-
1
-
-
85015225428
-
Machine learning for medical imaging
-
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. RadioGraphics 2017;37(2):505–515.
-
(2017)
Radio Graphics
, vol.37
, Issue.2
, pp. 505-515
-
-
Erickson, B.J.1
Korfiatis, P.2
Akkus, Z.3
Kline, T.L.4
-
2
-
-
84861986826
-
Machine learning and radiology
-
Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16(5):933–951.
-
(2012)
Med Image Anal
, vol.16
, Issue.5
, pp. 933-951
-
-
Wang, S.1
Summers, R.M.2
-
3
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349(6245):255–260.
-
(2015)
Science
, vol.349
, Issue.6245
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
4
-
-
85016471320
-
Implementing machine learning in radiology practice and research
-
Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 2017; 208(4):754–760.
-
(2017)
AJR Am J Roentgenol
, vol.208
, Issue.4
, pp. 754-760
-
-
Kohli, M.1
Prevedello, L.M.2
Filice, R.W.3
Geis, J.R.4
-
5
-
-
84947466043
-
Machine learning in medicine
-
Deo RC. Machine learning in medicine. Circulation 2015;132(20):1920–1930.
-
(2015)
Circulation
, vol.132
, Issue.20
, pp. 1920-1930
-
-
Deo, R.C.1
-
7
-
-
0035871371
-
Artificial neural networks: Opening the black box
-
Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer 2001;91(8 Suppl):1615–1635.
-
(2001)
Cancer
, vol.91
, Issue.8
, pp. 1615-1635
-
-
Dayhoff, J.E.1
De Leo, J.M.2
-
9
-
-
85050334577
-
Machine learning is fun! Part 3: Deep learning and convolutional neural networks
-
Published June 13, Accessed November 12, 2017
-
Geitgey A. Machine learning is fun! Part 3: deep learning and convolutional neural networks. Medium. https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721. Published June 13, 2016. Accessed November 12, 2017.
-
(2016)
Medium
-
-
Geitgey, A.1
-
10
-
-
85021145223
-
Deep learning in medical image analysis
-
Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19(1):221–248.
-
(2017)
Annu Rev Biomed Eng
, vol.19
, Issue.1
, pp. 221-248
-
-
Shen, D.1
Wu, G.2
Suk, H.I.3
-
11
-
-
85032751398
-
Machine learning in medical imaging
-
Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC. Machine learning in medical imaging. IEEE Signal Process Mag 2010;27(4):25–38.
-
(2010)
IEEE Signal Process Mag
, vol.27
, Issue.4
, pp. 25-38
-
-
Wernick, M.N.1
Yang, Y.2
Brankov, J.G.3
Yourganov, G.4
Strother, S.C.5
-
12
-
-
85031786654
-
Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma
-
Paul R, Hawkins SH, Balagurunathan Y, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2016;2(4):388–395.
-
(2016)
Tomography
, vol.2
, Issue.4
, pp. 388-395
-
-
Paul, R.1
Hawkins, S.H.2
Balagurunathan, Y.3
-
13
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009.
-
(2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Li, F.F.6
-
14
-
-
85040285806
-
ImageNet: Constructing a large-scale image database
-
Li FF, Deng J, Li K. ImageNet: constructing a large-scale image database. J Vis 2010;9(8):1037.
-
(2010)
J Vis
, vol.9
, Issue.8
, pp. 1037
-
-
Li, F.F.1
Deng, J.2
Li, K.3
-
16
-
-
85021445493
-
Socioeconomic and demographic predictors of missed opportunities to provide advanced imaging services
-
Glover M 4th, Daye D, Khalilzadeh O, et al. Socioeconomic and demographic predictors of missed opportunities to provide advanced imaging services. J Am Coll Radiol 2017;14(11):1403–1411.
-
(2017)
J Am Coll Radiol
, vol.14
, Issue.11
, pp. 1403-1411
-
-
Glover, M.1
Daye, D.2
Khalilzadeh, O.3
-
17
-
-
84897955248
-
Screening electronic health record-related patient safety reports using machine learning
-
Marella WM, Sparnon E, Finley E. Screening electronic health record-related patient safety reports using machine learning. J Patient Saf 2017;13(1):31–36.
