-
1
-
-
51249169196
-
What artificial experts can and cannot do
-
Dreyfus HL, Dreyfus SE. What artificial experts can and cannot do. AI Soc 1992;6:18-26.
-
(1992)
AI Soc
, vol.6
, pp. 18-26
-
-
Dreyfus, H.L.1
Dreyfus, S.E.2
-
2
-
-
85059634327
-
Sizing the prize: What's the real value of AI for your business and how can you capitalise?
-
Rao A, Verweij G, Cameron E. Sizing the prize: what's the real value of AI for your business and how can you capitalise? PwC. 2017. Available: https://www. pwc. com/ gx/ en/ issues/ analytics/ assets/ pwc-ai-analysis-sizing-the-prize-report. pdf
-
(2017)
PwC
-
-
Rao, A.1
Verweij, G.2
Cameron, E.3
-
3
-
-
85045035249
-
-
Department for digital, culture, media & sport and department for business, energy & industrial strategy
-
Hall W, Pesenti J. Growing the artificial intelligence industry in the UK-GOV.UK. Department for digital, culture, media & sport and department for business, energy & industrial strategy. 2017. Available: https://www. gov. uk/ government/ uploads/ system/ uploads/ attachment-data/ file/ 652097/ Growing-the-artificial-intelligence-industry-in-the-UK. pdf
-
(2017)
Growing the Artificial Intelligence Industry in the UK-GOV.UK
-
-
Hall, W.1
Pesenti, J.2
-
4
-
-
85040951948
-
Digital healthcare: Regulating the revolution
-
Duggal R, Brindle I, Bagenal J. Digital healthcare: regulating the revolution. BMJ 2018;360:k6.
-
(2018)
BMJ
, vol.360
, pp. k6
-
-
Duggal, R.1
Brindle, I.2
Bagenal, J.3
-
5
-
-
85044240544
-
Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
-
McCoy A, Das R. Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units. BMJ Open Qual 2017;6:e000158.
-
(2017)
BMJ Open Qual
, vol.6
, pp. e000158
-
-
McCoy, A.1
Das, R.2
-
6
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-8.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
7
-
-
85052522615
-
Clinically applicable deep learning for diagnosis and referral in retinal disease
-
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-50.
-
(2018)
Nat Med
, vol.24
, pp. 1342-1350
-
-
De Fauw, J.1
Ledsam, J.R.2
Romera-Paredes, B.3
-
8
-
-
85019953955
-
Predicting risk of suicide attempts over time through machine learning
-
Walsh CG, Ribeiro JD, Franklin JC. Predicting risk of suicide attempts over time through machine learning. Clin Psychol Sci 2017:1-13.
-
(2017)
Clin Psychol Sci
, pp. 1-13
-
-
Walsh, C.G.1
Ribeiro, J.D.2
Franklin, J.C.3
-
10
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402.
-
(2016)
JAMA
, vol.316
, pp. 2402
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
11
-
-
85044137182
-
Implementing machine learning in health care-addressing ethical challenges
-
Char DS, Shah NH, Magnus D. Implementing machine learning in health care-addressing ethical challenges. N Engl J Med 2018;378:981-3.
-
(2018)
N Engl J Med
, vol.378
, pp. 981-983
-
-
Char, D.S.1
Shah, N.H.2
Magnus, D.3
-
12
-
-
0037663736
-
Effects of computerized physician order entry and clinical decision support systems on medication safety: A systematic review
-
Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med 2003;163:1409-16.
-
(2003)
Arch Intern Med
, vol.163
, pp. 1409-1416
-
-
Kaushal, R.1
Shojania, K.G.2
Bates, D.W.3
-
13
-
-
47149088261
-
Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2
-
Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336:1475-82.
-
(2008)
BMJ
, vol.336
, pp. 1475-1482
-
-
Hippisley-Cox, J.1
Coupland, C.2
Vinogradova, Y.3
-
15
-
-
14544304095
-
Role of computerized physician order entry systems in facilitating medication errors
-
Koppel Ret al. Role of computerized physician order entry systems in facilitating medication errors. JAMA 2005;293:1197-203.
