메뉴 건너뛰기




Volumn 288, Issue 2, 2018, Pages 318-328

Current applications and future impact of machine learning in radiology

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLINICAL DECISION SUPPORT SYSTEM; DIAGNOSTIC IMAGING; EMERGENCY HEALTH SERVICE; MACHINE LEARNING; QUALITY CONTROL; RADIODIAGNOSIS; REVIEW; WORKFLOW; HUMAN; PROCEDURES; RADIOLOGY; RADIOLOGY INFORMATION SYSTEM; TRENDS;

EID: 85050347328     PISSN: 00338419     EISSN: 15271315     Source Type: Journal    
DOI: 10.1148/radiol.2018171820     Document Type: Review
Times cited : (589)

References (95)
  • 2
    • 84861986826 scopus 로고    scopus 로고
    • Machine learning and radiology
    • Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16(5):933–951.
    • (2012) Med Image Anal , vol.16 , Issue.5 , pp. 933-951
    • Wang, S.1    Summers, R.M.2
  • 3
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349(6245):255–260.
    • (2015) Science , vol.349 , Issue.6245 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 4
    • 85016471320 scopus 로고    scopus 로고
    • Implementing machine learning in radiology practice and research
    • Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing machine learning in radiology practice and research. AJR Am J Roentgenol 2017; 208(4):754–760.
    • (2017) AJR Am J Roentgenol , vol.208 , Issue.4 , pp. 754-760
    • Kohli, M.1    Prevedello, L.M.2    Filice, R.W.3    Geis, J.R.4
  • 5
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo RC. Machine learning in medicine. Circulation 2015;132(20):1920–1930.
    • (2015) Circulation , vol.132 , Issue.20 , pp. 1920-1930
    • Deo, R.C.1
  • 7
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer 2001;91(8 Suppl):1615–1635.
    • (2001) Cancer , vol.91 , Issue.8 , pp. 1615-1635
    • Dayhoff, J.E.1    De Leo, J.M.2
  • 9
    • 85050334577 scopus 로고    scopus 로고
    • Machine learning is fun! Part 3: Deep learning and convolutional neural networks
    • Published June 13, Accessed November 12, 2017
    • Geitgey A. Machine learning is fun! Part 3: deep learning and convolutional neural networks. Medium. https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721. Published June 13, 2016. Accessed November 12, 2017.
    • (2016) Medium
    • Geitgey, A.1
  • 10
    • 85021145223 scopus 로고    scopus 로고
    • Deep learning in medical image analysis
    • Shen D, Wu G, Suk HI. Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19(1):221–248.
    • (2017) Annu Rev Biomed Eng , vol.19 , Issue.1 , pp. 221-248
    • Shen, D.1    Wu, G.2    Suk, H.I.3
  • 12
    • 85031786654 scopus 로고    scopus 로고
    • Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma
    • Paul R, Hawkins SH, Balagurunathan Y, et al. Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2016;2(4):388–395.
    • (2016) Tomography , vol.2 , Issue.4 , pp. 388-395
    • Paul, R.1    Hawkins, S.H.2    Balagurunathan, Y.3
  • 14
    • 85040285806 scopus 로고    scopus 로고
    • ImageNet: Constructing a large-scale image database
    • Li FF, Deng J, Li K. ImageNet: constructing a large-scale image database. J Vis 2010;9(8):1037.
    • (2010) J Vis , vol.9 , Issue.8 , pp. 1037
    • Li, F.F.1    Deng, J.2    Li, K.3
  • 16
    • 85021445493 scopus 로고    scopus 로고
    • Socioeconomic and demographic predictors of missed opportunities to provide advanced imaging services
    • Glover M 4th, Daye D, Khalilzadeh O, et al. Socioeconomic and demographic predictors of missed opportunities to provide advanced imaging services. J Am Coll Radiol 2017;14(11):1403–1411.
    • (2017) J Am Coll Radiol , vol.14 , Issue.11 , pp. 1403-1411
    • Glover, M.1    Daye, D.2    Khalilzadeh, O.3
  • 17
    • 84897955248 scopus 로고    scopus 로고
    • Screening electronic health record-related patient safety reports using machine learning
    • Marella WM, Sparnon E, Finley E. Screening electronic health record-related patient safety reports using machine learning. J Patient Saf 2017;13(1):31–36.