-
(2017)
J Patient Saf
, vol.13
, Issue.1
, pp. 31-36
-
-
Marella, W.M.1
Sparnon, E.2
Finley, E.3
-
18
-
-
85010417616
-
Usingactivelearningtoidentify healthinformationtechnologyrelatedpatientsafetyevents
-
FongA,HoweJL,AdamsKT,RatwaniRM.Usingactivelearningtoidentify healthinformationtechnologyrelatedpatientsafetyevents.ApplClinInform 2017;8(1):35–46.
-
(2017)
ApplClinInform
, vol.8
, Issue.1
, pp. 35-46
-
-
Fong, A.1
Howe, J.L.2
Adams, K.T.3
Ratwani, R.M.4
-
19
-
-
84968548037
-
Q-space deep learning: Twelve-fold shorter and model-free diffusion MRI scans
-
Golkov V, Dosovitskiy A, Sperl JI, et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35(5):1344–1351.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1344-1351
-
-
Golkov, V.1
Dosovitskiy, A.2
Sperl, J.I.3
-
20
-
-
84968638584
-
Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
-
Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35(5):1160–1169.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.A.1
Ciompi, F.2
Litjens, G.3
-
21
-
-
84946605677
-
Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule
-
Zeng JY, Ye HH, Yang SX, et al. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule. Int J Clin Exp Med 2015;8(9):16077–16082.
-
(2015)
Int J Clin Exp Med
, vol.8
, Issue.9
, pp. 16077-16082
-
-
Zeng, J.Y.1
Ye, H.H.2
Yang, S.X.3
-
22
-
-
84954047607
-
Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments
-
Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments. Med Phys 2016;43(1):554–567.
-
(2016)
Med Phys
, vol.43
, Issue.1
, pp. 554-567
-
-
Chang, Y.1
Paul, A.K.2
Kim, N.3
-
23
-
-
84938149068
-
Spleen segmentation and assessment in CT images for traumatic abdominal injuries
-
Reza Soroushmehr SM, Davuluri P, Molaei S, et al. Spleen segmentation and assessment in CT images for traumatic abdominal injuries. J Med Syst 2015;39(9):87.
-
(2015)
J Med Syst
, vol.39
, Issue.9
, pp. 87
-
-
Reza Soroushmehr, S.M.1
Davuluri, P.2
Molaei, S.3
-
24
-
-
84954514568
-
Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis
-
Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis. Hum Brain Mapp 2016;37(4):1405–1421.
-
(2016)
Hum Brain Mapp
, vol.37
, Issue.4
, pp. 1405-1421
-
-
Pustina, D.1
Coslett, H.B.2
Turkeltaub, P.E.3
Tustison, N.4
Schwartz, M.F.5
Avants, B.6
-
25
-
-
84956616219
-
Classifiers for ischemic stroke lesion segmentation: A comparison study
-
Published correction PLoS One 2016;11(2):e0149828
-
Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One 2015;10(12):e0145118. [Published correction appears in PLoS One 2016;11(2):e0149828.]
-
(2015)
PLoS One
, vol.10
, Issue.12
-
-
Maier, O.1
Schröder, C.2
Forkert, N.D.3
Martinetz, T.4
Handels, H.5
-
26
-
-
84946772000
-
Automated 3D closed surface segmentation: Application to vertebral body segmentation in CT images
-
Liu S, Xie Y, Reeves AP. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images. Int J CARS 2016;11(5):789–801.
-
(2016)
Int J CARS
, vol.11
, Issue.5
, pp. 789-801
-
-
Liu, S.1
Xie, Y.2
Reeves, A.P.3
-
27
-
-
84867839312
-
Automated quantification of pneumothorax in CT
-
Do S, Salvaggio K, Gupta S, Kalra M, Ali NU, Pien H. Automated quantification of pneumothorax in CT. Comput Math Methods Med 2012;2012:736320.
