메뉴 건너뛰기




Volumn 46, Issue 4, 2018, Pages 547-553

An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU

Author keywords

Informatics; machine learning; organ failure; prognostication; sepsis

Indexed keywords

ACCURACY; ARTICLE; BLOOD CULTURE; COHORT ANALYSIS; CONTROLLED STUDY; DIAGNOSTIC TEST ACCURACY STUDY; ELECTRONIC MEDICAL RECORD; HOSPITAL MORTALITY; HUMAN; INTENSIVE CARE MEDICINE; INTENSIVE CARE UNIT; MACHINE LEARNING; MORBIDITY; MORTALITY RATE; OBSERVATIONAL STUDY; OUTCOME ASSESSMENT; PREDICTION; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SEPSIS; TRAINING; VALIDATION PROCESS; AGE; AGED; BLOOD PRESSURE; CLINICAL DECISION SUPPORT SYSTEM; COMORBIDITY; CRITICAL ILLNESS; ELECTROCARDIOGRAPHY; ELECTRONIC HEALTH RECORD; FEMALE; HEART RATE; MALE; MIDDLE AGED; MORTALITY; ORGAN DYSFUNCTION SCORE; SEVERITY OF ILLNESS INDEX; SEX FACTOR; SOCIOECONOMICS; TIME FACTOR; TIME TO TREATMENT; TRENDS; UNIVERSITY HOSPITAL; VITAL SIGN;

EID: 85063999048     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000002936     Document Type: Article
Times cited : (534)

