메뉴 건너뛰기




Volumn 169, Issue 12, 2018, Pages 866-872

Ensuring fairness in machine learning to advance health equity

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; ARTICLE; CLINICIAN; DECISION SUPPORT SYSTEM; DIAGNOSIS; HEALTH CARE DISPARITY; HEALTH EQUITY; HUMAN; JUSTICE; MACHINE LEARNING; MONITORING; PREDICTION; RESOURCE ALLOCATION; HEALTH CARE ORGANIZATION; INTENSIVE CARE; LENGTH OF STAY; OUTCOME ASSESSMENT; SOCIAL JUSTICE; STANDARDS;

EID: 85058771359     PISSN: 00034819     EISSN: 15393704     Source Type: Journal    
DOI: 10.7326/M18-1990     Document Type: Article
Times cited : (565)

References (51)
  • 1
    • 85043470011 scopus 로고    scopus 로고
    • Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy
    • [PMID: 29548646]
    • Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018; 125: 1264-72. [PMID: 29548646] doi: 10.1016/j.ophtha.2018.01.034
    • (2018) Ophthalmology. , vol.125 , pp. 1264-1272
    • Krause, J.1    Gulshan, V.2    Rahimy, E.3    Karth, P.4    Widner, K.5    Corrado, G.S.6
  • 2
    • 84983321824 scopus 로고    scopus 로고
    • 23 May on 13 December 2017
    • Angwin J, Larson J, Kirchner L, Mattu S. Machine bias. ProPublica. 23 May 2016. Accessed at www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing on 13 December 2017.
    • (2016) Machine Bias
    • Angwin, J.1    Larson, J.2    Kirchner, L.3    Mattu, S.4
  • 4
    • 84990236160 scopus 로고    scopus 로고
    • To predict and serve?
    • Lum K, Isaac W. To predict and serve? Significance. 2016; 13: 14-9.
    • (2016) Significance. , vol.13 , pp. 14-19
    • Lum, K.1    Isaac, W.2
  • 5
    • 85160010885 scopus 로고    scopus 로고
    • A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions
    • Chouldechova A, Benavides-Prado D, Fialko O, Vaithianathan R. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. Proc Mach Learn Res. 2018: 134-48.
    • (2018) Proc Mach Learn Res. , pp. 134-148
    • Chouldechova, A.1    Benavides-Prado, D.2    Fialko, O.3    Vaithianathan, R.4
  • 6
    • 85053893071 scopus 로고    scopus 로고
    • 2 January on 2 January 2018
    • Hurley D. Can an algorithm tell when kids are in danger? The New York Times Magazine. 2 January 2018. Accessed at www.nytimes.com/2018/01/02/magazine/can-an-algorithm-tell-when-kids-are-in-danger.html on 2 January 2018.
    • (2018) Can an Algorithm Tell when Kids are in Danger?
    • Hurley, D.1
  • 8
    • 85049070018 scopus 로고    scopus 로고
    • Lessons for achieving health equity comparing Aotearoa/New Zealand and the United States
    • [PMID: 29961558]
    • Chin MH, King PT, Jones RG, Jones B, Ameratunga SN, Muramatsu N, et al. Lessons for achieving health equity comparing Aotearoa/New Zealand and the United States. Health Policy. 2018; 122: 837-53. [PMID: 29961558] doi: 10.1016/j.healthpol.2018.05.001
    • (2018) Health Policy. , vol.122 , pp. 837-853
    • Chin, M.H.1    King, P.T.2    Jones, R.G.3    Jones, B.4    Ameratunga, S.N.5    Muramatsu, N.6
  • 11
    • 85053167092 scopus 로고    scopus 로고
    • on 9 October 2018
    • Healthy People 2020. About Healthy People. 2018. Accessed at www.healthypeople.gov/2020/About-Healthy-People on 9 October 2018.