-
(2012)
Comput Math Methods Med
, vol.2012
, pp. 736320
-
-
Do, S.1
Salvaggio, K.2
Gupta, S.3
Kalra, M.4
Ali, N.U.5
Pien, H.6
-
28
-
-
84964570130
-
Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients
-
Herweh C, Ringleb PA, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int J Stroke 2016;11(4):438–445.
-
(2016)
Int J Stroke
, vol.11
, Issue.4
, pp. 438-445
-
-
Herweh, C.1
Ringleb, P.A.2
Rauch, G.3
-
29
-
-
84952898057
-
Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT
-
Burns JE, Yao J, Muñoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 2016;278(1):64–73.
-
(2016)
Radiology
, vol.278
, Issue.1
, pp. 64-73
-
-
Burns, J.E.1
Yao, J.2
Muñoz, H.3
Summers, R.M.4
-
30
-
-
85013290101
-
Computer-aided diagnosis: A survey with biblio-metric analysis
-
Takahashi R, Kajikawa Y. Computer-aided diagnosis: a survey with biblio-metric analysis. Int J Med Inform 2017;101:58–67.
-
(2017)
Int J Med Inform
, vol.101
, pp. 58-67
-
-
Takahashi, R.1
Kajikawa, Y.2
-
31
-
-
85013130699
-
Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning
-
van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 2017;10(1):23–32.
-
(2017)
Radiol Phys Technol
, vol.10
, Issue.1
, pp. 23-32
-
-
Van Ginneken, B.1
-
32
-
-
84946412275
-
Automatic detection of abnormalities in mammograms
-
Suhail Z, Sarwar M, Murtaza K. Automatic detection of abnormalities in mammograms. BMC Med Imaging 2015;15(1):53.
-
(2015)
BMC Med Imaging
, vol.15
, Issue.1
, pp. 53
-
-
Suhail, Z.1
Sarwar, M.2
Murtaza, K.3
-
33
-
-
84873986152
-
Computed-aided diagnosis (CAD) in the detection of breast cancer
-
Dromain C, Boyer B, Ferré R, Canale S, Delaloge S, Balleyguier C. Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 2013;82(3):417–423.
-
(2013)
Eur J Radiol
, vol.82
, Issue.3
, pp. 417-423
-
-
Dromain, C.1
Boyer, B.2
Ferré, R.3
Canale, S.4
Delaloge, S.5
Balleyguier, C.6
-
34
-
-
84960918139
-
Archive or discard computer-aided detection markings: Two schools of thought
-
Berlin L. Archive or discard computer-aided detection markings: two schools of thought. J Am Coll Radiol 2015;12(11):1134–1135.
-
(2015)
J Am Coll Radiol
, vol.12
, Issue.11
, pp. 1134-1135
-
-
Berlin, L.1
-
35
-
-
84984698542
-
Tissue segmentation of computed tomography images using a random forest algorithm: A feasibility study
-
Polan DF, Brady SL, Kaufman RA. Tissue segmentation of computed tomography images using a random forest algorithm: a feasibility study. Phys Med Biol 2016;61(17):6553–6569.
-
(2016)
Phys Med Biol
, vol.61
, Issue.17
, pp. 6553-6569
-
-
Polan, D.F.1
Brady, S.L.2
Kaufman, R.A.3
-
36
-
-
85000428361
-
Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
-
Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging (Bellingham) 2016;3(3):034501.
-
(2016)
J Med Imaging (Bellingham)
, vol.3
, Issue.3
, pp. 034501
-
-
Huynh, B.Q.1
Li, H.2
Giger, M.L.3
-
37
-
-
84948417845
-
Automated 3D ultrasound image segmentation to aid breast cancer image interpretation
-
Gu P, Lee WM, Roubidoux MA, Yuan J, Wang X, Carson PL. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics 2016;65:51–58.
-
(2016)
Ultrasonics
, vol.65
, pp. 51-58
-
-
Gu, P.1
Lee, W.M.2
Roubidoux, M.A.3
Yuan, J.4
Wang, X.5
Carson, P.L.6
-
38
-
-
85011665595
-
Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography
-
Bickelhaupt S, Paech D, Kickingereder P, et al. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J Magn Reson Imaging 2017;46(2):604–616.