-
(2005)
JAMA
, vol.293
, pp. 1197-1203
-
-
Koppel, R.1
-
16
-
-
33644699125
-
Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system
-
Han YYet al. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics 2005;116:1506-12.
-
(2005)
Pediatrics
, vol.116
, pp. 1506-1512
-
-
Han, Y.Y.1
-
17
-
-
0028367412
-
Medical diagnostic decision support systems-past, present, and future: A threaded bibliography and brief commentary
-
Miller RA. Medical diagnostic decision support systems-past, present, and future: a threaded bibliography and brief commentary. J Am Med Inform Assoc 1994;1:8-27.
-
(1994)
J Am Med Inform Assoc
, vol.1
, pp. 8-27
-
-
Miller, R.A.1
-
18
-
-
84941089695
-
Reducing diagnostic errors in primary care. A systematic meta-review of computerized diagnostic decision support systems by the LINNEAUS collaboration on patient safety in primary care
-
Nurek M, Kostopoulou O, Delaney BC, et al. Reducing diagnostic errors in primary care. a systematic meta-review of computerized diagnostic decision support systems by the LINNEAUS collaboration on patient safety in primary care. Eur J Gen Pract 2015;21(sup1):8-13.
-
(2015)
Eur J Gen Pract
, vol.21
, pp. 8-13
-
-
Nurek, M.1
Kostopoulou, O.2
Delaney, B.C.3
-
19
-
-
84856726653
-
Differential diagnosis generators: An evaluation of currently available computer programs
-
Bond WF, Schwartz LM, Weaver KR, et al. Differential diagnosis generators: an evaluation of currently available computer programs. J Gen Intern Med 2012;27:213-9.
-
(2012)
J Gen Intern Med
, vol.27
, pp. 213-219
-
-
Bond, W.F.1
Schwartz, L.M.2
Weaver, K.R.3
-
21
-
-
85018664128
-
Prediction of sepsis in the intensive care unit with minimal electronic health record data: A machine learning approach
-
Desautels T, Calvert J, Hoffman J, et al. Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR Med Inform 2016;4:e28.
-
(2016)
JMIR Med Inform
, vol.4
, pp. e28
-
-
Desautels, T.1
Calvert, J.2
Hoffman, J.3
-
22
-
-
85048335962
-
Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?
-
Thompson RF, Valdes G, Fuller CD, et al. Artificial intelligence in radiation oncology: a specialty-wide disruptive transformation? Radiother Oncol 2018;129:421-6.
-
(2018)
Radiother Oncol
, vol.129
, pp. 421-426
-
-
Thompson, R.F.1
Valdes, G.2
Fuller, C.D.3
-
24
-
-
85062308137
-
Representation and reinforcement learning for personalized glycemic control in septic patients
-
Weng W-H, Gao M, He Z. Representation and reinforcement learning for personalized glycemic control in septic patients. arXiv [cs.LG]. 2017. Available: http:// arxiv. org/ abs/ 1712. 00654
-
(2017)
ArXiv [Cs.LG]
-
-
Weng, W.-H.1
Gao, M.2
He, Z.3
-
25
-
-
85054483394
-
Framing the challenges of artificial intelligence in medicine
-
K-H Y, Kohane IS. Framing the challenges of artificial intelligence in medicine. BMJ Qual Saf 2019;28:238-41.
-
(2019)
BMJ Qual Saf
, vol.28
, pp. 238-241
-
-
Kohane, I.S.1
-
26
-
-
84867770975
-
An integrated e-recruitment system for automated personality mining and applicant ranking
-
Faliagka E, Tsakalidis A, Tzimas G. An integrated e-recruitment system for automated personality mining and applicant ranking. Internet Research 2012;22:551-68.
-
(2012)
Internet Research
, vol.22
, pp. 551-568
-
-
Faliagka, E.1
Tsakalidis, A.2
Tzimas, G.3
-
27
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484-9.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
-
31
-
-
85062309132
-
-
IIHS Status Report newsletter
-
IIHS Status Report newsletter. 2018. Available: https://www. iihs. org/ externaldata/ srdata/ docs/ sr5304. pdf
-
(2018)
-
-
-
33
-
-
84901870499
-
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas
-
Bothe MK, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices 2013;10:661-73.