    • (2017) J Patient Saf , vol.13 , Issue.1 , pp. 31-36
    • Marella, W.M.1    Sparnon, E.2    Finley, E.3
  • 18
    • 85010417616 scopus 로고    scopus 로고
    • Usingactivelearningtoidentify healthinformationtechnologyrelatedpatientsafetyevents
    • FongA,HoweJL,AdamsKT,RatwaniRM.Usingactivelearningtoidentify healthinformationtechnologyrelatedpatientsafetyevents.ApplClinInform 2017;8(1):35–46.
    • (2017) ApplClinInform , vol.8 , Issue.1 , pp. 35-46
    • Fong, A.1    Howe, J.L.2    Adams, K.T.3    Ratwani, R.M.4
  • 19
    • 84968548037 scopus 로고    scopus 로고
    • Q-space deep learning: Twelve-fold shorter and model-free diffusion MRI scans
    • Golkov V, Dosovitskiy A, Sperl JI, et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35(5):1344–1351.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1344-1351
    • Golkov, V.1    Dosovitskiy, A.2    Sperl, J.I.3
  • 20
    • 84968638584 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
    • Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35(5):1160–1169.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1160-1169
    • Setio, A.A.1    Ciompi, F.2    Litjens, G.3
  • 21
    • 84946605677 scopus 로고    scopus 로고
    • Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule
    • Zeng JY, Ye HH, Yang SX, et al. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule. Int J Clin Exp Med 2015;8(9):16077–16082.
    • (2015) Int J Clin Exp Med , vol.8 , Issue.9 , pp. 16077-16082
    • Zeng, J.Y.1    Ye, H.H.2    Yang, S.X.3
  • 22
    • 84954047607 scopus 로고    scopus 로고
    • Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments
    • Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments. Med Phys 2016;43(1):554–567.
    • (2016) Med Phys , vol.43 , Issue.1 , pp. 554-567
    • Chang, Y.1    Paul, A.K.2    Kim, N.3
  • 23
    • 84938149068 scopus 로고    scopus 로고
    • Spleen segmentation and assessment in CT images for traumatic abdominal injuries
    • Reza Soroushmehr SM, Davuluri P, Molaei S, et al. Spleen segmentation and assessment in CT images for traumatic abdominal injuries. J Med Syst 2015;39(9):87.
    • (2015) J Med Syst , vol.39 , Issue.9 , pp. 87
    • Reza Soroushmehr, S.M.1    Davuluri, P.2    Molaei, S.3
  • 24
    • 84954514568 scopus 로고    scopus 로고
    • Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis
    • Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis. Hum Brain Mapp 2016;37(4):1405–1421.
    • (2016) Hum Brain Mapp , vol.37 , Issue.4 , pp. 1405-1421
    • Pustina, D.1    Coslett, H.B.2    Turkeltaub, P.E.3    Tustison, N.4    Schwartz, M.F.5    Avants, B.6
  • 25
    • 84956616219 scopus 로고    scopus 로고
    • Classifiers for ischemic stroke lesion segmentation: A comparison study
    • Published correction PLoS One 2016;11(2):e0149828
    • Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One 2015;10(12):e0145118. [Published correction appears in PLoS One 2016;11(2):e0149828.]
    • (2015) PLoS One , vol.10 , Issue.12
    • Maier, O.1    Schröder, C.2    Forkert, N.D.3    Martinetz, T.4    Handels, H.5
  • 26
    • 84946772000 scopus 로고    scopus 로고
    • Automated 3D closed surface segmentation: Application to vertebral body segmentation in CT images
    • Liu S, Xie Y, Reeves AP. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images. Int J CARS 2016;11(5):789–801.
    • (2016) Int J CARS , vol.11 , Issue.5 , pp. 789-801
    • Liu, S.1    Xie, Y.2    Reeves, A.P.3
  • 28
    • 84964570130 scopus 로고    scopus 로고
    • Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients
    • Herweh C, Ringleb PA, Rauch G, et al. Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. Int J Stroke 2016;11(4):438–445.
    • (2016) Int J Stroke , vol.11 , Issue.4 , pp. 438-445
    • Herweh, C.1    Ringleb, P.A.2    Rauch, G.3
  • 29
    • 84952898057 scopus 로고    scopus 로고
    • Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT
    • Burns JE, Yao J, Muñoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 2016;278(1):64–73.
