-
1
-
-
85043470011
-
Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
-
[PMID: 29548646]
-
Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018; 125: 1264-72. [PMID: 29548646] doi: 10.1016/j.ophtha.2018.01.034
-
(2018)
Ophthalmology.
, vol.125
, pp. 1264-1272
-
-
Krause, J.1
Gulshan, V.2
Rahimy, E.3
Karth, P.4
Widner, K.5
Corrado, G.S.6
-
2
-
-
84983321824
-
-
23 May on 13 December 2017
-
Angwin J, Larson J, Kirchner L, Mattu S. Machine bias. ProPublica. 23 May 2016. Accessed at www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing on 13 December 2017.
-
(2016)
Machine Bias
-
-
Angwin, J.1
Larson, J.2
Kirchner, L.3
Mattu, S.4
-
4
-
-
84990236160
-
To predict and serve?
-
Lum K, Isaac W. To predict and serve? Significance. 2016; 13: 14-9.
-
(2016)
Significance.
, vol.13
, pp. 14-19
-
-
Lum, K.1
Isaac, W.2
-
6
-
-
85053893071
-
-
2 January on 2 January 2018
-
Hurley D. Can an algorithm tell when kids are in danger? The New York Times Magazine. 2 January 2018. Accessed at www.nytimes.com/2018/01/02/magazine/can-an-algorithm-tell-when-kids-are-in-danger.html on 2 January 2018.
-
(2018)
Can an Algorithm Tell when Kids are in Danger?
-
-
Hurley, D.1
-
8
-
-
85049070018
-
Lessons for achieving health equity comparing Aotearoa/New Zealand and the United States
-
[PMID: 29961558]
-
Chin MH, King PT, Jones RG, Jones B, Ameratunga SN, Muramatsu N, et al. Lessons for achieving health equity comparing Aotearoa/New Zealand and the United States. Health Policy. 2018; 122: 837-53. [PMID: 29961558] doi: 10.1016/j.healthpol.2018.05.001
-
(2018)
Health Policy.
, vol.122
, pp. 837-853
-
-
Chin, M.H.1
King, P.T.2
Jones, R.G.3
Jones, B.4
Ameratunga, S.N.5
Muramatsu, N.6
-
11
-
-
85053167092
-
-
on 9 October 2018
-
Healthy People 2020. About Healthy People. 2018. Accessed at www.healthypeople.gov/2020/About-Healthy-People on 9 October 2018.
-
(2018)
About Healthy People
-
-
-
12
-
-
85053009378
-
Deep learning - A technology with the potential to transform health care
-
[PMID: 30178065]
-
Hinton G. Deep learning - a technology with the potential to transform health care. JAMA. 2018; 320: 1101-2. [PMID: 30178065] doi: 10.1001/jama.2018.11100
-
(2018)
JAMA
, vol.320
, pp. 1101-1102
-
-
Hinton, G.1
-
13
-
-
84994172098
-
Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals
-
[PMID: 27805795]
-
Escobar GJ, Turk BJ, Ragins A, Ha J, Hoberman B, LeVine SM, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med. 2016; 11 Suppl 1: S18-24. [PMID: 27805795] doi: 10.1002/jhm.2652
-
(2016)
J Hosp Med.
, vol.11
, pp. S18-S24
-
-
Escobar, G.J.1
Turk, B.J.2
Ragins, A.3
Ha, J.4
Hoberman, B.5
LeVine, S.M.6
-
14
-
-
84921683634
-
Finding patients before they crash: The next major opportunity to improve patient safety [Editorial]
-
[PMID: 25249637]
-
Bates DW, Zimlichman E. Finding patients before they crash: the next major opportunity to improve patient safety [Editorial]. BMJ Qual Saf. 2015; 24: 1-3. [PMID: 25249637] doi: 10.1136/bmjqs-2014-003499
-
(2015)
BMJ Qual Saf.
, vol.24
, pp. 1-3
-
-
Bates, D.W.1
Zimlichman, E.2
-
15
-
-
84905990877
-
Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
-
[PMID: 25006137]
-
Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014; 33: 1123-31. [PMID: 25006137] doi: 10.1377/hlthaff.2014.0041
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1123-1131
-
-
Bates, D.W.1
Saria, S.2
Ohno-Machado, L.3
Shah, A.4
Escobar, G.5
-
16
-
-
85016430011
-
Automation bias and verification complexity: A systematic review
-
[PMID: 27516495]
-
Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am Med Inform Assoc. 2017; 24: 423-31. [PMID: 27516495] doi: 10.1093/jamia/ocw105
-
(2017)
J Am Med Inform Assoc.
