메뉴 건너뛰기




Volumn 74, Issue 4, 2019, Pages 1108-1115

Supervised machine learning for the prediction of infection on admission to hospital: A prospective observational cohort study

Author keywords

[No Author keywords available]

Indexed keywords

ALANINE AMINOTRANSFERASE; ALKALINE PHOSPHATASE; ANTIBIOTIC AGENT; BILIRUBIN; C REACTIVE PROTEIN; CREATININE; BIOLOGICAL MARKER;

EID: 85063012496     PISSN: 03057453     EISSN: 14602091     Source Type: Journal    
DOI: 10.1093/jac/dky514     Document Type: Article
Times cited : (31)

References (54)
  • 1
    • 85003633058 scopus 로고    scopus 로고
    • Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: A qualitative study
    • Rawson TM, Charani E, Moore LSP et al. Mapping the decision pathways of acute infection management in secondary care among UK medical physicians: a qualitative study. BMC Med 2016; 14: 208.
    • (2016) BMC Med , vol.14 , pp. 208
    • Rawson, T.M.1    Charani, E.2    Moore, L.S.P.3
  • 2
    • 85018457253 scopus 로고    scopus 로고
    • Understanding antibiotic decision making in surgery - A qualitative analysis
    • Charani E, Tarrant C, Moorthy K et al. Understanding antibiotic decision making in surgery - a qualitative analysis. Clin Microbiol Infect 2017; 23: 752-60.
    • (2017) Clin Microbiol Infect , vol.23 , pp. 752-760
    • Charani, E.1    Tarrant, C.2    Moorthy, K.3
  • 3
    • 85026775322 scopus 로고    scopus 로고
    • Recognizing sepsis as a global health priority - A WHO resolution
    • Reinhart K, Daniels R, Kissoon N et al. Recognizing sepsis as a global health priority - aWHOresolution.N Engl J Med2017; 377: 414-17.
    • (2017) N Engl J Med , vol.377 , pp. 414-417
    • Reinhart, K.1    Daniels, R.2    Kissoon, N.3
  • 4
    • 85010650955 scopus 로고    scopus 로고
    • Prognostic accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit
    • Raith EP, Udy AA, Bailey M et al. Prognostic accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA 2017; 317: 290.
    • (2017) JAMA , vol.317 , pp. 290
    • Raith, E.P.1    Udy, A.A.2    Bailey, M.3
  • 5
    • 84965085560 scopus 로고    scopus 로고
    • Identify sepsis in patients by using early warning scores, doctors are urged
    • Kmietowicz Z. Identify sepsis in patients by using early warning scores, doctors are urged. BMJ 2015; 351: h6237.
    • (2015) BMJ , vol.351 , pp. h6237
    • Kmietowicz, Z.1
  • 6
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter intelligent monitoring in intensive care II: A public-access intensive care unit database
    • Saeed M, Villarroel M, Reisner AT et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database. Crit Care Med 2011; 39: 952-60.
    • (2011) Crit Care Med , vol.39 , pp. 952-960
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3
  • 7
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • Henry KE, Hager DN, Pronovost PJ et al. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7: 299ra122.
    • (2015) Sci Transl Med , vol.7 , pp. 299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3
  • 8
    • 79952166676 scopus 로고    scopus 로고
    • Implementation of a real-time computerized sepsis alert in nonintensive care unit patients
    • Sawyer AM, Deal EN, Labelle AJ et al. Implementation of a real-time computerized sepsis alert in nonintensive care unit patients. Crit Care Med 2011; 39: 469-73.
    • (2011) Crit Care Med , vol.39 , pp. 469-473
    • Sawyer, A.M.1    Deal, E.N.2    Labelle, A.J.3
  • 9
    • 84920272451 scopus 로고    scopus 로고
    • Development, implementation, and impact of an automated early warning and response system for sepsis
    • Umscheid CA, Betesh J, VanZandbergen C et al. Development, implementation, and impact of an automated early warning and response system for sepsis.JHospMed2015; 10: 26-31.
