-
1
-
-
85003633058
-
Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: A qualitative study
-
Rawson TM, Charani E, Moore LSP et al. Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study. BMC Med 2016; 14: 208.
-
(2016)
BMC Med
, vol.14
, pp. 208
-
-
Rawson, T.M.1
Charani, E.2
Moore, L.S.P.3
-
2
-
-
85018457253
-
Understanding antibiotic decision making in surgery - A qualitative analysis
-
Charani E, Tarrant C, Moorthy K et al. Understanding antibiotic decision making in surgery - a qualitative analysis. Clin Microbiol Infect 2017; 23: 752-60.
-
(2017)
Clin Microbiol Infect
, vol.23
, pp. 752-760
-
-
Charani, E.1
Tarrant, C.2
Moorthy, K.3
-
3
-
-
85026775322
-
Recognizing sepsis as a global health priority - A WHO resolution
-
Reinhart K, Daniels R, Kissoon N et al. Recognizing sepsis as a global health priority - aWHOresolution.N Engl J Med2017; 377: 414-17.
-
(2017)
N Engl J Med
, vol.377
, pp. 414-417
-
-
Reinhart, K.1
Daniels, R.2
Kissoon, N.3
-
4
-
-
85010650955
-
Prognostic accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit
-
Raith EP, Udy AA, Bailey M et al. Prognostic accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA 2017; 317: 290.
-
(2017)
JAMA
, vol.317
, pp. 290
-
-
Raith, E.P.1
Udy, A.A.2
Bailey, M.3
-
5
-
-
84965085560
-
Identify sepsis in patients by using early warning scores, doctors are urged
-
Kmietowicz Z. Identify sepsis in patients by using early warning scores, doctors are urged. BMJ 2015; 351: h6237.
-
(2015)
BMJ
, vol.351
, pp. h6237
-
-
Kmietowicz, Z.1
-
6
-
-
79955479858
-
Multiparameter intelligent monitoring in intensive care II: A public-access intensive care unit database
-
Saeed M, Villarroel M, Reisner AT et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med 2011; 39: 952-60.
-
(2011)
Crit Care Med
, vol.39
, pp. 952-960
-
-
Saeed, M.1
Villarroel, M.2
Reisner, A.T.3
-
7
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Henry KE, Hager DN, Pronovost PJ et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7: 299ra122.
-
(2015)
Sci Transl Med
, vol.7
, pp. 299ra122
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
-
8
-
-
79952166676
-
Implementation of a real-time computerized sepsis alert in nonintensive care unit patients
-
Sawyer AM, Deal EN, Labelle AJ et al. Implementation of a real-time computerized sepsis alert in nonintensive care unit patients. Crit Care Med 2011; 39: 469-73.
-
(2011)
Crit Care Med
, vol.39
, pp. 469-473
-
-
Sawyer, A.M.1
Deal, E.N.2
Labelle, A.J.3
-
9
-
-
84920272451
-
Development, implementation, and impact of an automated early warning and response system for sepsis
-
Umscheid CA, Betesh J, VanZandbergen C et al. Development, implementation, and impact of an automated early warning and response system for sepsis.JHospMed2015; 10: 26-31.
-
(2015)
J Hosp Med
, vol.10
, pp. 26-31
-
-
Umscheid, C.A.1
Betesh, J.2
VanZandbergen, C.3
-
10
-
-
84936744681
-
Systematic screening is essential for early diagnosis of severe sepsis and septic shock
-
Westphal GA, Lino AS. Systematic screening is essential for early diagnosis of severe sepsis and septic shock. Rev Bras Ter Intensiva 2015; 27: 96-101.
-
(2015)
Rev Bras ter Intensiva
, vol.27
, pp. 96-101
-
-
Westphal, G.A.1
Lino, A.S.2
-
11
-
-
84959273475
-
The third international consensus definitions for sepsis and septic shock (Sepsis-3)
-
Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801.
-
(2016)
JAMA
, vol.315
, pp. 801
-
-
Singer, M.1
Deutschman, C.S.2
Seymour, C.W.3
-
12
-
-
84973902514
-
Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations
-
Fleischmann C, Scherag A, Adhikari NKJ et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. AmJ Respir Crit Care Med 2016; 193: 259-72.
-
(2016)
Am J Respir Crit Care Med
, vol.193
, pp. 259-272
-
-
Fleischmann, C.1
Scherag, A.2
Adhikari, N.K.J.3
-
13
-
-
85010680119
-
Automated early warning system for septic shock: The new way to achieve intensive care unit quality improvement?
-
Amorim FF, Santana ANC. Automated early warning system for septic shock: the new way to achieve intensive care unit quality improvement? Ann Transl Med 2017; 5: 17.
