메뉴 건너뛰기




Volumn 28, Issue 3, 2019, Pages 231-237

Artificial intelligence, bias and clinical safety

Author keywords

artificial intelligence; clinical decision support systems; clinical safety; machine learning

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; AUTOMATION; CLINICAL DECISION SUPPORT SYSTEM; CLINICAL SAFETY; DERMATOLOGIST; MACHINE LEARNING; MEDICAL RESEARCH; QUALITY CONTROL; REVIEW; SAFETY; STATISTICAL BIAS; HEALTH CARE QUALITY; HUMAN; PATIENT SAFETY;

EID: 85059884477     PISSN: 20445415     EISSN: None     Source Type: Journal    
DOI: 10.1136/bmjqs-2018-008370     Document Type: Review
Times cited : (542)

References (53)
  • 1
    • 51249169196 scopus 로고
    • What artificial experts can and cannot do
    • Dreyfus HL, Dreyfus SE. What artificial experts can and cannot do. AI Soc 1992;6:18-26.
    • (1992) AI Soc , vol.6 , pp. 18-26
    • Dreyfus, H.L.1    Dreyfus, S.E.2
  • 2
    • 85059634327 scopus 로고    scopus 로고
    • Sizing the prize: What's the real value of AI for your business and how can you capitalise?
    • Rao A, Verweij G, Cameron E. Sizing the prize: what's the real value of AI for your business and how can you capitalise? PwC. 2017. Available: https://www. pwc. com/ gx/ en/ issues/ analytics/ assets/ pwc-ai-analysis-sizing-the-prize-report. pdf
    • (2017) PwC
    • Rao, A.1    Verweij, G.2    Cameron, E.3
  • 3
    • 85045035249 scopus 로고    scopus 로고
    • Department for digital, culture, media & sport and department for business, energy & industrial strategy
    • Hall W, Pesenti J. Growing the artificial intelligence industry in the UK-GOV.UK. Department for digital, culture, media & sport and department for business, energy & industrial strategy. 2017. Available: https://www. gov. uk/ government/ uploads/ system/ uploads/ attachment-data/ file/ 652097/ Growing-the-artificial-intelligence-industry-in-the-UK. pdf
    • (2017) Growing the Artificial Intelligence Industry in the UK-GOV.UK
    • Hall, W.1    Pesenti, J.2
  • 4
    • 85040951948 scopus 로고    scopus 로고
    • Digital healthcare: Regulating the revolution
    • Duggal R, Brindle I, Bagenal J. Digital healthcare: regulating the revolution. BMJ 2018;360:k6.
    • (2018) BMJ , vol.360 , pp. k6
    • Duggal, R.1    Brindle, I.2    Bagenal, J.3
  • 5
    • 85044240544 scopus 로고    scopus 로고
    • Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
    • McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual 2017;6:e000158.
    • (2017) BMJ Open Qual , vol.6 , pp. e000158
    • McCoy, A.1    Das, R.2
  • 6
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 7
    • 85052522615 scopus 로고    scopus 로고
    • Clinically applicable deep learning for diagnosis and referral in retinal disease
    • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50.
    • (2018) Nat Med , vol.24 , pp. 1342-1350
    • De Fauw, J.1    Ledsam, J.R.2    Romera-Paredes, B.3
  • 8
    • 85019953955 scopus 로고    scopus 로고
    • Predicting risk of suicide attempts over time through machine learning
    • Walsh CG, Ribeiro JD, Franklin JC. Predicting risk of suicide attempts over time through machine learning. Clin Psychol Sci 2017:1-13.
    • (2017) Clin Psychol Sci , pp. 1-13
    • Walsh, C.G.1    Ribeiro, J.D.2    Franklin, J.C.3
  • 10
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402.
    • (2016) JAMA , vol.316 , pp. 2402
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 11
    • 85044137182 scopus 로고    scopus 로고
    • Implementing machine learning in health care-addressing ethical challenges
    • Char DS, Shah NH, Magnus D. Implementing machine learning in health care-addressing ethical challenges. N Engl J Med 2018;378:981-3.
    • (2018) N Engl J Med , vol.378 , pp. 981-983
    • Char, D.S.1    Shah, N.H.2    Magnus, D.3
  • 12
    • 0037663736 scopus 로고    scopus 로고
    • Effects of computerized physician order entry and clinical decision support systems on medication safety: A systematic review
    • Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med 2003;163:1409-16.
    • (2003) Arch Intern Med , vol.163 , pp. 1409-1416
    • Kaushal, R.1    Shojania, K.G.2    Bates, D.W.3
  • 13
    • 47149088261 scopus 로고    scopus 로고
    • Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2
    • Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336:1475-82.
    • (2008) BMJ , vol.336 , pp. 1475-1482
    • Hippisley-Cox, J.1    Coupland, C.2    Vinogradova, Y.3
  • 15
    • 14544304095 scopus 로고    scopus 로고
    • Role of computerized physician order entry systems in facilitating medication errors
    • Koppel Ret al. Role of computerized physician order entry systems in facilitating medication errors. JAMA 2005;293:1197-203.