    • (2015) J Hosp Med , vol.10 , pp. 26-31
    • Umscheid, C.A.1    Betesh, J.2    VanZandbergen, C.3
  • 10
    • 84936744681 scopus 로고    scopus 로고
    • Systematic screening is essential for early diagnosis of severe sepsis and septic shock
    • Westphal GA, Lino AS. Systematic screening is essential for early diagnosis of severe sepsis and septic shock. Rev Bras Ter Intensiva 2015; 27: 96-101.
    • (2015) Rev Bras ter Intensiva , vol.27 , pp. 96-101
    • Westphal, G.A.1    Lino, A.S.2
  • 11
    • 84959273475 scopus 로고    scopus 로고
    • The third international consensus definitions for sepsis and septic shock (Sepsis-3)
    • Singer M, Deutschman CS, Seymour CW et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801.
    • (2016) JAMA , vol.315 , pp. 801
    • Singer, M.1    Deutschman, C.S.2    Seymour, C.W.3
  • 12
    • 84973902514 scopus 로고    scopus 로고
    • Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations
    • Fleischmann C, Scherag A, Adhikari NKJ et al. Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. AmJ Respir Crit Care Med 2016; 193: 259-72.
    • (2016) Am J Respir Crit Care Med , vol.193 , pp. 259-272
    • Fleischmann, C.1    Scherag, A.2    Adhikari, N.K.J.3
  • 13
    • 85010680119 scopus 로고    scopus 로고
    • Automated early warning system for septic shock: The new way to achieve intensive care unit quality improvement?
    • Amorim FF, Santana ANC. Automated early warning system for septic shock: the new way to achieve intensive care unit quality improvement? Ann Transl Med 2017; 5: 17.
    • (2017) Ann Transl Med , vol.5 , pp. 17
    • Amorim, F.F.1    Santana, A.N.C.2
  • 14
    • 84894094760 scopus 로고    scopus 로고
    • Medical decision support using machine learning for early detection of late-onset neonatal sepsis
    • Mani S, Ozdas A, Aliferis C et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc 2014; 21: 326-36.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. 326-336
    • Mani, S.1    Ozdas, A.2    Aliferis, C.3
  • 15
    • 79955465836 scopus 로고    scopus 로고
    • Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis
    • Nelson JL, Smith BL, Jared JD et al. Prospective trial of real-time electronic surveillance to expedite early care of severe sepsis. Ann Emerg Med 2011; 57: 500-4.
    • (2011) Ann Emerg Med , vol.57 , pp. 500-504
    • Nelson, J.L.1    Smith, B.L.2    Jared, J.D.3
  • 16
    • 84904734154 scopus 로고    scopus 로고
    • Empiric antibiotic treatment reducesmortality in severe sepsis and septic shock from the first hour: Results from a guideline-based performance improvement program
    • Ferrer R, Martin-Loeches I, Phillips G et al. Empiric antibiotic treatment reducesmortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749-55.
    • (2014) Crit Care Med , vol.42 , pp. 1749-1755
    • Ferrer, R.1    Martin-Loeches, I.2    Phillips, G.3
  • 17
    • 85020468010 scopus 로고    scopus 로고
    • Time to treatment andmortality during mandated emergency care for sepsis
    • Seymour CW, Gesten F, Prescott HC et al. Time to treatment andmortality during mandated emergency care for sepsis. N Engl J Med 2017; 376: 2235-44.
    • (2017) N Engl J Med , vol.376 , pp. 2235-2244
    • Seymour, C.W.1    Gesten, F.2    Prescott, H.C.3
  • 18
    • 84901683074 scopus 로고    scopus 로고
    • Utility of a single early warning score in patients with sepsis in the emergency department
    • Corfield AR, Lees F, Zealley I et al. Utility of a single early warning score in patients with sepsis in the emergency department. Emerg Med J 2014; 31: 482-7.
    • (2014) Emerg Med J , vol.31 , pp. 482-487
    • Corfield, A.R.1    Lees, F.2    Zealley, I.3
  • 20
    • 84923649312 scopus 로고    scopus 로고
    • Pneumonia challenges in the definition diagnosis andmanagement of disease
    • Ottosen J, Evans H. Pneumonia challenges in the definition, diagnosis, andmanagement of disease. Surg Clin North Am2014; 94: 1305-17.
