-
1
-
-
84865491246
-
-
Washington, dc. APIC
-
Aureden, K., Arias, K., Burns, L., et al. (2010). Guide to the elimination of methicillin-resistant staphylococcus aureus (mrsa): Transmission in hospital settings. washington, dc. APIC.
-
(2010)
Guide to The Elimination of Methicillin-Resistant Staphylococcus Aureus (Mrsa): Transmission in Hospital Settings
-
-
Aureden, K.1
Arias, K.2
Burns, L.3
-
2
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
3
-
-
84878993675
-
Big data” in the intensive care unit. Closing the data loop
-
Celi, L. A., Mark, R. G., Stone, D. J., and Montgomery, R. A. (2013). “big data” in the intensive care unit. closing the data loop. American Journal of Respiratory and Critical Care Medicine, 187(11):1157–1160.
-
(2013)
American Journal of Respiratory and Critical Care Medicine
, vol.187
, Issue.11
, pp. 1157-1160
-
-
Celi, L.A.1
Mark, R.G.2
Stone, D.J.3
Montgomery, R.A.4
-
4
-
-
80051999222
-
Predicting hospital-acquired infections by scoring system with simple parameters
-
Chang, Y., Yeh, M., Li, Y., Hsu, C., Lin, C., Hsu, M., and Chiu, W. (2011). Predicting hospital-acquired infections by scoring system with simple parameters. PloS One, 6(8):e23137.
-
(2011)
PloS One
, vol.6
, Issue.8
-
-
Chang, Y.1
Yeh, M.2
Li, Y.3
Hsu, C.4
Lin, C.5
Hsu, M.6
Chiu, W.7
-
6
-
-
85051696683
-
-
Congress, U. S
-
Congress, U. S. (2009). American recovery and reinvestment act. www.healthit.gov/policy-researchersimplementers/health-it-legislation.
-
(2009)
American Recovery and Reinvestment Act
-
-
-
7
-
-
84888990813
-
National burden of invasive methicillin-resistant staphylococcus aureus infections, United States, 2011
-
Dantes, R., Mu, Y., Belflower, R., Aragon, D., Dumyati, G., Harrison, L. H., Lessa, F. C., Lynfield, R., Nadle, J., Petit, S., et al. (2013). National burden of invasive methicillin-resistant staphylococcus aureus infections, united states, 2011. JAMA Internal Medicine, 173(21):1970–1978.
-
(2013)
JAMA Internal Medicine
, vol.173
, Issue.21
, pp. 1970-1978
-
-
Dantes, R.1
Mu, Y.2
Belflower, R.3
Aragon, D.4
Dumyati, G.5
Harrison, L.H.6
Lessa, F.C.7
Lynfield, R.8
Nadle, J.9
Petit, S.10
-
8
-
-
79952588451
-
Development and validation of a clostridium difficile infection risk prediction model
-
Dubberke, E. R., Yan, Y., Reske, K., Butler, A., Doherty, J., Pham, V., and Fraser, V. (2011). Development and validation of a clostridium difficile infection risk prediction model. Infection Control & Hospital Epidemiology, 33(4):360–366.
-
(2011)
Infection Control & Hospital Epidemiology
, vol.33
, Issue.4
, pp. 360-366
-
-
Dubberke, E.R.1
Yan, Y.2
Reske, K.3
Butler, A.4
Doherty, J.5
Pham, V.6
Fraser, V.7
-
9
-
-
33749246055
-
Maximum probability rule based classification of mrsa infections in hospital environment: Using electronic nose
-
Dutta, R. and Dutta, R. (2006). Maximum probability rule based classification of mrsa infections in hospital environment: Using electronic nose. Sensors and Actuators B: Chemical, 120(1):156–165.
-
(2006)
Sensors and Actuators B: Chemical
, vol.120
, Issue.1
, pp. 156-165
-
-
Dutta, R.1
Dutta, R.2
-
10
-
-
84869201285
-
Identifying the risk factors for hospital-acquired methicillin-resistant staphylococcus aureus (mrsa) infection among patients colonized with mrsa on admission
-
Fukuta, Y., Cunningham, C. A., Harris, P. L., Wagener, M. M., and Muder, R. R. (2012). Identifying the risk factors for hospital-acquired methicillin-resistant staphylococcus aureus (mrsa) infection among patients colonized with mrsa on admission. Infection Control & Hospital Epidemiology, 33(12):1219–1225.