    • (2018) About Healthy People
  • 12
    • 85053009378 scopus 로고    scopus 로고
    • Deep learning - A technology with the potential to transform health care
    • [PMID: 30178065]
    • Hinton G. Deep learning - a technology with the potential to transform health care. JAMA. 2018; 320: 1101-2. [PMID: 30178065] doi: 10.1001/jama.2018.11100
    • (2018) JAMA , vol.320 , pp. 1101-1102
    • Hinton, G.1
  • 13
    • 84994172098 scopus 로고    scopus 로고
    • Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals
    • [PMID: 27805795]
    • Escobar GJ, Turk BJ, Ragins A, Ha J, Hoberman B, LeVine SM, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med. 2016; 11 Suppl 1: S18-24. [PMID: 27805795] doi: 10.1002/jhm.2652
    • (2016) J Hosp Med. , vol.11 , pp. S18-S24
    • Escobar, G.J.1    Turk, B.J.2    Ragins, A.3    Ha, J.4    Hoberman, B.5    LeVine, S.M.6
  • 14
    • 84921683634 scopus 로고    scopus 로고
    • Finding patients before they crash: The next major opportunity to improve patient safety [Editorial]
    • [PMID: 25249637]
    • Bates DW, Zimlichman E. Finding patients before they crash: the next major opportunity to improve patient safety [Editorial]. BMJ Qual Saf. 2015; 24: 1-3. [PMID: 25249637] doi: 10.1136/bmjqs-2014-003499
    • (2015) BMJ Qual Saf. , vol.24 , pp. 1-3
    • Bates, D.W.1    Zimlichman, E.2
  • 15
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
    • [PMID: 25006137]
    • Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014; 33: 1123-31. [PMID: 25006137] doi: 10.1377/hlthaff.2014.0041
    • (2014) Health Aff (Millwood) , vol.33 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 16
    • 85016430011 scopus 로고    scopus 로고
    • Automation bias and verification complexity: A systematic review
    • [PMID: 27516495]
    • Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am Med Inform Assoc. 2017; 24: 423-31. [PMID: 27516495] doi: 10.1093/jamia/ocw105
    • (2017) J Am Med Inform Assoc. , vol.24 , pp. 423-431
    • Lyell, D.1    Coiera, E.2
  • 17
    • 84908279239 scopus 로고    scopus 로고
    • Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients
    • [PMID: 25338067]
    • Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, et al. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS One. 2014; 9: e110274. [PMID: 25338067] doi: 10.1371/journal.pone.0110274
    • (2014) PLoS One , vol.9
    • Drew, B.J.1    Harris, P.2    Zègre-Hemsey, J.K.3    Mammone, T.4    Schindler, D.5    Salas-Boni, R.6
  • 18
    • 0023820567 scopus 로고
    • The association of patients' socioeconomic characteristics with the length of hospital stay and hospital charges within diagnosis-related groups
    • [PMID: 3131674]
    • Epstein AM, Stern RS, Tognetti J, Begg CB, Hartley RM, Cumella E Jr, et al. The association of patients' socioeconomic characteristics with the length of hospital stay and hospital charges within diagnosis-related groups. N Engl J Med. 1988; 318: 1579-85. [PMID: 3131674]
    • (1988) N Engl J Med. , vol.318 , pp. 1579-1585
    • Epstein, A.M.1    Stern, R.S.2    Tognetti, J.3    Begg, C.B.4    Hartley, R.M.5    Cumella, E.6
  • 19
    • 33847109797 scopus 로고    scopus 로고
    • Use and misuse of the receiver operating characteristic curve in risk prediction
    • [PMID: 17309939]
    • Cook NR Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007; 115: 928-35. [PMID: 17309939]
    • (2007) Circulation. , vol.115 , pp. 928-935
    • Cook, N.R.1
  • 20
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: Beyond the ROC curve
    • [PMID: 18024533]
    • Cook NR Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54: 17-23. [PMID: 18024533]
    • (2008) Clin Chem. , vol.54 , pp. 17-23
    • Cook, N.R.1
  • 21
    • 85089606312 scopus 로고    scopus 로고
    • With an eye to AI and autonomous diagnosis
    • 28 August
    • Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 28 August 2018; 1: 40.