-
(2017)
J Magn Reson Imaging
, vol.46
, Issue.2
, pp. 604-616
-
-
Bickelhaupt, S.1
Paech, D.2
Kickingereder, P.3
-
39
-
-
85000788384
-
Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
-
Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 2016;43(12):6654–6666.
-
(2016)
Med Phys
, vol.43
, Issue.12
, pp. 6654-6666
-
-
Samala, R.K.1
Chan, H.P.2
Hadjiiski, L.3
Helvie, M.A.4
Wei, J.5
Cha, K.6
-
40
-
-
85016165503
-
Radiologicalimagetraitspredictiveof cancerstatusinpulmonarynodules
-
LiuY,BalagurunathanY,AtwaterT,etal.Radiologicalimagetraitspredictiveof cancerstatusinpulmonarynodules.ClinCancerRes2017;23(6):1442–1449.
-
(2017)
ClinCancerRes
, vol.23
, Issue.6
, pp. 1442-1449
-
-
Liu, Y.1
Balagurunathan, Y.2
Atwater, T.3
-
41
-
-
85017644487
-
Towards automatic pulmonary nodule management in lung cancer screening with deep learning
-
Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 2017;7:46479.
-
(2017)
Sci Rep
, vol.7
, pp. 46479
-
-
Ciompi, F.1
Chung, K.2
Van Riel, S.J.3
-
42
-
-
85014613499
-
Fully automated deep learning system for bone age assessment
-
Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 2017;30(4):427–441.
-
(2017)
J Digit Imaging
, vol.30
, Issue.4
, pp. 427-441
-
-
Lee, H.1
Tajmir, S.2
Lee, J.3
-
43
-
-
85020637979
-
Deep convolutional neural networks for endotracheal tube position and x-ray image classification: Challenges and opportunities
-
Lakhani P. Deep convolutional neural networks for endotracheal tube position and x-ray image classification: challenges and opportunities. J Digit Imaging 2017;30(4):460–468.
-
(2017)
J Digit Imaging
, vol.30
, Issue.4
, pp. 460-468
-
-
Lakhani, P.1
-
44
-
-
85026780215
-
Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks
-
Le MH, Chen J, Wang L, et al. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 2017;62(16):6497–6514.
-
(2017)
Phys Med Biol
, vol.62
, Issue.16
, pp. 6497-6514
-
-
Le, M.H.1
Chen, J.2
Wang, L.3
-
45
-
-
84886489387
-
Fully automated prostate segmentation on MRI: Comparison with manual segmentation methods and specimen volumes
-
Turkbey B, Fotin SV, Huang RJ, et al. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. AJR Am J Roentgenol 2013;201(5):W720–W729.
-
(2013)
AJR Am J Roentgenol
, vol.201
, Issue.5
, pp. W720-W729
-
-
Turkbey, B.1
Fotin, S.V.2
Huang, R.J.3
-
46
-
-
84928407188
-
Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging
-
Kwak JT, Xu S, Wood BJ, et al. Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 2015;42(5):2368–2378.
-
(2015)
Med Phys
, vol.42
, Issue.5
, pp. 2368-2378
-
-
Kwak, J.T.1
Xu, S.2
Wood, B.J.3
-
47
-
-
84941748841
-
Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method
-
Schuhbaeck A, Otaki Y, Achenbach S, et al. Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method. J Cardiovasc Comput Tomogr 2015;9(5):446–453.
-
(2015)
J Cardiovasc Comput Tomogr
, vol.9
, Issue.5
, pp. 446-453
-
-
Schuhbaeck, A.1
Otaki, Y.2
Achenbach, S.3
-
48
-
-
84871701023
-
Reviewof automaticsegmentationmethodsofmultiplesclerosiswhitematterlesionson conventionalmagneticresonanceimaging
-
García-LorenzoD,FrancisS,NarayananS,ArnoldDL,CollinsDL.Reviewof automaticsegmentationmethodsofmultiplesclerosiswhitematterlesionson conventionalmagneticresonanceimaging.MedImageAnal2013;17(1):1–18.