, vol.24
, pp. 423-431
-
-
Lyell, D.1
Coiera, E.2
-
17
-
-
84908279239
-
Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients
-
[PMID: 25338067]
-
Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS One. 2014; 9: e110274. [PMID: 25338067] doi: 10.1371/journal.pone.0110274
-
(2014)
PLoS One
, vol.9
-
-
Drew, B.J.1
Harris, P.2
Zègre-Hemsey, J.K.3
Mammone, T.4
Schindler, D.5
Salas-Boni, R.6
-
18
-
-
0023820567
-
The association of patients' socioeconomic characteristics with the length of hospital stay and hospital charges within diagnosis-related groups
-
[PMID: 3131674]
-
Epstein AM, Stern RS, Tognetti J, Begg CB, Hartley RM, Cumella E Jr, et al. The association of patients' socioeconomic characteristics with the length of hospital stay and hospital charges within diagnosis-related groups. N Engl J Med. 1988; 318: 1579-85. [PMID: 3131674]
-
(1988)
N Engl J Med.
, vol.318
, pp. 1579-1585
-
-
Epstein, A.M.1
Stern, R.S.2
Tognetti, J.3
Begg, C.B.4
Hartley, R.M.5
Cumella, E.6
-
19
-
-
33847109797
-
Use and misuse of the receiver operating characteristic curve in risk prediction
-
[PMID: 17309939]
-
Cook NR Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007; 115: 928-35. [PMID: 17309939]
-
(2007)
Circulation.
, vol.115
, pp. 928-935
-
-
Cook, N.R.1
-
20
-
-
38749137358
-
Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
-
[PMID: 18024533]
-
Cook NR Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54: 17-23. [PMID: 18024533]
-
(2008)
Clin Chem.
, vol.54
, pp. 17-23
-
-
Cook, N.R.1
-
21
-
-
85089606312
-
With an eye to AI and autonomous diagnosis
-
28 August
-
Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 28 August 2018; 1: 40.
-
(2018)
NPJ Digit Med.
, vol.1
, pp. 40
-
-
Keane, P.A.1
Topol, E.J.2
-
22
-
-
84898766195
-
Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations
-
[PMID: 24682252]
-
Muntner P, Colantonio LD, Cushman M, Goff DC Jr, Howard G, Howard VJ, et al. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA. 2014; 311: 1406-15. [PMID: 24682252] doi: 10.1001/jama.2014.2630
-
(2014)
JAMA
, vol.311
, pp. 1406-1415
-
-
Muntner, P.1
Colantonio, L.D.2
Cushman, M.3
Goff, D.C.4
Howard, G.5
Howard, V.J.6
-
23
-
-
85044927780
-
Big data and machine learning in health care
-
[PMID: 29532063]
-
Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018; 319: 1317-8. [PMID: 29532063] doi: 10.1001/jama.2017.18391
-
(2018)
JAMA
, vol.319
, pp. 1317-1318
-
-
Beam, A.L.1
Kohane, I.S.2
-
24
-
-
85127431078
-
Scalable and accurate deep learning with electronic health records
-
8 May
-
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 8 May 2018; 1: 18.
-
(2018)
NPJ Digit Med.
, vol.1
, pp. 18
-
-
Rajkomar, A.1
Oren, E.2
Chen, K.3
Dai, A.M.4
Hajaj, N.5
Hardt, M.6
-
25
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
[PMID: 28727867]
-
Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017; 318: 517-8. [PMID: 28727867] doi: 10.1001/jama.2017.7797
-
(2017)
JAMA
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
26
-
-
85028503198
-
Biomedical decision making: Probabilistic clinical reasoning
-
Shortliffe EH, Cimino JJ, eds. London: Springer-Verlag
-
Owens DK, Sox HC. Biomedical decision making: probabilistic clinical reasoning. In: Shortliffe EH, Cimino JJ, eds. Biomedical Informatics. London: Springer-Verlag; 2014: 67-107.
-
(2014)
Biomedical Informatics
, pp. 67-107
-
-
Owens, D.K.1
Sox, H.C.2
-
27
-
-
85047726478
-
In the era of precision medicine and big data, who is normal?
-
[PMID: 29710130]
-
Manrai AK, Patel CJ, Ioannidis JPA In the era of precision medicine and big data, who is normal? JAMA. 2018; 319: 1981-2. [PMID: 29710130] doi: 10.1001/jama.2018.2009
-
(2018)
JAMA
, vol.319
, pp. 1981-1982
-
-
Manrai, A.K.1
Patel, C.J.2
Ioannidis, J.P.A.3
-
29
-
-
85051472982
-
Reduction of peripartum racial and ethnic disparities: A conceptual framework and maternal safety consensus bundle
-
[PMID: 29683895]
-
Howell EA, Brown H, Brumley J, Bryant AS, Caughey AB, Cornell AM, et al. Reduction of peripartum racial and ethnic disparities: a conceptual framework and maternal safety consensus bundle. Obstet Gynecol. 2018; 131: 770-82. [PMID: 29683895] doi: 10.1097/AOG.0000000000002475
-
(2018)
Obstet Gynecol.