-
(2017)
Ann Transl Med
, vol.5
, pp. 17
-
-
Amorim, F.F.1
Santana, A.N.C.2
-
14
-
-
84894094760
-
Medical decision support using machine learning for early detection of late-onset neonatal sepsis
-
Mani S, Ozdas A, Aliferis C et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc 2014; 21: 326-36.
-
(2014)
J Am Med Inform Assoc
, vol.21
, pp. 326-336
-
-
Mani, S.1
Ozdas, A.2
Aliferis, C.3
-
15
-
-
79955465836
-
Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis
-
Nelson JL, Smith BL, Jared JD et al. Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis. Ann Emerg Med 2011; 57: 500-4.
-
(2011)
Ann Emerg Med
, vol.57
, pp. 500-504
-
-
Nelson, J.L.1
Smith, B.L.2
Jared, J.D.3
-
16
-
-
84904734154
-
Empiric antibiotic treatment reducesmortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program
-
Ferrer R, Martin-Loeches I, Phillips G et al. Empiric antibiotic treatment reducesmortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749-55.
-
(2014)
Crit Care Med
, vol.42
, pp. 1749-1755
-
-
Ferrer, R.1
Martin-Loeches, I.2
Phillips, G.3
-
17
-
-
85020468010
-
Time to treatment andmortality during mandated emergency care for sepsis
-
Seymour CW, Gesten F, Prescott HC et al. Time to treatment andmortality during mandated emergency care for sepsis. N Engl J Med 2017; 376: 2235-44.
-
(2017)
N Engl J Med
, vol.376
, pp. 2235-2244
-
-
Seymour, C.W.1
Gesten, F.2
Prescott, H.C.3
-
18
-
-
84901683074
-
Utility of a single early warning score in patients with sepsis in the emergency department
-
Corfield AR, Lees F, Zealley I et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emerg Med J 2014; 31: 482-7.
-
(2014)
Emerg Med J
, vol.31
, pp. 482-487
-
-
Corfield, A.R.1
Lees, F.2
Zealley, I.3
-
20
-
-
84923649312
-
Pneumonia challenges in the definition diagnosis andmanagement of disease
-
Ottosen J, Evans H. Pneumonia challenges in the definition, diagnosis, andmanagement of disease. Surg Clin North Am2014; 94: 1305-17.
-
(2014)
Surg Clin North Am
, vol.94
, pp. 1305-1317
-
-
Ottosen, J.1
Evans, H.2
-
21
-
-
84885171150
-
Urinary tract infection in older adults
-
Rowe TA, Juthani-Mehta M. Urinary tract infection in older adults. Aging Health 2013; 9: 519-28.
-
(2013)
Aging Health
, vol.9
, pp. 519-528
-
-
Rowe, T.A.1
Juthani-Mehta, M.2
-
22
-
-
84858147715
-
Diagnostic challenges and opportunities in older adults with infectious diseases
-
van Duin D. Diagnostic challenges and opportunities in older adults with infectious diseases. Clin Infect Dis 2012; 54: 973-8.
-
(2012)
Clin Infect Dis
, vol.54
, pp. 973-978
-
-
Van Duin, D.1
-
23
-
-
33646095254
-
Prediction of bacteremia using TREAT, a computerized decision-support system
-
Paul M, Andreassen S, Nielsen AD et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis 2006; 42: 1274-82.
-
(2006)
Clin Infect Dis
, vol.42
, pp. 1274-1282
-
-
Paul, M.1
Andreassen, S.2
Nielsen, A.D.3
-
24
-
-
34447542174
-
Prediction of specific pathogens in patients with sepsis: Evaluation of TREAT, a computerized decision support system
-
Paul M, Nielsen AD, Goldberg E et al. Prediction of specific pathogens in patients with sepsis: evaluation of TREAT, a computerized decision support system. J Antimicrob Chemother 2007; 59: 1204-7.
-
(2007)
J Antimicrob Chemother
, vol.59
, pp. 1204-1207
-
-
Paul, M.1
Nielsen, A.D.2
Goldberg, E.3
-
26
-
-
85044242845
-
Supervised learning for infection risk inference using pathology data
-
Hernandez B, Herrero P, Rawson TM et al. Supervised learning for infection risk inference using pathology data. BMC Med Inform Decis Mak 2017; 17: 168.
-
(2017)
BMC Med Inform Decis Mak
, vol.17
, pp. 168
-
-
Hernandez, B.1
Herrero, P.2
Rawson, T.M.3
-
27
-
-
85047417850
-
Data-driven web-based intelligent decision support system for infection management at pointof- care: Case-based reasoning benefits and limitations
-
Hernandez B, Herrero P, Rawson TM et al. Data-driven web-based intelligent decision support system for infection management at pointof- care: case-based reasoning benefits and limitations. Biostec 2017 2017; 5: 119.