-
(2013)
MedImageAnal
, vol.17
, Issue.1
, pp. 1-18
-
-
Garc a-Lorenzo, D.1
Francis, S.2
Narayanan, S.3
Arnold, D.L.4
Collins, D.L.5
-
49
-
-
84862840271
-
Segmentation of multiple sclerosis lesions in MR images: A review
-
Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology 2012;54(4):299–320.
-
(2012)
Neuroradiology
, vol.54
, Issue.4
, pp. 299-320
-
-
Mortazavi, D.1
Kouzani, A.Z.2
Soltanian-Zadeh, H.3
-
50
-
-
84875259371
-
On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks
-
Velikova M, Lucas PJ, Samulski M, Karssemeijer N. On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks. Artif Intell Med 2013;57(1):73–86.
-
(2013)
Artif Intell Med
, vol.57
, Issue.1
, pp. 73-86
-
-
Velikova, M.1
Lucas, P.J.2
Samulski, M.3
Karssemeijer, N.4
-
52
-
-
84931467550
-
Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system
-
Bal M, Amasyali MF, Sever H, Kose G, Demirhan A. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system. Sci World J 2014;2014:137896.
-
(2014)
Sci World J
, vol.2014
, pp. 137896
-
-
Bal, M.1
Amasyali, M.F.2
Sever, H.3
Kose, G.4
Demirhan, A.5
-
53
-
-
84875271177
-
Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach
-
Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif Intell Med 2013;57(1):9–19.
-
(2013)
Artif Intell Med
, vol.57
, Issue.1
, pp. 9-19
-
-
Bennett, C.C.1
Hauser, K.2
-
55
-
-
84982161448
-
Learning clinically useful information from images: Past, present and future
-
Rueckert D, Glocker B, Kainz B. Learning clinically useful information from images: past, present and future. Med Image Anal 2016;33:13–18.
-
(2016)
Med Image Anal
, vol.33
, pp. 13-18
-
-
Rueckert, D.1
Glocker, B.2
Kainz, B.3
-
56
-
-
84968572894
-
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
-
Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016;35(5):1322–1331.
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1322-1331
-
-
Kallenberg, M.1
Petersen, K.2
Nielsen, M.3
-
57
-
-
84963701150
-
Segmentation of joint and musculoskeletal tissue in the study of arthritis
-
Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 2016;29(2):207–221.
-
(2016)
MAGMA
, vol.29
, Issue.2
, pp. 207-221
-
-
Pedoia, V.1
Majumdar, S.2
Link, T.M.3
-
58
-
-
85029799678
-
-
Published December 16, Accessed July 1, 2017
-
Nie D, Trullo R, Petitjean C, Ruan S, Shen D. Medical image synthesis with context-aware generative adversarial networks. http://arxiv.org/abs/1612.05362. Published December 16, 2016. Accessed July 1, 2017.
-
(2016)
Medical Image Synthesis with Context-Aware Generative Adversarial Networks
-
-
Nie, D.1
Trullo, R.2
Petitjean, C.3
Ruan, S.4
Shen, D.5
-
59
-
-
84937849144
-
-
Published June 10, Accessed October 29, 2017
-
Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. http://arxiv.org/abs/1406.2661. Published June 10, 2014. Accessed October 29, 2017.
-
(2014)
Generative Adversarial Networks
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
-
60
-
-
84930574113
-
A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning
-
Ghose S, Holloway L, Lim K, et al. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning. Artif Intell Med 2015;64(2):75–87.
-
(2015)
Artif Intell Med
, vol.64
, Issue.2
, pp. 75-87
-
-
Ghose, S.1
Holloway, L.2
Lim, K.3
-
61
-
-
84892841517
-
Unsupervised deep feature learning for deformable registration of MR brain images
-
Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D. Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 2013;16(Pt 2):649–656.
-
(2013)
Med Image Comput Comput Assist Interv
, vol.16
, pp. 649-656
-
-
Wu, G.1
Kim, M.2
Wang, Q.3
Gao, Y.4
Liao, S.5
Shen, D.6
-
62
-
-
85015984007
-
A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images
-
Wang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Programs Biomed 2017;144:97–104.