, vol.131
, pp. 770-782
-
-
Howell, E.A.1
Brown, H.2
Brumley, J.3
Bryant, A.S.4
Caughey, A.B.5
Cornell, A.M.6
-
30
-
-
85053019174
-
Potential biases in machine learning algorithms using electronic health record data
-
[PMID: 30128552]
-
Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018. [PMID: 30128552] doi: 10.1001/jamainternmed.2018.3763
-
(2018)
JAMA Intern Med.
-
-
Gianfrancesco, M.A.1
Tamang, S.2
Yazdany, J.3
Schmajuk, G.4
-
31
-
-
85054971810
-
Good intentions are not enough: How informatics interventions can worsen inequality
-
[PMID: 29788380]
-
Veinot TC, Mitchell H, Ancker JS. Good intentions are not enough: how informatics interventions can worsen inequality. J Am Med Inform Assoc. 2018; 25: 1080-8. [PMID: 29788380] doi: 10.1093/jamia/ocy052
-
(2018)
J Am Med Inform Assoc.
, vol.25
, pp. 1080-1088
-
-
Veinot, T.C.1
Mitchell, H.2
Ancker, J.S.3
-
32
-
-
85031317071
-
Digital phenotyping: Technology for a new science of behavior
-
[PMID: 28973224]
-
Insel TR Digital phenotyping: technology for a new science of behavior. JAMA. 2017; 318: 1215-6. [PMID: 28973224] doi: 10.1001/jama.2017.11295
-
(2017)
JAMA
, vol.318
, pp. 1215-1216
-
-
Insel, T.R.1
-
33
-
-
84905994854
-
The legal and ethical concerns that arise from using complex predictive analytics in health care
-
[PMID: 25006139]
-
Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff (Millwood). 2014; 33: 1139-47. [PMID: 25006139] doi: 10.1377/hlthaff.2014.0048
-
(2014)
Health Aff (Millwood)
, vol.33
, pp. 1139-1147
-
-
Cohen, I.G.1
Amarasingham, R.2
Shah, A.3
Xie, B.4
Lo, B.5
-
34
-
-
84864474488
-
A roadmap and best practices for organizations to reduce racial and ethnic disparities in health care
-
[PMID: 22798211]
-
Chin MH, Clarke AR, Nocon RS, Casey AA, Goddu AP, Keesecker NM, et al. A roadmap and best practices for organizations to reduce racial and ethnic disparities in health care. J Gen Intern Med. 2012; 27: 992-1000. [PMID: 22798211] doi: 10.1007/s11606-012-2082-9
-
(2012)
J Gen Intern Med.
, vol.27
, pp. 992-1000
-
-
Chin, M.H.1
Clarke, A.R.2
Nocon, R.S.3
Casey, A.A.4
Goddu, A.P.5
Keesecker, N.M.6
-
36
-
-
85045204507
-
Equality of opportunity in supervised learning [Abstract]
-
Barcelona, Spain, 5-10 December 2017. La Jolla, CA: Neural Information Processing Systems
-
Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning [Abstract]. In: Proceedings from the Conference on Advances in Neural Information Processing Systems 2016, Barcelona, Spain, 5-10 December 2017. La Jolla, CA: Neural Information Processing Systems; 2017: 3315-23.
-
(2017)
Proceedings from the Conference on Advances in Neural Information Processing Systems 2016
, pp. 3315-3323
-
-
Hardt, M.1
Price, E.2
Srebro, N.3
-
37
-
-
85021102916
-
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
-
[PMID: 28632438]
-
Chouldechova A. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data. 2017; 5: 153-63. [PMID: 28632438] doi: 10.1089/big.2016.0047
-
(2017)
Big Data.
, vol.5
, pp. 153-163
-
-
Chouldechova, A.1
-
41
-
-
0003243224
-
Probabilities for SV machines
-
Smola AJ, Bartlett PJ, Schuurmans D, Schölkopf B, eds. Cambridge, MA: MIT Pr
-
Platt JC Probabilities for SV machines. In: Smola AJ, Bartlett PJ, Schuurmans D, Schölkopf B, eds. Advances in Large Margin Classifiers. Cambridge, MA: MIT Pr; 1999: 61-74.