-
(2012)
Infection Control & Hospital Epidemiology
, vol.33
, Issue.12
, pp. 1219-1225
-
-
Fukuta, Y.1
Cunningham, C.A.2
Harris, P.L.3
Wagener, M.M.4
Muder, R.R.5
-
11
-
-
84878997167
-
Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation
-
Hajian-Tilaki, K. (2013). Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2):627.
-
(2013)
Caspian Journal of Internal Medicine
, vol.4
, Issue.2
, pp. 627
-
-
Hajian-Tilaki, K.1
-
12
-
-
84861235431
-
Mining electronic health records: Towards better research applications and clinical care
-
Jensen, P. B., Jensen, L. J., and Brunak, S. (2012). Mining electronic health records: Towards better research applications and clinical care. Nature Reviews. Genetics, 13(6):395.
-
(2012)
Nature Reviews. Genetics
, vol.13
, Issue.6
, pp. 395
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
13
-
-
84971287198
-
Mimic-III, a freely accessible critical care database
-
Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-W. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., and Mark, R. G. (2016). Mimic-iii, a freely accessible critical care database. Scientific Data, 3.
-
(2016)
Scientific Data
, vol.3
-
-
Johnson, A.E.1
Pollard, T.J.2
Shen, L.3
Lehman, L.-W.H.4
Feng, M.5
Ghassemi, M.6
Moody, B.7
Szolovits, P.8
Celi, L.A.9
Mark, R.G.10
-
14
-
-
77957105547
-
Characteristics of personal health records: Findings of the medical library association/national library of medicine joint electronic personal health record task force
-
Jones, D. A., Shipman, J. P., Plaut, D. A., and Selden, C. R. (2010). Characteristics of personal health records: Findings of the medical library association/national library of medicine joint electronic personal health record task force. JMLA: Journal of the Medical Library Association, 98(3):243.
-
(2010)
JMLA: Journal of The Medical Library Association
, vol.98
, Issue.3
, pp. 243
-
-
Jones, D.A.1
Shipman, J.P.2
Plaut, D.A.3
Selden, C.R.4
-
15
-
-
79960872876
-
Predicting disease risks from highly imbalanced data using random forest
-
Khalilia, M., Chakraborty, S., and Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1):51.
-
(2011)
BMC Medical Informatics and Decision Making
, vol.11
, Issue.1
, pp. 51
-
-
Khalilia, M.1
Chakraborty, S.2
Popescu, M.3
-
16
-
-
84907483443
-
Random forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness
-
Lebedev, A., Westman, E., Van Westen, G., Kramberger, M., Lundervold, A., Aarsland, D., Soininen, H., Kłoszewska, I., Mecocci, P., Tsolaki, M., et al. (2014). Random forest ensembles for detection and prediction of alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clinical, 6:115–125.
-
(2014)
NeuroImage: Clinical
, vol.6
, pp. 115-125
-
-
Lebedev, A.1
Westman, E.2
Van Westen, G.3
Kramberger, M.4
Lundervold, A.5
Aarsland, D.6
Soininen, H.7
Kłoszewska, I.8
Mecocci, P.9
Tsolaki, M.10
-
17
-
-
33846696731
-
Community-associated methicillin-resistant staphylococcus aureus isolates and healthcare-associated infections
-
Maree, C., Daum, R., Boyle-Vavra, S., Matayoshi, K., and Miller, L. (2007). Community-associated methicillin-resistant staphylococcus aureus isolates and healthcare-associated infections. Emerging Infectious Diseases, 13(2):236.
-
(2007)
Emerging Infectious Diseases
, vol.13
, Issue.2
, pp. 236
-
-
Maree, C.1
Daum, R.2
Boyle-Vavra, S.3
Matayoshi, K.4
Miller, L.5
-
18
-
-
84875646817
-
The inevitable application of big data to health care
-
Murdoch, T. and Detsky, A. (2013). The inevitable application of big data to health care. Jama, 309(13):1351–1352.
-
(2013)
Jama
, vol.309
, Issue.13
, pp. 1351-1352
-
-
Murdoch, T.1
Detsky, A.2
-
19
-
-
0026760182
-
The crisis in antibiotic resistance
-
Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073):1064–1074.