    • (2018) NPJ Digit Med. , vol.1 , pp. 40
    • Keane, P.A.1    Topol, E.J.2
  • 22
    • 84898766195 scopus 로고    scopus 로고
    • Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations
    • [PMID: 24682252]
    • Muntner P, Colantonio LD, Cushman M, Goff DC Jr, Howard G, Howard VJ, et al. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA. 2014; 311: 1406-15. [PMID: 24682252] doi: 10.1001/jama.2014.2630
    • (2014) JAMA , vol.311 , pp. 1406-1415
    • Muntner, P.1    Colantonio, L.D.2    Cushman, M.3    Goff, D.C.4    Howard, G.5    Howard, V.J.6
  • 23
    • 85044927780 scopus 로고    scopus 로고
    • Big data and machine learning in health care
    • [PMID: 29532063]
    • Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018; 319: 1317-8. [PMID: 29532063] doi: 10.1001/jama.2017.18391
    • (2018) JAMA , vol.319 , pp. 1317-1318
    • Beam, A.L.1    Kohane, I.S.2
  • 24
    • 85127431078 scopus 로고    scopus 로고
    • Scalable and accurate deep learning with electronic health records
    • 8 May
    • Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 8 May 2018; 1: 18.
    • (2018) NPJ Digit Med. , vol.1 , pp. 18
    • Rajkomar, A.1    Oren, E.2    Chen, K.3    Dai, A.M.4    Hajaj, N.5    Hardt, M.6
  • 25
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • [PMID: 28727867]
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017; 318: 517-8. [PMID: 28727867] doi: 10.1001/jama.2017.7797
    • (2017) JAMA , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 26
    • 85028503198 scopus 로고    scopus 로고
    • Biomedical decision making: Probabilistic clinical reasoning
    • Shortliffe EH, Cimino JJ, eds. London: Springer-Verlag
    • Owens DK, Sox HC. Biomedical decision making: probabilistic clinical reasoning. In: Shortliffe EH, Cimino JJ, eds. Biomedical Informatics. London: Springer-Verlag; 2014: 67-107.
    • (2014) Biomedical Informatics , pp. 67-107
    • Owens, D.K.1    Sox, H.C.2
  • 27
    • 85047726478 scopus 로고    scopus 로고
    • In the era of precision medicine and big data, who is normal?
    • [PMID: 29710130]
    • Manrai AK, Patel CJ, Ioannidis JPA In the era of precision medicine and big data, who is normal? JAMA. 2018; 319: 1981-2. [PMID: 29710130] doi: 10.1001/jama.2018.2009
    • (2018) JAMA , vol.319 , pp. 1981-1982
    • Manrai, A.K.1    Patel, C.J.2    Ioannidis, J.P.A.3
  • 29
    • 85051472982 scopus 로고    scopus 로고
    • Reduction of peripartum racial and ethnic disparities: A conceptual framework and maternal safety consensus bundle
    • [PMID: 29683895]
    • Howell EA, Brown H, Brumley J, Bryant AS, Caughey AB, Cornell AM, et al. Reduction of peripartum racial and ethnic disparities: a conceptual framework and maternal safety consensus bundle. Obstet Gynecol. 2018; 131: 770-82. [PMID: 29683895] doi: 10.1097/AOG.0000000000002475
    • (2018) Obstet Gynecol. , vol.131 , pp. 770-782
    • Howell, E.A.1    Brown, H.2    Brumley, J.3    Bryant, A.S.4    Caughey, A.B.5    Cornell, A.M.6
  • 30
    • 85053019174 scopus 로고    scopus 로고
    • Potential biases in machine learning algorithms using electronic health record data
    • [PMID: 30128552]
    • Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018. [PMID: 30128552] doi: 10.1001/jamainternmed.2018.3763
    • (2018) JAMA Intern Med.