    • (2005) JAMA , vol.293 , pp. 1197-1203
    • Koppel, R.1
  • 16
    • 33644699125 scopus 로고    scopus 로고
    • Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system
    • Han YYet al. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 2005;116:1506-12.
    • (2005) Pediatrics , vol.116 , pp. 1506-1512
    • Han, Y.Y.1
  • 17
    • 0028367412 scopus 로고
    • Medical diagnostic decision support systems-past, present, and future: A threaded bibliography and brief commentary
    • Miller RA. Medical diagnostic decision support systems-past, present, and future: a threaded bibliography and brief commentary. J Am Med Inform Assoc 1994;1:8-27.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 8-27
    • Miller, R.A.1
  • 18
    • 84941089695 scopus 로고    scopus 로고
    • Reducing diagnostic errors in primary care. A systematic meta-review of computerized diagnostic decision support systems by the LINNEAUS collaboration on patient safety in primary care
    • Nurek M, Kostopoulou O, Delaney BC, et al. Reducing diagnostic errors in primary care. a systematic meta-review of computerized diagnostic decision support systems by the LINNEAUS collaboration on patient safety in primary care. Eur J Gen Pract 2015;21(sup1):8-13.
    • (2015) Eur J Gen Pract , vol.21 , pp. 8-13
    • Nurek, M.1    Kostopoulou, O.2    Delaney, B.C.3
  • 19
    • 84856726653 scopus 로고    scopus 로고
    • Differential diagnosis generators: An evaluation of currently available computer programs
    • Bond WF, Schwartz LM, Weaver KR, et al. Differential diagnosis generators: an evaluation of currently available computer programs. J Gen Intern Med 2012;27:213-9.
    • (2012) J Gen Intern Med , vol.27 , pp. 213-219
    • Bond, W.F.1    Schwartz, L.M.2    Weaver, K.R.3
  • 21
    • 85018664128 scopus 로고    scopus 로고
    • Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach
    • Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform 2016;4:e28.
    • (2016) JMIR Med Inform , vol.4 , pp. e28
    • Desautels, T.1    Calvert, J.2    Hoffman, J.3
  • 22
    • 85048335962 scopus 로고    scopus 로고
    • Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?
    • Thompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation? Radiother Oncol 2018;129:421-6.
    • (2018) Radiother Oncol , vol.129 , pp. 421-426
    • Thompson, R.F.1    Valdes, G.2    Fuller, C.D.3
  • 24
    • 85062308137 scopus 로고    scopus 로고
    • Representation and reinforcement learning for personalized glycemic control in septic patients
    • Weng W-H, Gao M, He Z. Representation and reinforcement learning for personalized glycemic control in septic patients. arXiv [cs.LG]. 2017. Available: http:// arxiv. org/ abs/ 1712. 00654
    • (2017) ArXiv [Cs.LG]
    • Weng, W.-H.1    Gao, M.2    He, Z.3
  • 25
    • 85054483394 scopus 로고    scopus 로고
    • Framing the challenges of artificial intelligence in medicine
    • K-H Y, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf 2019;28:238-41.
    • (2019) BMJ Qual Saf , vol.28 , pp. 238-241
    • Kohane, I.S.1
  • 26
    • 84867770975 scopus 로고    scopus 로고
    • An integrated e-recruitment system for automated personality mining and applicant ranking
    • Faliagka E, Tsakalidis A, Tzimas G. An integrated e-recruitment system for automated personality mining and applicant ranking. Internet Research 2012;22:551-68.
    • (2012) Internet Research , vol.22 , pp. 551-568
    • Faliagka, E.1    Tsakalidis, A.2    Tzimas, G.3
  • 27
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484-9.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.J.3
  • 31
    • 85062309132 scopus 로고    scopus 로고
    • IIHS Status Report newsletter
    • IIHS Status Report newsletter. 2018. Available: https://www. iihs. org/ externaldata/ srdata/ docs/ sr5304. pdf
    • (2018)
  • 33
    • 84901870499 scopus 로고    scopus 로고
    • The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas
    • Bothe MK, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices 2013;10:661-73.
    • (2013) Expert Rev Med Devices , vol.10 , pp. 661-673
    • Bothe, M.K.1    Dickens, L.2    Reichel, K.3
  • 34
    • 85031120880 scopus 로고    scopus 로고
    • A reinforcement learning approach to weaning of mechanical ventilation in intensive care units
    • Prasad N, Cheng L-F, Chivers C. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. arXiv [cs.AI]. 2017. Available: http:// arxiv. org/ abs/ 1704. 06300
    • (2017) ArXiv [Cs.AI]
    • Prasad, N.1    Cheng, L.-F.2    Chivers, C.3
  • 35
    • 78650804323 scopus 로고    scopus 로고
    • Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement
    • Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explorations Newsletter Published Online First. 2010. Available: https:// dl. acm. org/ citation. cfm? id= 1882479
    • (2010) ACM SIGKDD Explorations Newsletter Published Online First
    • Forman, G.1    Scholz, M.2
  • 36
    • 38949161848 scopus 로고    scopus 로고
    • AUC: A misleading measure of the performance of predictive distribution models
    • Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 2008;17:145-51.
    • (2008) Glob Ecol Biogeogr , vol.17 , pp. 145-151
    • Lobo, J.M.1    Jiménez-Valverde, A.2    Real, R.3
  • 37
    • 85009165593 scopus 로고    scopus 로고
    • Learning from classimbalanced data: Review of methods and applications
    • Haixiang G, Yijing L, Shang J, et al. Learning from classimbalanced data: review of methods and applications. Expert Syst Appl 2017;73:220-39.
    • (2017) Expert Syst Appl , vol.73 , pp. 220-239
    • Haixiang, G.1    Yijing, L.2    Shang, J.3
  • 39
    • 84959444758 scopus 로고    scopus 로고
    • Polyp detection via imbalanced learning and discriminative feature learning
    • Bae S-H, Yoon K-J. Polyp detection via imbalanced learning and discriminative feature learning. IEEE Trans Med Imaging 2015;34:2379-93.
    • (2015) IEEE Trans Med Imaging , vol.34 , pp. 2379-2393
    • Bae, S.-H.1    Yoon, K.-J.2
  • 40
    • 85032453950 scopus 로고    scopus 로고
    • Calibration drift in regression and machine learning models for acute kidney injury
    • Davis SE, Lasko TA, Chen G, et al. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 2017;24:1052-61.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 1052-1061
    • Davis, S.E.1    Lasko, T.A.2    Chen, G.3
  • 42
    • 85051798815 scopus 로고    scopus 로고
    • Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
    • Mao Q, Jay M, Hoffman JL, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 2018;8:e017833.
    • (2018) BMJ Open , vol.8 , pp. e017833
    • Mao, Q.1    Jay, M.2    Hoffman, J.L.3
  • 43
    • 85062309879 scopus 로고    scopus 로고
    • Training models with unequal economic error costs using Amazon sagemaker
    • [Accessed 19 Oct 2018]
    • Megler V, Gregoire S. Training models with unequal economic error costs using Amazon sagemaker. AWS machine learning blog. 2018. Available: https:// aws. amazon. com/ blogs/ machine-learning/ training-models-with-unequal-economicerror-costs-using-amazon-sagemaker/ [Accessed 19 Oct 2018].
    • (2018) AWS Machine Learning Blog
    • Megler, V.1    Gregoire, S.2
  • 47
    • 0023337320 scopus 로고
    • Systematic errors in medical decision making: Judgment limitations
    • Dawson NV, Arkes HR. Systematic errors in medical decision making: judgment limitations. J Gen Intern Med 1987;2:183-7.
    • (1987) J Gen Intern Med , vol.2 , pp. 183-187
    • Dawson, N.V.1    Arkes, H.R.2
  • 48
    • 77958470996 scopus 로고    scopus 로고
    • Complacency and bias in human use of automation: An attentional Integration
    • Parasuraman R, Manzey DH. Complacency and bias in human use of automation: an attentional Integration. Hum Factors 2010;52:381-410.
    • (2010) Hum Factors , vol.52 , pp. 381-410
    • Parasuraman, R.1    Manzey, D.H.2
  • 49
    • 0042334859 scopus 로고    scopus 로고
    • Computer decision support as a source of interpretation error: The case of electrocardiograms
    • Tsai TL, Fridsma DB, Gatti G. Computer decision support as a source of interpretation error: the case of electrocardiograms. J Am Med Inform Assoc 2003;10:478-83.
    • (2003) J Am Med Inform Assoc , vol.10 , pp. 478-483
    • Tsai, T.L.1    Fridsma, D.B.2    Gatti, G.3
  • 50
    • 84875199879 scopus 로고    scopus 로고
    • Safe exploration of state and action spaces in reinforcement learning
    • Garcia J, Fernandez F, Fern F. Safe exploration of state and action spaces in reinforcement learning. J Artif Intell Res 2012;45:515-64.
    • (2012) J Artif Intell Res , vol.45 , pp. 515-564
    • Garcia, J.1    Fernandez, F.2    Fern, F.3
  • 52
    • 0037230516 scopus 로고    scopus 로고
    • Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative. Standards for Reporting of Diagnostic Accuracy
    • Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem 2003;49:1-6.
    • (2003) Clin Chem , vol.49 , pp. 1-6
    • Bossuyt, P.M.1    Reitsma, J.B.2    Bruns, D.E.3
  • 53
    • 85052147470 scopus 로고    scopus 로고
    • Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial
    • Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res 2017;4:e000234.
    • (2017) BMJ Open Respir Res , vol.4 , pp. e000234
    • Shimabukuro, D.W.1    Barton, C.W.2    Feldman, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.