-
(1992)
Science
, vol.257
, Issue.5073
, pp. 1064-1074
-
-
Neu, H.C.1
-
20
-
-
77954649852
-
Accuracy of American thoracic society/infectious diseases society of america criteria in predicting infection or colonization with multidrug-resistant bacteria at intensive-care unit admission
-
Nseir, S., Grailles, G., Soury-Lavergne, A., Minacori, F., Alves, I., and Durocher, A. (2010). Accuracy of american thoracic society/infectious diseases society of america criteria in predicting infection or colonization with multidrug-resistant bacteria at intensive-care unit admission. Clinical Microbiology and Infection, 16(7):902–908.
-
(2010)
Clinical Microbiology and Infection
, vol.16
, Issue.7
, pp. 902-908
-
-
Nseir, S.1
Grailles, G.2
Soury-Lavergne, A.3
Minacori, F.4
Alves, I.5
Durocher, A.6
-
22
-
-
85040233262
-
Crest - Risk prediction for clostridium difficile infection using multimodal data mining
-
Springer
-
Sen, C., Hartvigsen, T., Rundensteiner, E., and Claypool, K. (2017). Crest - risk prediction for clostridium difficile infection using multimodal data mining. Lecture Notes in Computer Science, pages 49–60. Springer.
-
(2017)
Lecture Notes in Computer Science
, pp. 49-60
-
-
Sen, C.1
Hartvigsen, T.2
Rundensteiner, E.3
Claypool, K.4
-
23
-
-
0034264056
-
Diagnosis of mrsa with neural networks and logistic regression approach
-
Shang, J. S., Lin, Y. E., and Goetz, A. M. (2000). Diagnosis of mrsa with neural networks and logistic regression approach. Health Care Management Science, 3(4):287.
-
(2000)
Health Care Management Science
, vol.3
, Issue.4
, pp. 287
-
-
Shang, J.S.1
Lin, Y.E.2
Goetz, A.M.3
-
24
-
-
57049169733
-
Decision support systems for antibiotic prescribing
-
Sintchenko, V., Coiera, E., and Gilbert, G. L. (2008). Decision support systems for antibiotic prescribing. Current Opinion in Infectious Diseases, 21(6):573–579.
-
(2008)
Current Opinion in Infectious Diseases
, vol.21
, Issue.6
, pp. 573-579
-
-
Sintchenko, V.1
Coiera, E.2
Gilbert, G.L.3
-
25
-
-
84926291696
-
The antibiotic resistance crisis: Part 1: Causes and threats
-
Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4):277.
-
(2015)
Pharmacy and Therapeutics
, vol.40
, Issue.4
, pp. 277
-
-
Ventola, C.L.1
-
26
-
-
0036166309
-
How to diagnose rheumatoid arthritis early: A prediction model for persistent (erosive) arthritis
-
Visser, H., le Cessie, S., Vos, K., Breedveld, F. C., and Hazes, J. M. (2002). How to diagnose rheumatoid arthritis early: a prediction model for persistent (erosive) arthritis. Arthritis & Rheumatology, 46(2):357–365.
-
(2002)
Arthritis & Rheumatology
, vol.46
, Issue.2
, pp. 357-365
-
-
Visser, H.1
Le Cessie, S.2
Vos, K.3
Breedveld, F.C.4
Hazes, J.M.5
-
27
-
-
84992361685
-
Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014
-
Weiner, L., Webb, A., Limbago, B., Dudeck, M., Patel, J., Kallen, A., Edwards, J., and Sievert, D. (2016). Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011–2014. Infection Control & Hospital Epidemiology, 37(11):1288–1301.
-
(2016)
Infection Control & Hospital Epidemiology
, vol.37
, Issue.11
, pp. 1288-1301
-
-
Weiner, L.1
Webb, A.2
Limbago, B.3
Dudeck, M.4
Patel, J.5
Kallen, A.6
Edwards, J.7
Sievert, D.8
-
29
-
-
77953635924
-
Prediction modeling using ehr data: Challenges, strategies, and a comparison of machine learning approaches
-
Wu, J., Roy, J., and Stewart, W. F. (2010). Prediction modeling using ehr data: challenges, strategies, and a comparison of machine learning approaches. Medical Care, 48(6):S106–S113.
-
(2010)
Medical Care
, vol.48
, Issue.6
, pp. S106-S113
-
-
Wu, J.1
Roy, J.2
Stewart, W.F.3
|