메뉴 건너뛰기




Volumn 91, Issue , 2017, Pages 366-371

A survey of machine learning applications in HIV clinical research and care

Author keywords

Application paradigms; Clinical research; HIV; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; SURVEYS;

EID: 85033376054     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2017.11.001     Document Type: Review
Times cited : (38)

References (46)
  • 1
    • 85033379122 scopus 로고    scopus 로고
    • The Simple Economics of Machine Intelligence
    • [cited 2017 18th/Jan/]; Available from:
    • Agrawal, A., Gans, J., Goldfarb, A., The Simple Economics of Machine Intelligence. 2016 [cited 2017 18th/Jan/]; Available from: https://hbr.org/2016/11/the-simple-economics-of-machine-intelligence.
    • (2016)
    • Agrawal, A.1    Gans, J.2    Goldfarb, A.3
  • 2
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: trends, perspectives, and prospects
    • Jordan, M., Mitchell, T., Machine learning: trends, perspectives, and prospects. Science 349:6245 (2015), 255–260.
    • (2015) Science , vol.349 , Issue.6245 , pp. 255-260
    • Jordan, M.1    Mitchell, T.2
  • 3
    • 33747839059 scopus 로고    scopus 로고
    • Development and verification of a “virtual” cohort using the national VA health information system
    • Fultz, S.L., et al. Development and verification of a “virtual” cohort using the national VA health information system. Med. Care 44:8 Suppl 2 (2006), S25–S30.
    • (2006) Med. Care , vol.44 , Issue.8 , pp. S25-S30
    • Fultz, S.L.1
  • 4
    • 84901259802 scopus 로고    scopus 로고
    • Developing predictive models using electronic medical records: challenges and pitfalls
    • AMIA Annu. Symp. Proc. 2013
    • Paxton, C., Niculescu-Mizil, A., Saria, S., Developing predictive models using electronic medical records: challenges and pitfalls. AMIA Annu. Symp. Proc. 2013, 1109–1115 2013.
    • (2013) , pp. 1109-1115
    • Paxton, C.1    Niculescu-Mizil, A.2    Saria, S.3
  • 5
    • 84990046464 scopus 로고    scopus 로고
    • Predicting the future—big data, machine learning, and clinical medicine
    • Obermeyer, Z., Emanuel, E.J., Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med., 375(13), 2016, 1216.
    • (2016) N. Engl. J. Med. , vol.375 , Issue.13 , pp. 1216
    • Obermeyer, Z.1    Emanuel, E.J.2
  • 6
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo, R.C., Machine learning in medicine. Circulation 132:20 (2015), 1920–1930.
    • (2015) Circulation , vol.132 , Issue.20 , pp. 1920-1930
    • Deo, R.C.1
  • 7
    • 85033369215 scopus 로고    scopus 로고
    • WHO. HIV/AIDS fact sheet. July 2017 31-Sept-2017; Available from
    • WHO. HIV/AIDS fact sheet. July 2017 31-Sept-2017; Available from: http://www.who.int/features/factfiles/hiv/en/.
  • 8
    • 0031697526 scopus 로고    scopus 로고
    • Complexity of human immunodeficiency virus management in developing countries
    • White, A.D., Complexity of human immunodeficiency virus management in developing countries. Epidemiology 9:6 (1998), 593–595.
    • (1998) Epidemiology , vol.9 , Issue.6 , pp. 593-595
    • White, A.D.1
  • 9
    • 84942612935 scopus 로고    scopus 로고
    • Machine learning applications in cancer prognosis and prediction
    • Kourou, K., et al. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13 (2015), 8–17.
    • (2015) Comput. Struct. Biotechnol. J. , vol.13 , pp. 8-17
    • Kourou, K.1
  • 10
    • 0002096055 scopus 로고
    • Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances
    • Barnard, G.A., B, T., Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances. Biometika 45:3/4 (1958), 293–315.