    • (2016) Radiology , vol.278 , Issue.1 , pp. 64-73
    • Burns, J.E.1    Yao, J.2    Muñoz, H.3    Summers, R.M.4
  • 30
    • 85013290101 scopus 로고    scopus 로고
    • Computer-aided diagnosis: A survey with biblio-metric analysis
    • Takahashi R, Kajikawa Y. Computer-aided diagnosis: a survey with biblio-metric analysis. Int J Med Inform 2017;101:58–67.
    • (2017) Int J Med Inform , vol.101 , pp. 58-67
    • Takahashi, R.1    Kajikawa, Y.2
  • 31
    • 85013130699 scopus 로고    scopus 로고
    • Fifty years of computer analysis in chest imaging: Rule-based, machine learning, deep learning
    • van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiol Phys Technol 2017;10(1):23–32.
    • (2017) Radiol Phys Technol , vol.10 , Issue.1 , pp. 23-32
    • Van Ginneken, B.1
  • 32
    • 84946412275 scopus 로고    scopus 로고
    • Automatic detection of abnormalities in mammograms
    • Suhail Z, Sarwar M, Murtaza K. Automatic detection of abnormalities in mammograms. BMC Med Imaging 2015;15(1):53.
    • (2015) BMC Med Imaging , vol.15 , Issue.1 , pp. 53
    • Suhail, Z.1    Sarwar, M.2    Murtaza, K.3
  • 34
    • 84960918139 scopus 로고    scopus 로고
    • Archive or discard computer-aided detection markings: Two schools of thought
    • Berlin L. Archive or discard computer-aided detection markings: two schools of thought. J Am Coll Radiol 2015;12(11):1134–1135.
    • (2015) J Am Coll Radiol , vol.12 , Issue.11 , pp. 1134-1135
    • Berlin, L.1
  • 35
    • 84984698542 scopus 로고    scopus 로고
    • Tissue segmentation of computed tomography images using a random forest algorithm: A feasibility study
    • Polan DF, Brady SL, Kaufman RA. Tissue segmentation of computed tomography images using a random forest algorithm: a feasibility study. Phys Med Biol 2016;61(17):6553–6569.
    • (2016) Phys Med Biol , vol.61 , Issue.17 , pp. 6553-6569
    • Polan, D.F.1    Brady, S.L.2    Kaufman, R.A.3
  • 36
    • 85000428361 scopus 로고    scopus 로고
    • Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
    • Huynh BQ, Li H, Giger ML. Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J Med Imaging (Bellingham) 2016;3(3):034501.
    • (2016) J Med Imaging (Bellingham) , vol.3 , Issue.3 , pp. 034501
    • Huynh, B.Q.1    Li, H.2    Giger, M.L.3
  • 37
    • 84948417845 scopus 로고    scopus 로고
    • Automated 3D ultrasound image segmentation to aid breast cancer image interpretation
    • Gu P, Lee WM, Roubidoux MA, Yuan J, Wang X, Carson PL. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. Ultrasonics 2016;65:51–58.
    • (2016) Ultrasonics , vol.65 , pp. 51-58
    • Gu, P.1    Lee, W.M.2    Roubidoux, M.A.3    Yuan, J.4    Wang, X.5    Carson, P.L.6
  • 38
    • 85011665595 scopus 로고    scopus 로고
    • Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography
    • Bickelhaupt S, Paech D, Kickingereder P, et al. Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography. J Magn Reson Imaging 2017;46(2):604–616.
    • (2017) J Magn Reson Imaging , vol.46 , Issue.2 , pp. 604-616
    • Bickelhaupt, S.1    Paech, D.2    Kickingereder, P.3
  • 39
    • 85000788384 scopus 로고    scopus 로고
    • Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
    • Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 2016;43(12):6654–6666.
    • (2016) Med Phys , vol.43 , Issue.12 , pp. 6654-6666
    • Samala, R.K.1    Chan, H.P.2    Hadjiiski, L.3    Helvie, M.A.4    Wei, J.5    Cha, K.6
  • 40
    • 85016165503 scopus 로고    scopus 로고
    • Radiologicalimagetraitspredictiveof cancerstatusinpulmonarynodules
    • LiuY,BalagurunathanY,AtwaterT,etal.Radiologicalimagetraitspredictiveof cancerstatusinpulmonarynodules.ClinCancerRes2017;23(6):1442–1449.
    • (2017) ClinCancerRes , vol.23 , Issue.6 , pp. 1442-1449
    • Liu, Y.1    Balagurunathan, Y.2    Atwater, T.3
  • 41
    • 85017644487 scopus 로고    scopus 로고
    • Towards automatic pulmonary nodule management in lung cancer screening with deep learning
    • Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 2017;7:46479.