    • (2014) Surg Clin North Am , vol.94 , pp. 1305-1317
    • Ottosen, J.1    Evans, H.2
  • 21
    • 84885171150 scopus 로고    scopus 로고
    • Urinary tract infection in older adults
    • Rowe TA, Juthani-Mehta M. Urinary tract infection in older adults. Aging Health 2013; 9: 519-28.
    • (2013) Aging Health , vol.9 , pp. 519-528
    • Rowe, T.A.1    Juthani-Mehta, M.2
  • 22
    • 84858147715 scopus 로고    scopus 로고
    • Diagnostic challenges and opportunities in older adults with infectious diseases
    • van Duin D. Diagnostic challenges and opportunities in older adults with infectious diseases. Clin Infect Dis 2012; 54: 973-8.
    • (2012) Clin Infect Dis , vol.54 , pp. 973-978
    • Van Duin, D.1
  • 23
    • 33646095254 scopus 로고    scopus 로고
    • Prediction of bacteremia using TREAT, a computerized decision-support system
    • Paul M, Andreassen S, Nielsen AD et al. Prediction of bacteremia using TREAT, a computerized decision-support system. Clin Infect Dis 2006; 42: 1274-82.
    • (2006) Clin Infect Dis , vol.42 , pp. 1274-1282
    • Paul, M.1    Andreassen, S.2    Nielsen, A.D.3
  • 24
    • 34447542174 scopus 로고    scopus 로고
    • Prediction of specific pathogens in patients with sepsis: Evaluation of TREAT, a computerized decision support system
    • Paul M, Nielsen AD, Goldberg E et al. Prediction of specific pathogens in patients with sepsis: evaluation of TREAT, a computerized decision support system. J Antimicrob Chemother 2007; 59: 1204-7.
    • (2007) J Antimicrob Chemother , vol.59 , pp. 1204-1207
    • Paul, M.1    Nielsen, A.D.2    Goldberg, E.3
  • 25
    • 85040255565 scopus 로고    scopus 로고
    • What this computer needs is a physician
    • Verghese A, Shah NH, Harrington RA. What this computer needs is a physician. JAMA 2018; 319: 19.
    • (2018) JAMA , vol.319 , pp. 19
    • Verghese, A.1    Shah, N.H.2    Harrington, R.A.3
  • 26
    • 85044242845 scopus 로고    scopus 로고
    • Supervised learning for infection risk inference using pathology data
    • Hernandez B, Herrero P, Rawson TM et al. Supervised learning for infection risk inference using pathology data. BMC Med Inform Decis Mak 2017; 17: 168.
    • (2017) BMC Med Inform Decis Mak , vol.17 , pp. 168
    • Hernandez, B.1    Herrero, P.2    Rawson, T.M.3
  • 27
    • 85047417850 scopus 로고    scopus 로고
    • Data-driven web-based intelligent decision support system for infection management at pointof- care: Case-based reasoning benefits and limitations
    • Hernandez B, Herrero P, Rawson TM et al. Data-driven web-based intelligent decision support system for infection management at pointof- care: case-based reasoning benefits and limitations. Biostec 2017 2017; 5: 119.
    • (2017) Biostec 2017 , vol.5 , pp. 119
    • Hernandez, B.1    Herrero, P.2    Rawson, T.M.3
  • 28
    • 36849065071 scopus 로고    scopus 로고
    • The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies
    • von Elm E, Altman DG, Egger M et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 2007; 370: 1453-7.
    • (2007) Lancet , vol.370 , pp. 1453-1457
    • Von Elm, E.1    Altman, D.G.2    Egger, M.3
  • 30
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J, Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011; 74: 3609-18.
    • (2011) Neurocomputing , vol.74 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 31
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Smola AJ Bertlett PL, Bernhard S et al., eds. Cambridge, MA, USA: MIT Press
    • Platt JC. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola AJ, Bertlett PL, Bernhard S et al., eds. Advances in Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 1999; 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 32
    • 84879161502 scopus 로고    scopus 로고
    • Enhanced laboratory diagnosis of human Chlamydia pneumoniae infection through pattern recognition derived from pathology database analysis
    • Melbourne, Australia: Monash University
    • Richardson A, Hawkins S, Shadabi F et al. Enhanced laboratory diagnosis of human Chlamydia pneumoniae infection through pattern recognition derived from pathology database analysis. In: Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 2008). Melbourne, Australia: Monash University, 2008; 227-34.