    • (1958) Biometika , vol.45 , Issue.3-4 , pp. 293-315
    • Barnard, G.A.1
  • 11
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • Springer New York
    • Hastie, T., Tibshirani, R., F, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2009, Springer, New York.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2
  • 12
    • 84984671961 scopus 로고    scopus 로고
    • Automated prediction of HIV drug resistance from genotype data
    • Shen, C., et al. Automated prediction of HIV drug resistance from genotype data. BMC Bioinforma., 17(8), 2016, 278.
    • (2016) BMC Bioinforma. , vol.17 , Issue.8 , pp. 278
    • Shen, C.1
  • 13
    • 78049525526 scopus 로고    scopus 로고
    • Support vector machines to forecast changes in CD4 count of HIV-1 positive patients
    • Singh, Y., Mars, M., Support vector machines to forecast changes in CD4 count of HIV-1 positive patients. Sci. Res. Essays 5:17 (2010), 2384–2390.
    • (2010) Sci. Res. Essays , vol.5 , Issue.17 , pp. 2384-2390
    • Singh, Y.1    Mars, M.2
  • 15
    • 84946582355 scopus 로고    scopus 로고
    • Applying machine learning to predict patient-specific current CD 4 cell count in order to determine the progression of human immunodeficiency virus (HIV) infection
    • Singh, Y., Narsai, N., Mars, M., Applying machine learning to predict patient-specific current CD 4 cell count in order to determine the progression of human immunodeficiency virus (HIV) infection. Afr. J. Biotechnol., 12(23), 2013.
    • (2013) Afr. J. Biotechnol. , vol.12 , Issue.23
    • Singh, Y.1    Narsai, N.2    Mars, M.3
  • 16
    • 68249110722 scopus 로고    scopus 로고
    • A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy
    • Wang, D., et al. A comparison of three computational modelling methods for the prediction of virological response to combination HIV therapy. Artif. Intell. Med. 47:1 (2009), 63–74.
    • (2009) Artif. Intell. Med. , vol.47 , Issue.1 , pp. 63-74
    • Wang, D.1
  • 17
    • 78651308727 scopus 로고    scopus 로고
    • Application of artificial neural networks for decision support in medicine
    • Larder, B., Wang, D., Revell, A., Application of artificial neural networks for decision support in medicine. Artif. Neural Netw. Methods Appl., 2009, 119–132.
    • (2009) Artif. Neural Netw. Methods Appl. , pp. 119-132
    • Larder, B.1    Wang, D.2    Revell, A.3
  • 18
    • 70349337186 scopus 로고    scopus 로고
    • Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS
    • Li, Y., Rapkin, B., Classification and regression tree uncovered hierarchy of psychosocial determinants underlying quality-of-life response shift in HIV/AIDS. J. Clin. Epidemiol. 62:11 (2009), 1138–1147.
    • (2009) J. Clin. Epidemiol. , vol.62 , Issue.11 , pp. 1138-1147
    • Li, Y.1    Rapkin, B.2
  • 19
    • 84907190364 scopus 로고    scopus 로고
    • Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables
    • Muñoz-Moreno, J.A., et al. Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables. PLoS One, 9(9), 2014, e107625.
    • (2014) PLoS One , vol.9 , Issue.9 , pp. e107625
    • Muñoz-Moreno, J.A.1
  • 20
    • 84929485998 scopus 로고    scopus 로고
    • Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees
    • Choi, I., et al. Machine learning methods enable predictive modeling of antibody feature:function relationships in RV144 vaccinees. PLoS Comput. Biol., 11(4), 2015, e1004185.
    • (2015) PLoS Comput. Biol. , vol.11 , Issue.4 , pp. e1004185
    • Choi, I.1
  • 21
    • 84879801366 scopus 로고    scopus 로고
    • The use of computational models to predict response to HIV therapy for clinical cases in Romania
    • Revell, A.D., et al. The use of computational models to predict response to HIV therapy for clinical cases in Romania. Germs, 2(1), 2012, 6.