    • (2017) Sci Rep , vol.7 , pp. 46479
    • Ciompi, F.1    Chung, K.2    Van Riel, S.J.3
  • 42
    • 85014613499 scopus 로고    scopus 로고
    • Fully automated deep learning system for bone age assessment
    • Lee H, Tajmir S, Lee J, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 2017;30(4):427–441.
    • (2017) J Digit Imaging , vol.30 , Issue.4 , pp. 427-441
    • Lee, H.1    Tajmir, S.2    Lee, J.3
  • 43
    • 85020637979 scopus 로고    scopus 로고
    • Deep convolutional neural networks for endotracheal tube position and x-ray image classification: Challenges and opportunities
    • Lakhani P. Deep convolutional neural networks for endotracheal tube position and x-ray image classification: challenges and opportunities. J Digit Imaging 2017;30(4):460–468.
    • (2017) J Digit Imaging , vol.30 , Issue.4 , pp. 460-468
    • Lakhani, P.1
  • 44
    • 85026780215 scopus 로고    scopus 로고
    • Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks
    • Le MH, Chen J, Wang L, et al. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 2017;62(16):6497–6514.
    • (2017) Phys Med Biol , vol.62 , Issue.16 , pp. 6497-6514
    • Le, M.H.1    Chen, J.2    Wang, L.3
  • 45
    • 84886489387 scopus 로고    scopus 로고
    • Fully automated prostate segmentation on MRI: Comparison with manual segmentation methods and specimen volumes
    • Turkbey B, Fotin SV, Huang RJ, et al. Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. AJR Am J Roentgenol 2013;201(5):W720–W729.
    • (2013) AJR Am J Roentgenol , vol.201 , Issue.5 , pp. W720-W729
    • Turkbey, B.1    Fotin, S.V.2    Huang, R.J.3
  • 46
    • 84928407188 scopus 로고    scopus 로고
    • Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging
    • Kwak JT, Xu S, Wood BJ, et al. Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 2015;42(5):2368–2378.
    • (2015) Med Phys , vol.42 , Issue.5 , pp. 2368-2378
    • Kwak, J.T.1    Xu, S.2    Wood, B.J.3
  • 47
    • 84941748841 scopus 로고    scopus 로고
    • Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method
    • Schuhbaeck A, Otaki Y, Achenbach S, et al. Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method. J Cardiovasc Comput Tomogr 2015;9(5):446–453.
    • (2015) J Cardiovasc Comput Tomogr , vol.9 , Issue.5 , pp. 446-453
    • Schuhbaeck, A.1    Otaki, Y.2    Achenbach, S.3
  • 48
    • 84871701023 scopus 로고    scopus 로고
    • Reviewof automaticsegmentationmethodsofmultiplesclerosiswhitematterlesionson conventionalmagneticresonanceimaging
    • García-LorenzoD,FrancisS,NarayananS,ArnoldDL,CollinsDL.Reviewof automaticsegmentationmethodsofmultiplesclerosiswhitematterlesionson conventionalmagneticresonanceimaging.MedImageAnal2013;17(1):1–18.
    • (2013) MedImageAnal , vol.17 , Issue.1 , pp. 1-18
    • Garc a-Lorenzo, D.1    Francis, S.2    Narayanan, S.3    Arnold, D.L.4    Collins, D.L.5
  • 49
    • 84862840271 scopus 로고    scopus 로고
    • Segmentation of multiple sclerosis lesions in MR images: A review
    • Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology 2012;54(4):299–320.
    • (2012) Neuroradiology , vol.54 , Issue.4 , pp. 299-320
    • Mortazavi, D.1    Kouzani, A.Z.2    Soltanian-Zadeh, H.3
  • 50
    • 84875259371 scopus 로고    scopus 로고
    • On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks
    • Velikova M, Lucas PJ, Samulski M, Karssemeijer N. On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks. Artif Intell Med 2013;57(1):73–86.
    • (2013) Artif Intell Med , vol.57 , Issue.1 , pp. 73-86
    • Velikova, M.1    Lucas, P.J.2    Samulski, M.3    Karssemeijer, N.4
  • 52
    • 84931467550 scopus 로고    scopus 로고
    • Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system
    • Bal M, Amasyali MF, Sever H, Kose G, Demirhan A. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system. Sci World J 2014;2014:137896.