-
(2017)
Biostec 2017
, vol.5
, pp. 119
-
-
Hernandez, B.1
Herrero, P.2
Rawson, T.M.3
-
28
-
-
36849065071
-
The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies
-
von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370: 1453-7.
-
(2007)
Lancet
, vol.370
, pp. 1453-1457
-
-
Von Elm, E.1
Altman, D.G.2
Egger, M.3
-
29
-
-
82955206471
-
A review of classification approaches using support vector machine in intrusion detection
-
Abd Manaf A, Sahibuddin S, Ahmad R et al., eds. Berlin, Heidelberg, Germany: Springer
-
Kausar N, Belhaouari Samir B, Abdullah A et al. A review of classification approaches using support vector machine in intrusion detection. In: Abd Manaf A, Sahibuddin S, Ahmad R et al., eds. Informatics Engineering and Information Science. ICIEIS 2011. Communications in Computer and Information Science, vol 253. Berlin, Heidelberg, Germany: Springer, 2011. https://doi.org/10.1007/978-3-642-25462-8_3.
-
(2011)
Informatics Engineering and Information Science. ICIEIS 2011. Communications in Computer and Information Science
, vol.253
-
-
Kausar, N.1
Belhaouari Samir, B.2
Abdullah, A.3
-
30
-
-
80052955921
-
A review of optimization methodologies in support vector machines
-
Shawe-Taylor J, Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011; 74: 3609-18.
-
(2011)
Neurocomputing
, vol.74
, pp. 3609-3618
-
-
Shawe-Taylor, J.1
Sun, S.2
-
31
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
Smola AJ Bertlett PL, Bernhard S et al., eds. Cambridge, MA, USA: MIT Press
-
Platt JC. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola AJ, Bertlett PL, Bernhard S et al., eds. Advances in Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 1999; 61-74.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
32
-
-
84879161502
-
Enhanced laboratory diagnosis of human Chlamydia pneumoniae infection through pattern recognition derived from pathology database analysis
-
Melbourne, Australia: Monash University
-
Richardson A, Hawkins S, Shadabi F et al. Enhanced laboratory diagnosis of human Chlamydia pneumoniae infection through pattern recognition derived from pathology database analysis. In: Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 2008). Melbourne, Australia: Monash University, 2008; 227-34.
-
(2008)
Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 2008)
, pp. 227-234
-
-
Richardson, A.1
Hawkins, S.2
Shadabi, F.3
-
33
-
-
84879196286
-
Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data
-
Richardson AM, Lidbury BA. Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC Bioinformatics 2013; 14: 206.
-
(2013)
BMC Bioinformatics
, vol.14
, pp. 206
-
-
Richardson, A.M.1
Lidbury, B.A.2
-
34
-
-
84858704887
-
Inadequacy of temperature and white blood cell count in predicting bacteremia in patientswith suspected infection
-
Seigel TA, Cocchi MN, Salciccioli J et al. Inadequacy of temperature and white blood cell count in predicting bacteremia in patientswith suspected infection. J Emerg Med2012; 42: 254-9.
-
(2012)
J Emerg Med
, vol.42
, pp. 254-259
-
-
Seigel, T.A.1
Cocchi, M.N.2
Salciccioli, J.3
-
36
-
-
0034058826
-
Prediction ofmortality in patients with bacteremia: The importance of pre-existing renal insufficiency
-
Shmuely H, Pitlik S, Drucker M et al. Prediction ofmortality in patients with bacteremia: the importance of pre-existing renal insufficiency. Ren Fail 2000; 22: 99-108.
-
(2000)
Ren Fail
, vol.22
, pp. 99-108
-
-
Shmuely, H.1
Pitlik, S.2
Drucker, M.3
-
37
-
-
11144281879
-
C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome
-
Sierra R, Rello J, Bailen M et al. C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med 2004; 30: 2038-45.
-
(2004)
Intensive Care Med
, vol.30
, pp. 2038-2045
-
-
Sierra, R.1
Rello, J.2
Bailen, M.3
-
38
-
-
42249103062
-
Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease
-
Kim WR, Flamm SL, Di Bisceglie AM et al. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008; 47: 1363-70.
-
(2008)
Hepatology
, vol.47
, pp. 1363-1370
-
-
Kim, W.R.1
Flamm, S.L.2
Di Bisceglie, A.M.3
-
39
-
-
84977120676
-
Blood lactate levels cutoff and mortality prediction in sepsis - Time for a reappraisal? A retrospective cohort study
-
Filho RR, Rocha LL, Corrêa TD et al. Blood lactate levels cutoff and mortality prediction in sepsis - time for a reappraisal? A retrospective cohort study. Shock 2016; 46: 480.