    • Gianfrancesco, M.A.1    Tamang, S.2    Yazdany, J.3    Schmajuk, G.4
  • 31
    • 85054971810 scopus 로고    scopus 로고
    • Good intentions are not enough: How informatics interventions can worsen inequality
    • [PMID: 29788380]
    • Veinot TC, Mitchell H, Ancker JS. Good intentions are not enough: how informatics interventions can worsen inequality. J Am Med Inform Assoc. 2018; 25: 1080-8. [PMID: 29788380] doi: 10.1093/jamia/ocy052
    • (2018) J Am Med Inform Assoc. , vol.25 , pp. 1080-1088
    • Veinot, T.C.1    Mitchell, H.2    Ancker, J.S.3
  • 32
    • 85031317071 scopus 로고    scopus 로고
    • Digital phenotyping: Technology for a new science of behavior
    • [PMID: 28973224]
    • Insel TR Digital phenotyping: technology for a new science of behavior. JAMA. 2017; 318: 1215-6. [PMID: 28973224] doi: 10.1001/jama.2017.11295
    • (2017) JAMA , vol.318 , pp. 1215-1216
    • Insel, T.R.1
  • 33
    • 84905994854 scopus 로고    scopus 로고
    • The legal and ethical concerns that arise from using complex predictive analytics in health care
    • [PMID: 25006139]
    • Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff (Millwood). 2014; 33: 1139-47. [PMID: 25006139] doi: 10.1377/hlthaff.2014.0048
    • (2014) Health Aff (Millwood) , vol.33 , pp. 1139-1147
    • Cohen, I.G.1    Amarasingham, R.2    Shah, A.3    Xie, B.4    Lo, B.5
  • 34
    • 84864474488 scopus 로고    scopus 로고
    • A roadmap and best practices for organizations to reduce racial and ethnic disparities in health care
    • [PMID: 22798211]
    • Chin MH, Clarke AR, Nocon RS, Casey AA, Goddu AP, Keesecker NM, et al. A roadmap and best practices for organizations to reduce racial and ethnic disparities in health care. J Gen Intern Med. 2012; 27: 992-1000. [PMID: 22798211] doi: 10.1007/s11606-012-2082-9
    • (2012) J Gen Intern Med. , vol.27 , pp. 992-1000
    • Chin, M.H.1    Clarke, A.R.2    Nocon, R.S.3    Casey, A.A.4    Goddu, A.P.5    Keesecker, N.M.6
  • 36
    • 85045204507 scopus 로고    scopus 로고
    • Equality of opportunity in supervised learning [Abstract]
    • Barcelona, Spain, 5-10 December 2017. La Jolla, CA: Neural Information Processing Systems
    • Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning [Abstract]. In: Proceedings from the Conference on Advances in Neural Information Processing Systems 2016, Barcelona, Spain, 5-10 December 2017. La Jolla, CA: Neural Information Processing Systems; 2017: 3315-23.