    • (2014) Sci World J , vol.2014 , pp. 137896
    • Bal, M.1    Amasyali, M.F.2    Sever, H.3    Kose, G.4    Demirhan, A.5
  • 53
    • 84875271177 scopus 로고    scopus 로고
    • Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach
    • Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artif Intell Med 2013;57(1):9–19.
    • (2013) Artif Intell Med , vol.57 , Issue.1 , pp. 9-19
    • Bennett, C.C.1    Hauser, K.2
  • 55
    • 84982161448 scopus 로고    scopus 로고
    • Learning clinically useful information from images: Past, present and future
    • Rueckert D, Glocker B, Kainz B. Learning clinically useful information from images: past, present and future. Med Image Anal 2016;33:13–18.
    • (2016) Med Image Anal , vol.33 , pp. 13-18
    • Rueckert, D.1    Glocker, B.2    Kainz, B.3
  • 56
    • 84968572894 scopus 로고    scopus 로고
    • Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring
    • Kallenberg M, Petersen K, Nielsen M, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016;35(5):1322–1331.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1322-1331
    • Kallenberg, M.1    Petersen, K.2    Nielsen, M.3
  • 57
    • 84963701150 scopus 로고    scopus 로고
    • Segmentation of joint and musculoskeletal tissue in the study of arthritis
    • Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 2016;29(2):207–221.
    • (2016) MAGMA , vol.29 , Issue.2 , pp. 207-221
    • Pedoia, V.1    Majumdar, S.2    Link, T.M.3
  • 60
    • 84930574113 scopus 로고    scopus 로고
    • A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning
    • Ghose S, Holloway L, Lim K, et al. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning. Artif Intell Med 2015;64(2):75–87.
    • (2015) Artif Intell Med , vol.64 , Issue.2 , pp. 75-87
    • Ghose, S.1    Holloway, L.2    Lim, K.3
  • 62
    • 85015984007 scopus 로고    scopus 로고
    • A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images
    • Wang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Programs Biomed 2017;144:97–104.
    • (2017) Comput Methods Programs Biomed , vol.144 , pp. 97-104
    • Wang, Y.1    Qiu, Y.2    Thai, T.3    Moore, K.4    Liu, H.5    Zheng, B.6
  • 63
    • 85020130546 scopus 로고    scopus 로고
    • Deep learning for brain MRI segmentation: State of the art and future directions
    • Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 2017;30(4):449–459.
    • (2017) J Digit Imaging , vol.30 , Issue.4 , pp. 449-459
    • Akkus, Z.1    Galimzianova, A.2    Hoogi, A.3    Rubin, D.L.4    Erickson, B.J.5
  • 64
    • 84879226256 scopus 로고    scopus 로고
    • Generalization evaluation of machine learning numerical observers for image quality assessment
    • Kalayeh MM, Marin T, Brankov JG. Generalization evaluation of machine learning numerical observers for image quality assessment. IEEE Trans Nucl Sci 2013;60(3):1609–1618.
    • (2013) IEEE Trans Nucl Sci , vol.60 , Issue.3 , pp. 1609-1618
    • Kalayeh, M.M.1    Marin, T.2    Brankov, J.G.3
  • 65
    • 84942875612 scopus 로고    scopus 로고
    • Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction
    • Eck BL, Fahmi R, Brown KM, et al. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Med Phys 2015;42(10):6098–6111.
    • (2015) Med Phys , vol.42 , Issue.10 , pp. 6098-6111
    • Eck, B.L.1    Fahmi, R.2    Brown, K.M.3
  • 66
    • 85020071856 scopus 로고    scopus 로고
    • Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture
    • Jun 3. Epub ahead of print
    • Esses SJ, Lu X, Zhao T, et al. Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging 2017 Jun 3. [Epub ahead of print]
    • (2017) J Magn Reson Imaging
    • Esses, S.J.1    Lu, X.2    Zhao, T.3
  • 67
    • 85029680697 scopus 로고    scopus 로고
    • Generative adversarial networks for noise reduction in low-dose CT
    • Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017;36(12):2536–2545.
