-
1
-
-
0034958947
-
Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
-
Angus DC, Linde-Zwirble WT, Lidicker J, et al: Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001;29:1303-1310
-
(2001)
Crit Care Med
, vol.29
, pp. 1303-1310
-
-
Angus, D.C.1
Linde-Zwirble, W.T.2
Lidicker, J.3
-
2
-
-
34248584623
-
The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand
-
Arise and A.A.M. Committee: The outcome of patients with sepsis and septic shock presenting to emergency departments in Australia and New Zealand. Crit Care Resusc 2007;9:8-18
-
(2007)
Crit Care Resusc
, vol.9
, pp. 8-18
-
-
-
3
-
-
0037451929
-
The epidemiology of sepsis in the United States from 1979 through 2000
-
Martin GS, Mannino DM, Eaton S, et al: The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-1554
-
(2003)
N Engl J Med
, vol.348
, pp. 1546-1554
-
-
Martin, G.S.1
Mannino, D.M.2
Eaton, S.3
-
4
-
-
84983060324
-
Epidemiology of severe sepsis: 2008-2012
-
Stoller J, Halpin L, Weis M, et al: Epidemiology of severe sepsis: 2008-2012. J Crit Care 2016;31:58-62
-
(2016)
J Crit Care
, vol.31
, pp. 58-62
-
-
Stoller, J.1
Halpin, L.2
Weis, M.3
-
5
-
-
85020468010
-
Time to treatment and mortality during mandated emergency care for sepsis
-
Seymour CW, Gesten F, Prescott HC, et al: Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017;376:2235-2244
-
(2017)
N Engl J Med
, vol.376
, pp. 2235-2244
-
-
Seymour, C.W.1
Gesten, F.2
Prescott, H.C.3
-
6
-
-
47649096699
-
Presymptomatic prediction of sepsis in intensive care unit patients
-
Lukaszewski RA, Yates AM, Jackson MC, et al: Presymptomatic prediction of sepsis in intensive care unit patients. Clin Vaccine Immunol 2008;15:1089-1094
-
(2008)
Clin Vaccine Immunol
, vol.15
, pp. 1089-1094
-
-
Lukaszewski, R.A.1
Yates, A.M.2
Jackson, M.C.3
-
7
-
-
79952199097
-
Prediction of severe sepsis using SVM model
-
Wang SL, Wu F, Wang BH: Prediction of severe sepsis using SVM model. Adv Exp Med Biol 2010;680:75-81
-
(2010)
Adv Exp Med Biol
, vol.680
, pp. 75-81
-
-
Wang, S.L.1
Wu, F.2
Wang, B.H.3
-
8
-
-
85018664128
-
Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach
-
Desautels T, Calvert J, Hoffman J, et al: Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach. JMIR Med Inform 2016;4:e28
-
(2016)
JMIR Med Inform
, vol.4
, pp. e28
-
-
Desautels, T.1
Calvert, J.2
Hoffman, J.3
-
9
-
-
84875805938
-
Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension
-
Mayaud L, Lai PS, Clifford GD, et al: Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med 2013;41:954-962
-
(2013)
Crit Care Med
, vol.41
, pp. 954-962
-
-
Mayaud, L.1
Lai, P.S.2
Clifford, G.D.3
-
10
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson AE, Pollard TJ, Shen L, et al: MIMIC-III, a freely accessible critical care database. Sci Data 2016;3:160035
-
(2016)
Sci Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.1
Pollard, T.J.2
Shen, L.3
-
11
-
-
84959273475
-
The third international consensus definitions for sepsis and septic shock (Sepsis-3)
-
Singer M, Deutschman CS, Seymour CW, et al: The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801-810
-
(2016)
JAMA
, vol.315
, pp. 801-810
-
-
Singer, M.1
Deutschman, C.S.2
Seymour, C.W.3
-
12
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Henry KE, Hager DN, Pronovost PJ, et al: A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015;7:299ra122
-
(2015)
Sci Transl Med
, vol.7
, pp. 299ra122
-
-
Henry, K.E.1
Hager, D.N.2
Pronovost, P.J.3
-
13
-
-
85017113914
-
Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning
-
Horng S, Sontag DA, Halpern Y, et al: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS One 2017;12:e0174708
-
(2017)
PLoS One
, vol.12
-
-
Horng, S.1
Sontag, D.A.2
Halpern, Y.3
-
14
-
-
84983527180
-
Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department
-
Brown SM, Jones J, Kuttler KG, et al: Prospective evaluation of an automated method to identify patients with severe sepsis or septic shock in the emergency department. BMC Emerg Med 2016;16:31
-
(2016)
BMC Emerg Med
, vol.16
, pp. 31
-
-
Brown, S.M.1
Jones, J.2
Kuttler, K.G.3
-
15
-
-
85007438910
-
Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns
-
Ghosh S, Li J, Cao L, et al: Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns. J Biomed Inform 2017;66:19-31
-
(2017)
J Biomed Inform
, vol.66
, pp. 19-31
-
-
Ghosh, S.1
Li, J.2
Cao, L.3
-
16
-
-
78449306818
-
Computer-assisted decision support for changing practice in severe sepsis and septic shock
-
Tafelski S, Nachtigall I, Deja M, et al: Computer-assisted decision support for changing practice in severe sepsis and septic shock. J Int Med Res 2010;38:1605-1616
-
(2010)
J Int Med Res
, vol.38
, pp. 1605-1616
-
-
Tafelski, S.1
Nachtigall, I.2
Deja, M.3
-
17
-
-
84957973620
-
Effect of an electronic medical record alert for severe sepsis among ED patients
-
Narayanan N, Gross AK, Pintens M, et al: Effect of an electronic medical record alert for severe sepsis among ED patients. Am J Emerg Med 2016;34:185-188
-
(2016)
Am J Emerg Med
, vol.34
, pp. 185-188
-
-
Narayanan, N.1
Gross, A.K.2
Pintens, M.3
-
18
-
-
84994234409
-
A Multidisciplinary sepsis program enabled by a two-stage clinical decision support system: Factors that influence patient outcomes
-
Amland RC, Haley JM, Lyons JJ: A Multidisciplinary sepsis program enabled by a two-stage clinical decision support system: Factors that influence patient outcomes. Am J Med Qual 2016;31:501-508
-
(2016)
Am J Med Qual
, vol.31
, pp. 501-508
-
-
Amland, R.C.1
Haley, J.M.2
Lyons, J.J.3
-
19
-
-
0026724481
-
The ACCP-SCCM consensus conference on sepsis and organ failure
-
Bone, RC, Sibbald WJ, Sprung CL: The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992;101:1481-1483
-
(1992)
Chest
, vol.101
, pp. 1481-1483
-
-
Bone, R.C.1
Sibbald, W.J.2
Sprung, C.L.3
-
20
-
-
84929379643
-
A physiological time series dynamics-based approach to patient monitoring and outcome prediction
-
Lehman LW, Adams RP, Mayaud L, et al: A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE J Biomed Health Inform 2015;19:1068-1076
-
(2015)
IEEE J Biomed Health Inform
, vol.19
, pp. 1068-1076
-
-
Lehman, L.W.1
Adams, R.P.2
Mayaud, L.3
-
21
-
-
79955475113
-
Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension
-
Hug CW, Clifford GD, Reisner AT: Clinician blood pressure documentation of stable intensive care patients: An intelligent archiving agent has a higher association with future hypotension. Crit Care Med 2011;39:1006-1014
-
(2011)
Crit Care Med
, vol.39
, pp. 1006-1014
-
-
Hug, C.W.1
Clifford, G.D.2
Reisner, A.T.3
|