-
(2017)
Comput Methods Programs Biomed
, vol.144
, pp. 97-104
-
-
Wang, Y.1
Qiu, Y.2
Thai, T.3
Moore, K.4
Liu, H.5
Zheng, B.6
-
63
-
-
85020130546
-
Deep learning for brain MRI segmentation: State of the art and future directions
-
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 2017;30(4):449–459.
-
(2017)
J Digit Imaging
, vol.30
, Issue.4
, pp. 449-459
-
-
Akkus, Z.1
Galimzianova, A.2
Hoogi, A.3
Rubin, D.L.4
Erickson, B.J.5
-
64
-
-
84879226256
-
Generalization evaluation of machine learning numerical observers for image quality assessment
-
Kalayeh MM, Marin T, Brankov JG. Generalization evaluation of machine learning numerical observers for image quality assessment. IEEE Trans Nucl Sci 2013;60(3):1609–1618.
-
(2013)
IEEE Trans Nucl Sci
, vol.60
, Issue.3
, pp. 1609-1618
-
-
Kalayeh, M.M.1
Marin, T.2
Brankov, J.G.3
-
65
-
-
84942875612
-
Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction
-
Eck BL, Fahmi R, Brown KM, et al. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Med Phys 2015;42(10):6098–6111.
-
(2015)
Med Phys
, vol.42
, Issue.10
, pp. 6098-6111
-
-
Eck, B.L.1
Fahmi, R.2
Brown, K.M.3
-
66
-
-
85020071856
-
Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture
-
Jun 3. Epub ahead of print
-
Esses SJ, Lu X, Zhao T, et al. Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging 2017 Jun 3. [Epub ahead of print]
-
(2017)
J Magn Reson Imaging
-
-
Esses, S.J.1
Lu, X.2
Zhao, T.3
-
67
-
-
85029680697
-
Generative adversarial networks for noise reduction in low-dose CT
-
Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017;36(12):2536–2545.
-
(2017)
IEEE Trans Med Imaging
, vol.36
, Issue.12
, pp. 2536-2545
-
-
Wolterink, J.M.1
Leiner, T.2
Viergever, M.A.3
Isgum, I.4
-
68
-
-
85050368640
-
Machine learning powered automatic organ classificationforpatientspecificorgandoseestimation
-
Massachusetts General Hospital, Harvard Medical School
-
Cho J, Lee E, Lee H, et al. Machine learning powered automatic organ classificationforpatientspecificorgandoseestimation.SIIM2017Scientific Session. Massachusetts General Hospital, Harvard Medical School, 2017.
-
(2017)
SIIM2017Scientific Session
-
-
Cho, J.1
Lee, E.2
Lee, H.3
-
69
-
-
84982788079
-
Big data analytics for prostate radiotherapy
-
Coates J, Souhami L, El Naqa I. Big data analytics for prostate radiotherapy. Front Oncol 2016;6:149.
-
(2016)
Front Oncol
, vol.6
, pp. 149
-
-
Coates, J.1
Souhami, L.2
El Naqa, I.3
-
70
-
-
84984698490
-
Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy
-
Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB 2nd. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol 2016;61(16):6105–6120.
-
(2016)
Phys Med Biol
, vol.61
, Issue.16
, pp. 6105-6120
-
-
Valdes, G.1
Solberg, T.D.2
Heskel, M.3
Ungar, L.4
Simone, C.B.5
-
71
-
-
84998812079
-
Radiomics based targeted radiotherapy planning (Rad-TRaP): A computational framework for prostate cancer treatment planning with MRI
-
Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 2016;11(1):148.
-
(2016)
Radiat Oncol
, vol.11
, Issue.1
, pp. 148
-
-
Shiradkar, R.1
Podder, T.K.2
Algohary, A.3
Viswanath, S.4
Ellis, R.J.5
Madabhushi, A.6
-
72
-
-
84955464993
-
Natural language processing technologies in radiology research and clinical applications
-
Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications. RadioGraphics 2016;36(1):176–191.