    • (2017) IEEE Trans Med Imaging , vol.36 , Issue.12 , pp. 2536-2545
    • Wolterink, J.M.1    Leiner, T.2    Viergever, M.A.3    Isgum, I.4
  • 68
    • 85050368640 scopus 로고    scopus 로고
    • Machine learning powered automatic organ classificationforpatientspecificorgandoseestimation
    • Massachusetts General Hospital, Harvard Medical School
    • Cho J, Lee E, Lee H, et al. Machine learning powered automatic organ classificationforpatientspecificorgandoseestimation.SIIM2017Scientific Session. Massachusetts General Hospital, Harvard Medical School, 2017.
    • (2017) SIIM2017Scientific Session
    • Cho, J.1    Lee, E.2    Lee, H.3
  • 69
    • 84982788079 scopus 로고    scopus 로고
    • Big data analytics for prostate radiotherapy
    • Coates J, Souhami L, El Naqa I. Big data analytics for prostate radiotherapy. Front Oncol 2016;6:149.
    • (2016) Front Oncol , vol.6 , pp. 149
    • Coates, J.1    Souhami, L.2    El Naqa, I.3
  • 70
    • 84984698490 scopus 로고    scopus 로고
    • Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy
    • Valdes G, Solberg TD, Heskel M, Ungar L, Simone CB 2nd. Using machine learning to predict radiation pneumonitis in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Phys Med Biol 2016;61(16):6105–6120.
    • (2016) Phys Med Biol , vol.61 , Issue.16 , pp. 6105-6120
    • Valdes, G.1    Solberg, T.D.2    Heskel, M.3    Ungar, L.4    Simone, C.B.5
  • 71
    • 84998812079 scopus 로고    scopus 로고
    • Radiomics based targeted radiotherapy planning (Rad-TRaP): A computational framework for prostate cancer treatment planning with MRI
    • Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 2016;11(1):148.
    • (2016) Radiat Oncol , vol.11 , Issue.1 , pp. 148
    • Shiradkar, R.1    Podder, T.K.2    Algohary, A.3    Viswanath, S.4    Ellis, R.J.5    Madabhushi, A.6
  • 72
    • 84955464993 scopus 로고    scopus 로고
    • Natural language processing technologies in radiology research and clinical applications
    • Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications. RadioGraphics 2016;36(1):176–191.
    • (2016) RadioGraphics , vol.36 , Issue.1 , pp. 176-191
    • Cai, T.1    Giannopoulos, A.A.2    Yu, S.3
  • 73
    • 84982682353 scopus 로고    scopus 로고
    • Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports
    • Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural language processing techniques for extracting and categorizing finding measurements in narrative radiology reports. Appl Clin Inform 2015;6(3):600–610.
    • (2015) Appl Clin Inform , vol.6 , Issue.3 , pp. 600-610
    • Sevenster, M.1    Buurman, J.2    Liu, P.3    Peters, J.F.4    Chang, P.J.5
  • 74
    • 85016515607 scopus 로고    scopus 로고
    • Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: A tool to estimate diagnostic yield
    • Hassanpour S, Langlotz CP, Amrhein TJ, Befera NT, Lungren MP. Performance of a machine learning classifier of knee MRI reports in two large academic radiology practices: a tool to estimate diagnostic yield. AJR Am J Roentgenol 2017;208(4):750–753.
    • (2017) AJR Am J Roentgenol , vol.208 , Issue.4 , pp. 750-753
    • Hassanpour, S.1    Langlotz, C.P.2    Amrhein, T.J.3    Befera, N.T.4    Lungren, M.P.5
  • 77
    • 85018416206 scopus 로고    scopus 로고
    • A review on machine learning principles for multiview biological data integration
    • Dec 22 Epub ahead of print
    • Li Y, Wu FX, Ngom A. A review on machine learning principles for multiview biological data integration. Brief Bioinform 2016 Dec 22 [Epub ahead of print].
    • (2016) Brief Bioinform
    • Li, Y.1    Wu, F.X.2    Ngom, A.3
  • 80
    • 85020659325 scopus 로고    scopus 로고
    • Deep learning in medical imaging: General overview
    • Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18(4):570–584.
    • (2017) Korean J Radiol , vol.18 , Issue.4 , pp. 570-584
    • Lee, J.G.1    Jun, S.2    Cho, Y.W.3
  • 81
    • 84911958139 scopus 로고    scopus 로고
    • The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation model
    • Mongkolwat P, Kleper V, Talbot S, Rubin D. The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation model. J Digit Imaging 2014;27(6):692–701.
