issue.7-8
, pp. 1757-1761
-
-
Gök, M.1
Özcerit, A.T.2
-
31
-
-
0003421415
-
The Jackknife, the Bootstrap, and Other Resampling Plans
-
Society for Industrial and Applied Mathematics Philadelphia, Pa.
-
Efron, B., The Jackknife, the Bootstrap, and Other Resampling Plans. 1982, Society for Industrial and Applied Mathematics, Philadelphia, Pa.
-
(1982)
-
-
Efron, B.1
-
33
-
-
38749137358
-
Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve
-
Cook, N.R., Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin. Chem. 54:1 (2008), 17–23.
-
(2008)
Clin. Chem.
, vol.54
, Issue.1
, pp. 17-23
-
-
Cook, N.R.1
-
34
-
-
84973418649
-
R: a Language and Environment for Statistical Computing
-
R Foundation for Statistical Computing Vienna, Austria
-
R-Core-Team, R: a Language and Environment for Statistical Computing. 2013, R Foundation for Statistical Computing, Vienna, Austria.
-
(2013)
-
-
R-Core-Team1
-
35
-
-
84905079748
-
A Literature Review of Data Mining Techniques Used in Healthcare Databases
-
Kolçe, E., Frasheri, N., A Literature Review of Data Mining Techniques Used in Healthcare Databases. 2012.
-
(2012)
-
-
Kolçe, E.1
Frasheri, N.2
-
36
-
-
85027894596
-
Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function
-
Underwood, J., et al. Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function. Clin. Infect. Dis. 65:3 (2017), 422–432.
-
(2017)
Clin. Infect. Dis.
, vol.65
, Issue.3
, pp. 422-432
-
-
Underwood, J.1
-
37
-
-
0033619146
-
The AIDS epidemic - considerations for the 21st century
-
Fauci, A.S., The AIDS epidemic - considerations for the 21st century. N. Engl. J. Med. 341 (1999), 1045–1050.
-
(1999)
N. Engl. J. Med.
, vol.341
, pp. 1045-1050
-
-
Fauci, A.S.1
-
38
-
-
84874423353
-
Rates of emergence of HIV drug resistance in resource -limited settings: a systematic review
-
Stadeli, K.M., R, D., Rates of emergence of HIV drug resistance in resource -limited settings: a systematic review. Antivir. Ther. 18:1 (2013), 115–123.
-
(2013)
Antivir. Ther.
, vol.18
, Issue.1
, pp. 115-123
-
-
Stadeli, K.M.1
-
39
-
-
85033361309
-
-
Machine Learning: Changing Everything but Healthcare. Healthcare IT News 2016 25th/October/2016, 12:16 [cited 2017 25th/January/]; Available from
-
Sullivan, T. Machine Learning: Changing Everything but Healthcare. Healthcare IT News 2016 25th/October/2016, 12:16 [cited 2017 25th/January/]; Available from: http://www.healthcareitnews.com/news/machine-learning-changing-everything-healthcare.
-
-
-
Sullivan, T.1
-
40
-
-
84856433482
-
Predicting response to antiretroviral treatment by machine learning: the EuResist project
-
Zazzi, M., et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology 55:2 (2012), 123–127.
-
(2012)
Intervirology
, vol.55
, Issue.2
, pp. 123-127
-
-
Zazzi, M.1
-
41
-
-
46249127515
-
Selecting anti-HIV therapies based on a variety of genomic and clinical factors
-
Rosen-Zvi, M., et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 24:13 (2008), i399–406.
-
(2008)
Bioinformatics
, vol.24
, Issue.13
, pp. i399-406
-
-
Rosen-Zvi, M.1
-
42
-
-
84904872997
-
Evidence based medicine: a movement in crisis?
-
Greenhalgh, T., Howick, J., Maskrey, N., Evidence based medicine: a movement in crisis?. Bmj, 348, 2014, g3725.
-
(2014)
Bmj
, vol.348
, pp. g3725
-
-
Greenhalgh, T.1
Howick, J.2
Maskrey, N.3
-
43
-
-
0026775637
-
Evidence-based medicine. A new approach to teaching the practice of medicine
-
Group, E.-B.M.W., Evidence-based medicine. A new approach to teaching the practice of medicine. Jama, 268(17), 1992, 2420.
-
(1992)
Jama
, vol.268
, Issue.17
, pp. 2420
-
-
Group, E.-B.M.W.1
-
44
-
-
85048560245
-
Interactive machine learning for health informatics: when do we need the human-in-the-loop?
-
Holzinger, A., Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Inf. 3:2 (2016), 119–131.
-
(2016)
Brain Inf.
, vol.3
, Issue.2
, pp. 119-131
-
-
Holzinger, A.1
-
45
-
-
85033383792
-
An Executive's Guide to Machine Learning Mckinsey Quarterly
-
June 2015
-
Pyle, Dorian, Jose, C.S., An Executive's Guide to Machine Learning Mckinsey Quarterly. June 2015, 2015.
-
(2015)
-
-
Pyle, D.1
Jose, C.S.2
-
46
-
-
77954620267
-
Imaging genomics
-
Thompson, P.M., et al. Imaging genomics. Curr. Opin. Neurol. 23:4 (2010), 368–373.
-
(2010)
Curr. Opin. Neurol.
, vol.23
, Issue.4
, pp. 368-373
-
-
Thompson, P.M.1
|