-
(1999)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
42
-
-
85029052676
-
Inclusion of demographic-specific information in studies supporting US Food & Drug Administration approval of high-risk medical devices
-
[PMID: 28738116]
-
Dhruva SS, Mazure CM, Ross JS, Redberg RF. Inclusion of demographic-specific information in studies supporting US Food & Drug Administration approval of high-risk medical devices. JAMA Intern Med. 2017; 177: 1390-1. [PMID: 28738116] doi: 10.1001/jamainternmed.2017.3148
-
(2017)
JAMA Intern Med.
, vol.177
, pp. 1390-1391
-
-
Dhruva, S.S.1
Mazure, C.M.2
Ross, J.S.3
Redberg, R.F.4
-
43
-
-
85047008485
-
On fairness and calibration
-
Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Long Beach, California, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems
-
Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ. On fairness and calibration. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Proceedings from the Conference on Advances in Neural Information Processing Systems 2017, Long Beach, California, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems; 2017: 5680-9.
-
(2017)
Proceedings from the Conference on Advances in Neural Information Processing Systems 2017
, pp. 5680-5689
-
-
Pleiss, G.1
Raghavan, M.2
Wu, F.3
Kleinberg, J.4
Weinberger, K.Q.5
-
44
-
-
85047020437
-
Avoiding discrimination through causal reasoning
-
Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Long Beach, CA, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems
-
Kilbertus N, Rojas-Carulla M, Parascandolo G, Hardt M, Janzing D, Schölkopf B. Avoiding discrimination through causal reasoning. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Proceedings from the Conference on Advances in Neural Information Processing Systems 2017, Long Beach, CA, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems; 2017: 656-66.
-
(2017)
Proceedings from the Conference on Advances in Neural Information Processing Systems 2017
, pp. 656-666
-
-
Kilbertus, N.1
Rojas-Carulla, M.2
Parascandolo, G.3
Hardt, M.4
Janzing, D.5
Schölkopf, B.6
-
45
-
-
0033602049
-
The effect of race and sex on physicians' recommendations for cardiac catheterization
-
[PMID: 10029647]
-
Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians' recommendations for cardiac catheterization. N Engl J Med. 1999; 340: 618-26. [PMID: 10029647]
-
(1999)
N Engl J Med.
, vol.340
, pp. 618-626
-
-
Schulman, K.A.1
Berlin, J.A.2
Harless, W.3
Kerner, J.F.4
Sistrunk, S.5
Gersh, B.J.6
-
47
-
-
85052687163
-
Machine learning and health care disparities in dermatology
-
[PMID: 30073260]
-
Adamson AS, Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018. [PMID: 30073260] doi: 10.1001/jamadermatol.2018.2348
-
(2018)
JAMA Dermatol
-
-
Adamson, A.S.1
Smith, A.2
-
48
-
-
33749672245
-
Skin cancer in skin of color
-
[PMID: 17052479]
-
Gloster HM Jr, Neal K. Skin cancer in skin of color. J Am Acad Dermatol. 2006; 55: 741-60. [PMID: 17052479]
-
(2006)
J Am Acad Dermatol.
, vol.55
, pp. 741-760
-
-
Gloster, H.M.1
Neal, K.2
-
49
-
-
85019902390
-
Emerging from EHR purgatory - Moving from process to outcomes
-
[PMID: 28538132]
-
Goroll AH Emerging from EHR purgatory - moving from process to outcomes. N Engl J Med. 2017; 376: 2004-6. [PMID: 28538132] doi: 10.1056/NEJMp1700601
-
(2017)
N Engl J Med.
, vol.376
, pp. 2004-2006
-
-
Goroll, A.H.1
-
50
-
-
84928944541
-
How to study improvement interventions: A brief overview of possible study types
-
[PMID: 25810415]
-
Portela MC, Pronovost PJ, Woodcock T, Carter P, Dixon-Woods M. How to study improvement interventions: a brief overview of possible study types. BMJ Qual Saf. 2015; 24: 325-36. [PMID: 25810415] doi: 10.1136/bmjqs-2014-003620
-
(2015)
BMJ Qual Saf.
, vol.24
, pp. 325-336
-
-
Portela, M.C.1
Pronovost, P.J.2
Woodcock, T.3
Carter, P.4
Dixon-Woods, M.5
-
51
-
-
85042201755
-
Predicting cardiovascular risk factors from retinal fundus photographs using deep learning
-
Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Predicting cardiovascular risk factors from retinal fundus photographs using deep learning. Nat Biomed Eng. 2017; 2: 158-64.
-
(2017)
Nat Biomed Eng.
, vol.2
, pp. 158-164
-
-
Poplin, R.1
Varadarajan, A.V.2
Blumer, K.3
Liu, Y.4
McConnell, M.V.5
Corrado, G.S.6
|