    • (2017) Proceedings from the Conference on Advances in Neural Information Processing Systems 2016 , pp. 3315-3323
    • Hardt, M.1    Price, E.2    Srebro, N.3
  • 37
    • 85021102916 scopus 로고    scopus 로고
    • Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
    • [PMID: 28632438]
    • Chouldechova A. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data. 2017; 5: 153-63. [PMID: 28632438] doi: 10.1089/big.2016.0047
    • (2017) Big Data. , vol.5 , pp. 153-163
    • Chouldechova, A.1
  • 41
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • Smola AJ, Bartlett PJ, Schuurmans D, Schölkopf B, eds. Cambridge, MA: MIT Pr
    • Platt JC Probabilities for SV machines. In: Smola AJ, Bartlett PJ, Schuurmans D, Schölkopf B, eds. Advances in Large Margin Classifiers. Cambridge, MA: MIT Pr; 1999: 61-74.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 42
    • 85029052676 scopus 로고    scopus 로고
    • Inclusion of demographic-specific information in studies supporting US Food & Drug Administration approval of high-risk medical devices
    • [PMID: 28738116]
    • Dhruva SS, Mazure CM, Ross JS, Redberg RF. Inclusion of demographic-specific information in studies supporting US Food & Drug Administration approval of high-risk medical devices. JAMA Intern Med. 2017; 177: 1390-1. [PMID: 28738116] doi: 10.1001/jamainternmed.2017.3148
    • (2017) JAMA Intern Med. , vol.177 , pp. 1390-1391
    • Dhruva, S.S.1    Mazure, C.M.2    Ross, J.S.3    Redberg, R.F.4
  • 43
    • 85047008485 scopus 로고    scopus 로고
    • On fairness and calibration
    • Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Long Beach, California, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems
    • Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ. On fairness and calibration. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al, eds. Proceedings from the Conference on Advances in Neural Information Processing Systems 2017, Long Beach, California, 4-9 December 2017. La Jolla, CA: Neural Information Processing Systems; 2017: 5680-9.
    • (2017) Proceedings from the Conference on Advances in Neural Information Processing Systems 2017 , pp. 5680-5689
    • Pleiss, G.1    Raghavan, M.2    Wu, F.3    Kleinberg, J.4    Weinberger, K.Q.5
  • 45
    • 0033602049 scopus 로고    scopus 로고
    • The effect of race and sex on physicians' recommendations for cardiac catheterization
    • [PMID: 10029647]
    • Schulman KA, Berlin JA, Harless W, Kerner JF, Sistrunk S, Gersh BJ, et al. The effect of race and sex on physicians' recommendations for cardiac catheterization. N Engl J Med. 1999; 340: 618-26. [PMID: 10029647]
    • (1999) N Engl J Med. , vol.340 , pp. 618-626
    • Schulman, K.A.1    Berlin, J.A.2    Harless, W.3    Kerner, J.F.4    Sistrunk, S.5    Gersh, B.J.6
  • 47
    • 85052687163 scopus 로고    scopus 로고
    • Machine learning and health care disparities in dermatology
    • [PMID: 30073260]
    • Adamson AS, Smith A. Machine learning and health care disparities in dermatology. JAMA Dermatol. 2018. [PMID: 30073260] doi: 10.1001/jamadermatol.2018.2348
    • (2018) JAMA Dermatol
    • Adamson, A.S.1    Smith, A.2
  • 48
    • 33749672245 scopus 로고    scopus 로고
    • Skin cancer in skin of color
    • [PMID: 17052479]
    • Gloster HM Jr, Neal K. Skin cancer in skin of color. J Am Acad Dermatol. 2006; 55: 741-60. [PMID: 17052479]
    • (2006) J Am Acad Dermatol. , vol.55 , pp. 741-760
    • Gloster, H.M.1    Neal, K.2
  • 49
    • 85019902390 scopus 로고    scopus 로고
    • Emerging from EHR purgatory - Moving from process to outcomes
    • [PMID: 28538132]
    • Goroll AH Emerging from EHR purgatory - moving from process to outcomes. N Engl J Med. 2017; 376: 2004-6. [PMID: 28538132] doi: 10.1056/NEJMp1700601
    • (2017) N Engl J Med. , vol.376 , pp. 2004-2006
    • Goroll, A.H.1
  • 50
    • 84928944541 scopus 로고    scopus 로고
    • How to study improvement interventions: A brief overview of possible study types
    • [PMID: 25810415]
    • Portela MC, Pronovost PJ, Woodcock T, Carter P, Dixon-Woods M. How to study improvement interventions: a brief overview of possible study types. BMJ Qual Saf. 2015; 24: 325-36. [PMID: 25810415] doi: 10.1136/bmjqs-2014-003620
    • (2015) BMJ Qual Saf. , vol.24 , pp. 325-336
    • Portela, M.C.1    Pronovost, P.J.2    Woodcock, T.3    Carter, P.4    Dixon-Woods, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.