-
(2016)
RadioGraphics
, vol.36
, Issue.1
, pp. 176-191
-
-
Cai, T.1
Giannopoulos, A.A.2
Yu, S.3
-
73
-
-
84982682353
-
Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports
-
Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform 2015;6(3):600–610.
-
(2015)
Appl Clin Inform
, vol.6
, Issue.3
, pp. 600-610
-
-
Sevenster, M.1
Buurman, J.2
Liu, P.3
Peters, J.F.4
Chang, P.J.5
-
74
-
-
85016515607
-
Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: A tool to estimate diagnostic yield
-
Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP. Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: a tool to estimate diagnostic yield. AJR Am J Roentgenol 2017;208(4):750–753.
-
(2017)
AJR Am J Roentgenol
, vol.208
, Issue.4
, pp. 750-753
-
-
Hassanpour, S.1
Langlotz, C.P.2
Amrhein, T.J.3
Befera, N.T.4
Lungren, M.P.5
-
75
-
-
84951967014
-
Follow-up recom-mendationdetectiononradiologyreportswithincidentalpulmonarynodules
-
Oliveira L, Tellis R, Qian Y, Trovato K, Mankovich G. Follow-up recom-mendationdetectiononradiologyreportswithincidentalpulmonarynodules. Stud Health Technol Inform 2015;216:1028.
-
(2015)
Stud Health Technol Inform
, vol.216
, pp. 1028
-
-
Oliveira, L.1
Tellis, R.2
Qian, Y.3
Trovato, K.4
Mankovich, G.5
-
76
-
-
84906695053
-
Big data bioinformatics
-
Greene CS, Tan J, Ung M, Moore JH, Cheng C. Big data bioinformatics. J Cell Physiol 2014;229(12):1896–1900.
-
(2014)
J Cell Physiol
, vol.229
, Issue.12
, pp. 1896-1900
-
-
Greene, C.S.1
Tan, J.2
Ung, M.3
Moore, J.H.4
Cheng, C.5
-
77
-
-
85018416206
-
A review on machine learning principles for multiview biological data integration
-
Dec 22 Epub ahead of print
-
Li Y, Wu FX, Ngom A. A review on machine learning principles for multiview biological data integration. Brief Bioinform 2016 Dec 22 [Epub ahead of print].
-
(2016)
Brief Bioinform
-
-
Li, Y.1
Wu, F.X.2
Ngom, A.3
-
79
-
-
84857008691
-
Predicting sample size required for classification performance
-
Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance. BMC Med Inform Decis Mak 2012;12(1):8.
-
(2012)
BMC Med Inform Decis Mak
, vol.12
, Issue.1
, pp. 8
-
-
Figueroa, R.L.1
Zeng-Treitler, Q.2
Kandula, S.3
Ngo, L.H.4
-
80
-
-
85020659325
-
Deep learning in medical imaging: General overview
-
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18(4):570–584.
-
(2017)
Korean J Radiol
, vol.18
, Issue.4
, pp. 570-584
-
-
Lee, J.G.1
Jun, S.2
Cho, Y.W.3
-
81
-
-
84911958139
-
The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation model
-
Mongkolwat P, Kleper V, Talbot S, Rubin D. The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation model. J Digit Imaging 2014;27(6):692–701.
-
(2014)
J Digit Imaging
, vol.27
, Issue.6
, pp. 692-701
-
-
Mongkolwat, P.1
Kleper, V.2
Talbot, S.3
Rubin, D.4
-
82
-
-
84997124343
-
Innovation in medicine and device development, regulatory review, and use of clinical advances
-
Rosenblatt M, Boutin MM, Nussbaum SR. Innovation in medicine and device development, regulatory review, and use of clinical advances. JAMA 2016;316(16):1671–1672.
-
(2016)
JAMA
, vol.316
, Issue.16
, pp. 1671-1672
-
-
Rosenblatt, M.1
Boutin, M.M.2
Nussbaum, S.R.3
-
83
-
-
84962598208
-
Learning a combined model of visual saliencyforfixationprediction
-
Wang J, Borji A, Jay Kuo CC, Itti L. Learning a combined model of visual saliencyforfixationprediction.IEEE Trans Image Process2016;25(4):1566–1579.