    • (2012) Germs , vol.2 , Issue.1 , pp. 6
    • Revell, A.D.1
  • 22
    • 85033401760 scopus 로고    scopus 로고
    • Ensemble Methods in Machine Learning. [cited 2016 30th/Aug/]; Available from
    • Dietterich, T.G. Ensemble Methods in Machine Learning. [cited 2016 30th/Aug/]; Available from: http://www.cs.orst.edu/∼tgd.
    • Dietterich, T.G.1
  • 24
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih, V., et al. Human-level control through deep reinforcement learning. Nature 518:7540 (2015), 529–533.
    • (2015) Nature , vol.518 , Issue.7540 , pp. 529-533
    • Mnih, V.1
  • 25
    • 79955859296 scopus 로고    scopus 로고
    • Algorithms for Reinforcement Learning
    • Morgan & Claypool Publishers
    • Szepesv´ari, C., Algorithms for Reinforcement Learning. 2009, Morgan & Claypool Publishers.
    • (2009)
    • Szepesv´ari, C.1
  • 26
    • 25144439604 scopus 로고    scopus 로고
    • Introduction to Data Mining
    • Pearson Education, Limited
    • Tan, Pang-ning, Steinbach, Michael, Kumar, V., Introduction to Data Mining. 2014, Pearson Education, Limited.
    • (2014)
    • Tan, P.-N.1    Steinbach, M.2    Kumar, V.3
  • 27
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23:19 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 28
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection. Journal of Machine Learning Research
    • Guyon, I., Elisseeff, A., An introduction to variable and feature selection. Journal of Machine Learning Research., 3(Mar), 2003, 1157–1182.
    • (2003) , vol.3 , Issue.Mar , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 29
    • 85033390321 scopus 로고    scopus 로고
    • A comparison of several feature encoding techniques for MHC class I binding prediction
    • Gök, M., A comparison of several feature encoding techniques for MHC class I binding prediction. Int. J. Biosci. Biochem. Bioinforma., 3(2), 2013.
    • (2013) Int. J. Biosci. Biochem. Bioinforma. , vol.3 , Issue.2
    • Gök, M.1
  • 30
    • 84878554324 scopus 로고    scopus 로고
    • A new feature encoding scheme for HIV-1 protease cleavage site prediction
    • Gök, M., Özcerit, A.T., A new feature encoding scheme for HIV-1 protease cleavage site prediction. Neural Comput. Appl. 22:7–8 (2013), 1757–1761.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.7-8 , pp. 1757-1761
    • Gök, M.1    Özcerit, A.T.2
  • 31
    • 0003421415 scopus 로고
    • The Jackknife, the Bootstrap, and Other Resampling Plans
    • Society for Industrial and Applied Mathematics Philadelphia, Pa.
    • Efron, B., The Jackknife, the Bootstrap, and Other Resampling Plans. 1982, Society for Industrial and Applied Mathematics, Philadelphia, Pa.
    • (1982)
    • Efron, B.1
  • 33
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve
    • Cook, N.R., Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin. Chem. 54:1 (2008), 17–23.
    • (2008) Clin. Chem. , vol.54 , Issue.1 , pp. 17-23
    • Cook, N.R.1
  • 34
    • 84973418649 scopus 로고    scopus 로고
    • R: a Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing Vienna, Austria
    • R-Core-Team, R: a Language and Environment for Statistical Computing. 2013, R Foundation for Statistical Computing, Vienna, Austria.
    • (2013)
    • R-Core-Team1
  • 35
    • 84905079748 scopus 로고    scopus 로고
    • A Literature Review of Data Mining Techniques Used in Healthcare Databases
    • Kolçe, E., Frasheri, N., A Literature Review of Data Mining Techniques Used in Healthcare Databases. 2012.
    • (2012)
    • Kolçe, E.1    Frasheri, N.2
  • 36
    • 85027894596 scopus 로고    scopus 로고
    • Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function
    • Underwood, J., et al. Gray and white matter abnormalities in treated human immunodeficiency virus disease and their relationship to cognitive function. Clin. Infect. Dis. 65:3 (2017), 422–432.