-
(2016)
Shock
, vol.46
, pp. 480
-
-
Filho, R.R.1
Rocha, L.L.2
Corrêa, T.D.3
-
41
-
-
34249739559
-
Serum lactate as a predictor of mortality in patientswith infection
-
Trzeciak S, Dellinger RP, Chansky ME et al. Serum lactate as a predictor of mortality in patientswith infection. Intensive Care Med2007; 33: 970-7.
-
(2007)
Intensive Care Med
, vol.33
, pp. 970-977
-
-
Trzeciak, S.1
Dellinger, R.P.2
Chansky, M.E.3
-
42
-
-
85014560269
-
Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction
-
Williams JM, Greenslade JH, McKenzie JV et al. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction. Chest 2017; 151: 586-96.
-
(2017)
Chest
, vol.151
, pp. 586-596
-
-
Williams, J.M.1
Greenslade, J.H.2
McKenzie, J.V.3
-
43
-
-
85017101413
-
Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit
-
Finkelsztein EJ, Jones DS, Ma KC et al. Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Crit Care 2017; 21: 73.
-
(2017)
Crit Care
, vol.21
, pp. 73
-
-
Finkelsztein, E.J.1
Jones, D.S.2
Ma, K.C.3
-
44
-
-
85018675278
-
SIRS, qSOFA and new sepsis definition
-
Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis 2017; 9: 943-5.
-
(2017)
J Thorac Dis
, vol.9
, pp. 943-945
-
-
Marik, P.E.1
Taeb, A.M.2
-
45
-
-
84962092181
-
Machine learning and decision support in critical care
-
Johnson AEW, Ghassemi MM, Nemati S et al. Machine learning and decision support in critical care. Proc IEEE 2016; 104: 444-66.
-
(2016)
Proc IEEE
, vol.104
, pp. 444-466
-
-
Johnson, A.E.W.1
Ghassemi, M.M.2
Nemati, S.3
-
46
-
-
84884901728
-
Selecting representative data sets
-
Adem Karahoca, IntechOpen
-
Borovicka T, Marcel J, Pavel K et al. Selecting representative data sets. In: Advances in Data Mining Knowledge Discovery and Applications. Adem Karahoca, IntechOpen, 2012. https://www.intechopen.com/books/advan ces-in-data-mining-knowledge-discovery-and-applications/selecting-rep resentative-data-sets.
-
(2012)
Advances in Data Mining Knowledge Discovery and Applications
-
-
Borovicka, T.1
Marcel, J.2
Pavel, K.3
-
47
-
-
25644459607
-
-
London: Imperial College London
-
Pantic M. Introduction to Machine Learning. London: Imperial College London, 2016. https://ibug.doc.ic.ac.uk/media/uploads/documents/courses/ syllabus-CBR.pdf.
-
(2016)
Introduction to Machine Learning.
-
-
Pantic, M.1
-
48
-
-
33144474928
-
The power of outliers (and why researchers should ALWAYS check for them)
-
Osborne JW, Overbay A. The power of outliers (and why researchers should ALWAYS check for them). Pract Assessment Res Eval 2004; 9: http://par eonline.net/getvn.asp? v"9&n"6.
-
(2004)
Pract Assessment Res Eval
, vol.9
-
-
Osborne, J.W.1
Overbay, A.2
-
49
-
-
84878997167
-
Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation
-
Hajian-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med 2013; 4: 627-35.
-
(2013)
Casp J Intern Med
, vol.4
, pp. 627-635
-
-
Hajian-Tilaki, K.1
-
50
-
-
63549089213
-
Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests
-
Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev 2008; 29 Suppl 1: S83-7.
-
(2008)
Clin Biochem Rev
, vol.29
, pp. S83-S87
-
-
Florkowski, C.M.1
-
51
-
-
84992091002
-
Requirements for minimum sample size for sensitivity and specificity analysis
-
Bujang MA, Adnan TH. Requirements for minimum sample size for sensitivity and specificity analysis. J Clin Diagn Res 2016; 10: YE01-6.
-
(2016)
J Clin Diagn Res
, vol.10
, pp. YE01-YE6
-
-
Bujang, M.A.1
Adnan, T.H.2
-
52
-
-
78649281619
-
Directive 2006/24/EC of the European Parliament and of the Council
-
Directive 2006/24/EC of the European Parliament and of the Council. Off J Eur Union 2006; https://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri"OJ: L: 2006: 105: 0054: 0063: EN: PDF.
-
(2006)
Off J Eur Union
-
-
-
54
-
-
85007240854
-
Antimicrobial stewardship: How the microbiology laboratory can right the ship
-
Morency-Potvin P, Schwartz DN, Weinstein RA. Antimicrobial stewardship: how the microbiology laboratory can right the ship. Clin Microbiol Rev 2017; 30: 381-407.
-
(2017)
Clin Microbiol Rev
, vol.30
, pp. 381-407
-
-
Morency-Potvin, P.1
Schwartz, D.N.2
Weinstein, R.A.3
|