    • (2008) Third IAPR International Conference on Pattern Recognition in Bioinformatics (PRIB 2008) , pp. 227-234
    • Richardson, A.1    Hawkins, S.2    Shadabi, F.3
  • 33
    • 84879196286 scopus 로고    scopus 로고
    • Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data
    • Richardson AM, Lidbury BA. Infection status outcome, machine learning method and virus type interact to affect the optimised prediction of hepatitis virus immunoassay results from routine pathology laboratory assays in unbalanced data. BMC Bioinformatics 2013; 14: 206.
    • (2013) BMC Bioinformatics , vol.14 , pp. 206
    • Richardson, A.M.1    Lidbury, B.A.2
  • 34
    • 84858704887 scopus 로고    scopus 로고
    • Inadequacy of temperature and white blood cell count in predicting bacteremia in patientswith suspected infection
    • Seigel TA, Cocchi MN, Salciccioli J et al. Inadequacy of temperature and white blood cell count in predicting bacteremia in patientswith suspected infection. J Emerg Med2012; 42: 254-9.
    • (2012) J Emerg Med , vol.42 , pp. 254-259
    • Seigel, T.A.1    Cocchi, M.N.2    Salciccioli, J.3
  • 36
    • 0034058826 scopus 로고    scopus 로고
    • Prediction ofmortality in patients with bacteremia: The importance of pre-existing renal insufficiency
    • Shmuely H, Pitlik S, Drucker M et al. Prediction ofmortality in patients with bacteremia: the importance of pre-existing renal insufficiency. Ren Fail 2000; 22: 99-108.
    • (2000) Ren Fail , vol.22 , pp. 99-108
    • Shmuely, H.1    Pitlik, S.2    Drucker, M.3
  • 37
    • 11144281879 scopus 로고    scopus 로고
    • C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome
    • Sierra R, Rello J, Bailen M et al. C-reactive protein used as an early indicator of infection in patients with systemic inflammatory response syndrome. Intensive Care Med 2004; 30: 2038-45.
    • (2004) Intensive Care Med , vol.30 , pp. 2038-2045
    • Sierra, R.1    Rello, J.2    Bailen, M.3
  • 38
    • 42249103062 scopus 로고    scopus 로고
    • Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease
    • Kim WR, Flamm SL, Di Bisceglie AM et al. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008; 47: 1363-70.
    • (2008) Hepatology , vol.47 , pp. 1363-1370
    • Kim, W.R.1    Flamm, S.L.2    Di Bisceglie, A.M.3
  • 39
    • 84977120676 scopus 로고    scopus 로고
    • Blood lactate levels cutoff and mortality prediction in sepsis - Time for a reappraisal? A retrospective cohort study
    • Filho RR, Rocha LL, Corrêa TD et al. Blood lactate levels cutoff and mortality prediction in sepsis - time for a reappraisal? A retrospective cohort study. Shock 2016; 46: 480.
    • (2016) Shock , vol.46 , pp. 480
    • Filho, R.R.1    Rocha, L.L.2    Corrêa, T.D.3
  • 41
    • 34249739559 scopus 로고    scopus 로고
    • Serum lactate as a predictor of mortality in patientswith infection
    • Trzeciak S, Dellinger RP, Chansky ME et al. Serum lactate as a predictor of mortality in patientswith infection. Intensive Care Med2007; 33: 970-7.
    • (2007) Intensive Care Med , vol.33 , pp. 970-977
    • Trzeciak, S.1    Dellinger, R.P.2    Chansky, M.E.3
  • 42
    • 85014560269 scopus 로고    scopus 로고
    • Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction
    • Williams JM, Greenslade JH, McKenzie JV et al. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction. Chest 2017; 151: 586-96.
    • (2017) Chest , vol.151 , pp. 586-596
    • Williams, J.M.1    Greenslade, J.H.2    McKenzie, J.V.3
  • 43
    • 85017101413 scopus 로고    scopus 로고
    • Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit
    • Finkelsztein EJ, Jones DS, Ma KC et al. Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Crit Care 2017; 21: 73.