References (21)
  • 1
    • 0034958947 scopus 로고    scopus 로고
    • Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
    • Angus DC, Linde-Zwirble WT, Lidicker J, et al: Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-1310
    • (2001) Crit Care Med , vol.29 , pp. 1303-1310
    • Angus, D.C.1    Linde-Zwirble, W.T.2    Lidicker, J.3
  • 2
    • 34248584623 scopus 로고    scopus 로고
    • The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand
    • Arise and A.A.M. Committee: The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand. Crit Care Resusc 2007;9:8-18
    • (2007) Crit Care Resusc , vol.9 , pp. 8-18
  • 3
    • 0037451929 scopus 로고    scopus 로고
    • The epidemiology of sepsis in the United States from 1979 through 2000
    • Martin GS, Mannino DM, Eaton S, et al: The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-1554
    • (2003) N Engl J Med , vol.348 , pp. 1546-1554
    • Martin, G.S.1    Mannino, D.M.2    Eaton, S.3
  • 4
    • 84983060324 scopus 로고    scopus 로고
    • Epidemiology of severe sepsis: 2008-2012
    • Stoller J, Halpin L, Weis M, et al: Epidemiology of severe sepsis: 2008-2012. J Crit Care 2016;31:58-62
    • (2016) J Crit Care , vol.31 , pp. 58-62
    • Stoller, J.1    Halpin, L.2    Weis, M.3
  • 5
    • 85020468010 scopus 로고    scopus 로고
    • Time to treatment and mortality during mandated emergency care for sepsis
    • Seymour CW, Gesten F, Prescott HC, et al: Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017;376:2235-2244
    • (2017) N Engl J Med , vol.376 , pp. 2235-2244
    • Seymour, C.W.1    Gesten, F.2    Prescott, H.C.3
  • 6
    • 47649096699 scopus 로고    scopus 로고
    • Presymptomatic prediction of sepsis in intensive care unit patients
    • Lukaszewski RA, Yates AM, Jackson MC, et al: Presymptomatic prediction of sepsis in intensive care unit patients. Clin Vaccine Immunol 2008;15:1089-1094
    • (2008) Clin Vaccine Immunol , vol.15 , pp. 1089-1094
    • Lukaszewski, R.A.1    Yates, A.M.2    Jackson, M.C.3
  • 7
    • 79952199097 scopus 로고    scopus 로고
    • Prediction of severe sepsis using SVM model
    • Wang SL, Wu F, Wang BH: Prediction of severe sepsis using SVM model. Adv Exp Med Biol 2010;680:75-81
    • (2010) Adv Exp Med Biol , vol.680 , pp. 75-81
    • Wang, S.L.1    Wu, F.2    Wang, B.H.3
  • 8
    • 85018664128 scopus 로고    scopus 로고
    • Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach
    • Desautels T, Calvert J, Hoffman J, et al: Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Med Inform 2016;4:e28
    • (2016) JMIR Med Inform , vol.4 , pp. e28
    • Desautels, T.1    Calvert, J.2    Hoffman, J.3
  • 9
    • 84875805938 scopus 로고    scopus 로고
    • Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension
    • Mayaud L, Lai PS, Clifford GD, et al: Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med 2013;41:954-962
    • (2013) Crit Care Med , vol.41 , pp. 954-962
    • Mayaud, L.1    Lai, P.S.2    Clifford, G.D.3
  • 10
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database
    • Johnson AE, Pollard TJ, Shen L, et al: MIMIC-III, a freely accessible critical care database. Sci Data 2016;3:160035
    • (2016) Sci Data , vol.3 , pp. 160035
    • Johnson, A.E.1    Pollard, T.J.2    Shen, L.3
  • 11
    • 84959273475 scopus 로고    scopus 로고
    • The third international consensus definitions for sepsis and septic shock (Sepsis-3)
    • Singer M, Deutschman CS, Seymour CW, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801-810
    • (2016) JAMA , vol.315 , pp. 801-810
    • Singer, M.1    Deutschman, C.S.2    Seymour, C.W.3
  • 12
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • Henry KE, Hager DN, Pronovost PJ, et al: A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015;7:299ra122
    • (2015) Sci Transl Med , vol.7 , pp. 299ra122
    • Henry, K.E.1    Hager, D.N.2    Pronovost, P.J.3
  • 13
    • 85017113914 scopus 로고    scopus 로고
    • Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
    • Horng S, Sontag DA, Halpern Y, et al: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One 2017;12:e0174708
    • (2017) PLoS One , vol.12
    • Horng, S.1    Sontag, D.A.2    Halpern, Y.3
  • 14
    • 84983527180 scopus 로고    scopus 로고
    • Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department
    • Brown SM, Jones J, Kuttler KG, et al: Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department. BMC Emerg Med 2016;16:31
    • (2016) BMC Emerg Med , vol.16 , pp. 31
    • Brown, S.M.1    Jones, J.2    Kuttler, K.G.3
  • 15
    • 85007438910 scopus 로고    scopus 로고
    • Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns
    • Ghosh S, Li J, Cao L, et al: Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns. J Biomed Inform 2017;66:19-31
    • (2017) J Biomed Inform , vol.66 , pp. 19-31
    • Ghosh, S.1    Li, J.2    Cao, L.3
  • 16
    • 78449306818 scopus 로고    scopus 로고
    • Computer-assisted decision support for changing practice in severe sepsis and septic shock
    • Tafelski S, Nachtigall I, Deja M, et al: Computer-assisted decision support for changing practice in severe sepsis and septic shock. J Int Med Res 2010;38:1605-1616
    • (2010) J Int Med Res , vol.38 , pp. 1605-1616
    • Tafelski, S.1    Nachtigall, I.2    Deja, M.3
  • 17
    • 84957973620 scopus 로고    scopus 로고
    • Effect of an electronic medical record alert for severe sepsis among ED patients
    • Narayanan N, Gross AK, Pintens M, et al: Effect of an electronic medical record alert for severe sepsis among ED patients. Am J Emerg Med 2016;34:185-188
    • (2016) Am J Emerg Med , vol.34 , pp. 185-188
    • Narayanan, N.1    Gross, A.K.2    Pintens, M.3
  • 18
    • 84994234409 scopus 로고    scopus 로고
    • A Multidisciplinary sepsis program enabled by a two-stage clinical decision support system: Factors that influence patient outcomes
    • Amland RC, Haley JM, Lyons JJ: A Multidisciplinary sepsis program enabled by a two-stage clinical decision support system: Factors that influence patient outcomes. Am J Med Qual 2016;31:501-508
    • (2016) Am J Med Qual , vol.31 , pp. 501-508
    • Amland, R.C.1    Haley, J.M.2    Lyons, J.J.3
  • 19
    • 0026724481 scopus 로고
    • The ACCP-SCCM consensus conference on sepsis and organ failure
    • Bone, RC, Sibbald WJ, Sprung CL: The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992;101:1481-1483
    • (1992) Chest , vol.101 , pp. 1481-1483
    • Bone, R.C.1    Sibbald, W.J.2    Sprung, C.L.3
  • 20
    • 84929379643 scopus 로고    scopus 로고
    • A physiological time series dynamics-based approach to patient monitoring and outcome prediction
    • Lehman LW, Adams RP, Mayaud L, et al: A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Health Inform 2015;19:1068-1076
    • (2015) IEEE J Biomed Health Inform , vol.19 , pp. 1068-1076
    • Lehman, L.W.1    Adams, R.P.2    Mayaud, L.3
  • 21
    • 79955475113 scopus 로고    scopus 로고
    • Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension
    • Hug CW, Clifford GD, Reisner AT: Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension. Crit Care Med 2011;39:1006-1014
    • (2011) Crit Care Med , vol.39 , pp. 1006-1014
    • Hug, C.W.1    Clifford, G.D.2    Reisner, A.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.