    • (2014) J Digit Imaging , vol.27 , Issue.6 , pp. 692-701
    • Mongkolwat, P.1    Kleper, V.2    Talbot, S.3    Rubin, D.4
  • 82
    • 84997124343 scopus 로고    scopus 로고
    • Innovation in medicine and device development, regulatory review, and use of clinical advances
    • Rosenblatt M, Boutin MM, Nussbaum SR. Innovation in medicine and device development, regulatory review, and use of clinical advances. JAMA 2016;316(16):1671–1672.
    • (2016) JAMA , vol.316 , Issue.16 , pp. 1671-1672
    • Rosenblatt, M.1    Boutin, M.M.2    Nussbaum, S.R.3
  • 83
    • 84962598208 scopus 로고    scopus 로고
    • Learning a combined model of visual saliencyforfixationprediction
    • Wang J, Borji A, Jay Kuo CC, Itti L. Learning a combined model of visual saliencyforfixationprediction.IEEE Trans Image Process2016;25(4):1566–1579.
    • (2016) IEEE Trans Image Process , vol.25 , Issue.4 , pp. 1566-1579
    • Wang, J.1    Borji, A.2    Jay Kuo, C.C.3    Itti, L.4
  • 84
    • 84951784617 scopus 로고    scopus 로고
    • Medical malpractice: Reform for today’s patients and clinicians
    • Stamm JA, Korzick KA, Beech K, Wood KE. Medical malpractice: reform for today’s patients and clinicians. Am J Med 2016;129(1):20–25.
    • (2016) Am J Med , vol.129 , Issue.1 , pp. 20-25
    • Stamm, J.A.1    Korzick, K.A.2    Beech, K.3    Wood, K.E.4
  • 85
    • 85018521903 scopus 로고    scopus 로고
    • Artificial intelligence (AI) systems for interpreting complex medical datasets
    • Altman RB. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin Pharmacol Ther 2017;101(5):585–586.
    • (2017) Clin Pharmacol Ther , vol.101 , Issue.5 , pp. 585-586
    • Altman, R.B.1
  • 87
    • 85021176346 scopus 로고    scopus 로고
    • Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
    • Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett 2017;403:21–27.
    • (2017) Cancer Lett , vol.403 , pp. 21-27
    • Zhang, B.1    He, X.2    Ouyang, F.3
  • 88
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542(7639):115–118.
    • (2017) Nature , vol.542 , Issue.7639 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 89
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine: Beyond the peak of inflated expectations
    • Chen JH, Asch SM. Machine learning and prediction in medicine: beyond the peak of inflated expectations. N Engl J Med 2017;376(26):2507–2509.
    • (2017) N Engl J Med , vol.376 , Issue.26 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 90
    • 85019606440 scopus 로고    scopus 로고
    • Artificial intelligence in precision cardiovascular medicine
    • Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017; 69(21):2657–2664.
    • (2017) J Am Coll Cardiol , vol.69 , Issue.21 , pp. 2657-2664
    • Krittanawong, C.1    Zhang, H.2    Wang, Z.3    Aydar, M.4    Kitai, T.5
  • 91
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: Images are more than pictures, they are data
    • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016;278(2):563–577.
    • (2016) Radiology , vol.278 , Issue.2 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 92
    • 84996490301 scopus 로고    scopus 로고
    • 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
    • Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Med Image Comput Comput Assist Interv 2016;9901:212–220.
    • (2016) Med Image Comput Comput Assist Interv , vol.9901 , pp. 212-220
    • Nie, D.1    Zhang, H.2    Adeli, E.3    Liu, L.4    Shen, D.5
  • 93
    • 85019233675 scopus 로고    scopus 로고
    • Precision radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
    • Oakden-RaynerL,CarneiroG,BessenT,NascimentoJC,BradleyAP,Palmer LJ. Precision radiology: predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep 2017;7(1):1648.
    • (2017) Sci Rep , vol.7 , Issue.1 , pp. 1648
    • Oakden-Rayner, L.1    Carneiro, G.2    Bessen, T.3    Nascimento, J.C.4    Bradley, A.P.5    Palmer, L.J.6
  • 94
    • 85021835221 scopus 로고    scopus 로고
    • Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks
    • Tran T, Kavuluru R. Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. J Biomed Inform 2017;75S:S138–S148.
    • (2017) J Biomed Inform , vol.75 S , pp. S138-S148
    • Tran, T.1    Kavuluru, R.2
  • 95
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016;6(1):26094.
    • (2016) Sci Rep , vol.6 , Issue.1 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3    Dudley, J.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.