    • (2017) Crit Care , vol.21 , pp. 73
    • Finkelsztein, E.J.1    Jones, D.S.2    Ma, K.C.3
  • 44
    • 85018675278 scopus 로고    scopus 로고
    • SIRS, qSOFA and new sepsis definition
    • Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis 2017; 9: 943-5.
    • (2017) J Thorac Dis , vol.9 , pp. 943-945
    • Marik, P.E.1    Taeb, A.M.2
  • 45
    • 84962092181 scopus 로고    scopus 로고
    • Machine learning and decision support in critical care
    • Johnson AEW, Ghassemi MM, Nemati S et al. Machine learning and decision support in critical care. Proc IEEE 2016; 104: 444-66.
    • (2016) Proc IEEE , vol.104 , pp. 444-466
    • Johnson, A.E.W.1    Ghassemi, M.M.2    Nemati, S.3
  • 46
    • 84884901728 scopus 로고    scopus 로고
    • Selecting representative data sets
    • Adem Karahoca, IntechOpen
    • Borovicka T, Marcel J, Pavel K et al. Selecting representative data sets. In: Advances in Data Mining Knowledge Discovery and Applications. Adem Karahoca, IntechOpen, 2012. https://www.intechopen.com/books/advan ces-in-data-mining-knowledge-discovery-and-applications/selecting-rep resentative-data-sets.
    • (2012) Advances in Data Mining Knowledge Discovery and Applications
    • Borovicka, T.1    Marcel, J.2    Pavel, K.3
  • 47
    • 25644459607 scopus 로고    scopus 로고
    • London: Imperial College London
    • Pantic M. Introduction to Machine Learning. London: Imperial College London, 2016. https://ibug.doc.ic.ac.uk/media/uploads/documents/courses/ syllabus-CBR.pdf.
    • (2016) Introduction to Machine Learning.
    • Pantic, M.1
  • 48
    • 33144474928 scopus 로고    scopus 로고
    • The power of outliers (and why researchers should ALWAYS check for them)
    • Osborne JW, Overbay A. The power of outliers (and why researchers should ALWAYS check for them). Pract Assessment Res Eval 2004; 9: http://par eonline.net/getvn.asp? v"9&n"6.
    • (2004) Pract Assessment Res Eval , vol.9
    • Osborne, J.W.1    Overbay, A.2
  • 49
    • 84878997167 scopus 로고    scopus 로고
    • Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation
    • Hajian-Tilaki K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp J Intern Med 2013; 4: 627-35.
    • (2013) Casp J Intern Med , vol.4 , pp. 627-635
    • Hajian-Tilaki, K.1
  • 50
    • 63549089213 scopus 로고    scopus 로고
    • Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests
    • Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev 2008; 29 Suppl 1: S83-7.
    • (2008) Clin Biochem Rev , vol.29 , pp. S83-S87
    • Florkowski, C.M.1
  • 51
    • 84992091002 scopus 로고    scopus 로고
    • Requirements for minimum sample size for sensitivity and specificity analysis
    • Bujang MA, Adnan TH. Requirements for minimum sample size for sensitivity and specificity analysis. J Clin Diagn Res 2016; 10: YE01-6.
    • (2016) J Clin Diagn Res , vol.10 , pp. YE01-YE6
    • Bujang, M.A.1    Adnan, T.H.2
  • 52
    • 78649281619 scopus 로고    scopus 로고
    • Directive 2006/24/EC of the European Parliament and of the Council
    • Directive 2006/24/EC of the European Parliament and of the Council. Off J Eur Union 2006; https://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri"OJ: L: 2006: 105: 0054: 0063: EN: PDF.
    • (2006) Off J Eur Union
  • 54
    • 85007240854 scopus 로고    scopus 로고
    • Antimicrobial stewardship: How the microbiology laboratory can right the ship
    • Morency-Potvin P, Schwartz DN, Weinstein RA. Antimicrobial stewardship: how the microbiology laboratory can right the ship. Clin Microbiol Rev 2017; 30: 381-407.
    • (2017) Clin Microbiol Rev , vol.30 , pp. 381-407
    • Morency-Potvin, P.1    Schwartz, D.N.2    Weinstein, R.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.