    • (2017) Clin. Infect. Dis. , vol.65 , Issue.3 , pp. 422-432
    • Underwood, J.1
  • 37
    • 0033619146 scopus 로고    scopus 로고
    • The AIDS epidemic - considerations for the 21st century
    • Fauci, A.S., The AIDS epidemic - considerations for the 21st century. N. Engl. J. Med. 341 (1999), 1045–1050.
    • (1999) N. Engl. J. Med. , vol.341 , pp. 1045-1050
    • Fauci, A.S.1
  • 38
    • 84874423353 scopus 로고    scopus 로고
    • Rates of emergence of HIV drug resistance in resource -limited settings: a systematic review
    • Stadeli, K.M., R, D., Rates of emergence of HIV drug resistance in resource -limited settings: a systematic review. Antivir. Ther. 18:1 (2013), 115–123.
    • (2013) Antivir. Ther. , vol.18 , Issue.1 , pp. 115-123
    • Stadeli, K.M.1
  • 39
    • 85033361309 scopus 로고    scopus 로고
    • Machine Learning: Changing Everything but Healthcare. Healthcare IT News 2016 25th/October/2016, 12:16 [cited 2017 25th/January/]; Available from
    • Sullivan, T. Machine Learning: Changing Everything but Healthcare. Healthcare IT News 2016 25th/October/2016, 12:16 [cited 2017 25th/January/]; Available from: http://www.healthcareitnews.com/news/machine-learning-changing-everything-healthcare.
    • Sullivan, T.1
  • 40
    • 84856433482 scopus 로고    scopus 로고
    • Predicting response to antiretroviral treatment by machine learning: the EuResist project
    • Zazzi, M., et al. Predicting response to antiretroviral treatment by machine learning: the EuResist project. Intervirology 55:2 (2012), 123–127.
    • (2012) Intervirology , vol.55 , Issue.2 , pp. 123-127
    • Zazzi, M.1
  • 41
    • 46249127515 scopus 로고    scopus 로고
    • Selecting anti-HIV therapies based on a variety of genomic and clinical factors
    • Rosen-Zvi, M., et al. Selecting anti-HIV therapies based on a variety of genomic and clinical factors. Bioinformatics 24:13 (2008), i399–406.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i399-406
    • Rosen-Zvi, M.1
  • 42
    • 84904872997 scopus 로고    scopus 로고
    • Evidence based medicine: a movement in crisis?
    • Greenhalgh, T., Howick, J., Maskrey, N., Evidence based medicine: a movement in crisis?. Bmj, 348, 2014, g3725.
    • (2014) Bmj , vol.348 , pp. g3725
    • Greenhalgh, T.1    Howick, J.2    Maskrey, N.3
  • 43
    • 0026775637 scopus 로고
    • Evidence-based medicine. A new approach to teaching the practice of medicine
    • Group, E.-B.M.W., Evidence-based medicine. A new approach to teaching the practice of medicine. Jama, 268(17), 1992, 2420.
    • (1992) Jama , vol.268 , Issue.17 , pp. 2420
    • Group, E.-B.M.W.1
  • 44
    • 85048560245 scopus 로고    scopus 로고
    • Interactive machine learning for health informatics: when do we need the human-in-the-loop?
    • Holzinger, A., Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Inf. 3:2 (2016), 119–131.
    • (2016) Brain Inf. , vol.3 , Issue.2 , pp. 119-131
    • Holzinger, A.1
  • 45
    • 85033383792 scopus 로고    scopus 로고
    • An Executive's Guide to Machine Learning Mckinsey Quarterly
    • June 2015
    • Pyle, Dorian, Jose, C.S., An Executive's Guide to Machine Learning Mckinsey Quarterly. June 2015, 2015.
    • (2015)
    • Pyle, D.1    Jose, C.S.2
  • 46
    • 77954620267 scopus 로고    scopus 로고
    • Imaging genomics
    • Thompson, P.M., et al. Imaging genomics. Curr. Opin. Neurol. 23:4 (2010), 368–373.
    • (2010) Curr. Opin. Neurol. , vol.23 , Issue.4 , pp. 368-373
    • Thompson, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.