-
(2016)
IEEE Trans Image Process
, vol.25
, Issue.4
, pp. 1566-1579
-
-
Wang, J.1
Borji, A.2
Jay Kuo, C.C.3
Itti, L.4
-
84
-
-
84951784617
-
Medical malpractice: Reform for today’s patients and clinicians
-
Stamm JA, Korzick KA, Beech K, Wood KE. Medical malpractice: reform for today’s patients and clinicians. Am J Med 2016;129(1):20–25.
-
(2016)
Am J Med
, vol.129
, Issue.1
, pp. 20-25
-
-
Stamm, J.A.1
Korzick, K.A.2
Beech, K.3
Wood, K.E.4
-
85
-
-
85018521903
-
Artificial intelligence (AI) systems for interpreting complex medical datasets
-
Altman RB. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin Pharmacol Ther 2017;101(5):585–586.
-
(2017)
Clin Pharmacol Ther
, vol.101
, Issue.5
, pp. 585-586
-
-
Altman, R.B.1
-
86
-
-
85037735216
-
-
PublishedJune16, AccessedJune25,2017
-
Kaiser L, Gomez AN, Shazeer N, et al. One model to learn them all. http://arxiv.org/abs/1706.05137.PublishedJune16,2017.AccessedJune25,2017.
-
(2017)
One Model to Learn Them All
-
-
Kaiser, L.1
Gomez, A.N.2
Shazeer, N.3
-
87
-
-
85021176346
-
Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
-
Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017;403:21–27.
-
(2017)
Cancer Lett
, vol.403
, pp. 21-27
-
-
Zhang, B.1
He, X.2
Ouyang, F.3
-
88
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542(7639):115–118.
-
(2017)
Nature
, vol.542
, Issue.7639
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
89
-
-
85021635595
-
Machine learning and prediction in medicine: Beyond the peak of inflated expectations
-
Chen JH, Asch SM. Machine learning and prediction in medicine: beyond the peak of inflated expectations. N Engl J Med 2017;376(26):2507–2509.
-
(2017)
N Engl J Med
, vol.376
, Issue.26
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
90
-
-
85019606440
-
Artificial intelligence in precision cardiovascular medicine
-
Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017; 69(21):2657–2664.
-
(2017)
J Am Coll Cardiol
, vol.69
, Issue.21
, pp. 2657-2664
-
-
Krittanawong, C.1
Zhang, H.2
Wang, Z.3
Aydar, M.4
Kitai, T.5
-
91
-
-
84955604605
-
Radiomics: Images are more than pictures, they are data
-
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278(2):563–577.
-
(2016)
Radiology
, vol.278
, Issue.2
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
92
-
-
84996490301
-
3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
-
Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Med Image Comput Comput Assist Interv 2016;9901:212–220.
-
(2016)
Med Image Comput Comput Assist Interv
, vol.9901
, pp. 212-220
-
-
Nie, D.1
Zhang, H.2
Adeli, E.3
Liu, L.4
Shen, D.5
-
93
-
-
85019233675
-
Precision radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
-
Oakden-RaynerL,CarneiroG,BessenT,NascimentoJC,BradleyAP,Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep 2017;7(1):1648.
-
(2017)
Sci Rep
, vol.7
, Issue.1
, pp. 1648
-
-
Oakden-Rayner, L.1
Carneiro, G.2
Bessen, T.3
Nascimento, J.C.4
Bradley, A.P.5
Palmer, L.J.6
-
94
-
-
85021835221
-
Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks
-
Tran T, Kavuluru R. Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. J Biomed Inform 2017;75S:S138–S148.
-
(2017)
J Biomed Inform
, vol.75 S
, pp. S138-S148
-
-
Tran, T.1
Kavuluru, R.2
-
95
-
-
84968813824
-
Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
-
Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016;6(1):26094.
-
(2016)
Sci Rep
, vol.6
, Issue.1
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
Dudley, J.T.4
|