-
(2013)
Expert Rev Med Devices
, vol.10
, pp. 661-673
-
-
Bothe, M.K.1
Dickens, L.2
Reichel, K.3
-
34
-
-
85031120880
-
A reinforcement learning approach to weaning of mechanical ventilation in intensive care units
-
Prasad N, Cheng L-F, Chivers C. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. arXiv [cs.AI]. 2017. Available: http:// arxiv. org/ abs/ 1704. 06300
-
(2017)
ArXiv [Cs.AI]
-
-
Prasad, N.1
Cheng, L.-F.2
Chivers, C.3
-
35
-
-
78650804323
-
Apples-to-apples in cross-validation studies: Pitfalls in classifier performance measurement
-
Forman G, Scholz M. Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement. ACM SIGKDD Explorations Newsletter Published Online First. 2010. Available: https:// dl. acm. org/ citation. cfm? id= 1882479
-
(2010)
ACM SIGKDD Explorations Newsletter Published Online First
-
-
Forman, G.1
Scholz, M.2
-
36
-
-
38949161848
-
AUC: A misleading measure of the performance of predictive distribution models
-
Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 2008;17:145-51.
-
(2008)
Glob Ecol Biogeogr
, vol.17
, pp. 145-151
-
-
Lobo, J.M.1
Jiménez-Valverde, A.2
Real, R.3
-
37
-
-
85009165593
-
Learning from classimbalanced data: Review of methods and applications
-
Haixiang G, Yijing L, Shang J, et al. Learning from classimbalanced data: review of methods and applications. Expert Syst Appl 2017;73:220-39.
-
(2017)
Expert Syst Appl
, vol.73
, pp. 220-239
-
-
Haixiang, G.1
Yijing, L.2
Shang, J.3
-
39
-
-
84959444758
-
Polyp detection via imbalanced learning and discriminative feature learning
-
Bae S-H, Yoon K-J. Polyp detection via imbalanced learning and discriminative feature learning. IEEE Trans Med Imaging 2015;34:2379-93.
-
(2015)
IEEE Trans Med Imaging
, vol.34
, pp. 2379-2393
-
-
Bae, S.-H.1
Yoon, K.-J.2
-
40
-
-
85032453950
-
Calibration drift in regression and machine learning models for acute kidney injury
-
Davis SE, Lasko TA, Chen G, et al. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 2017;24:1052-61.
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 1052-1061
-
-
Davis, S.E.1
Lasko, T.A.2
Chen, G.3
-
42
-
-
85051798815
-
Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU
-
Mao Q, Jay M, Hoffman JL, et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 2018;8:e017833.
-
(2018)
BMJ Open
, vol.8
, pp. e017833
-
-
Mao, Q.1
Jay, M.2
Hoffman, J.L.3
-
43
-
-
85062309879
-
Training models with unequal economic error costs using Amazon sagemaker
-
[Accessed 19 Oct 2018]
-
Megler V, Gregoire S. Training models with unequal economic error costs using Amazon sagemaker. AWS machine learning blog. 2018. Available: https:// aws. amazon. com/ blogs/ machine-learning/ training-models-with-unequal-economicerror-costs-using-amazon-sagemaker/ [Accessed 19 Oct 2018].
-
(2018)
AWS Machine Learning Blog
-
-
Megler, V.1
Gregoire, S.2
-
47
-
-
0023337320
-
Systematic errors in medical decision making: Judgment limitations
-
Dawson NV, Arkes HR. Systematic errors in medical decision making: judgment limitations. J Gen Intern Med 1987;2:183-7.
-
(1987)
J Gen Intern Med
, vol.2
, pp. 183-187
-
-
Dawson, N.V.1
Arkes, H.R.2
-
48
-
-
77958470996
-
Complacency and bias in human use of automation: An attentional Integration
-
Parasuraman R, Manzey DH. Complacency and bias in human use of automation: an attentional Integration. Hum Factors 2010;52:381-410.
-
(2010)
Hum Factors
, vol.52
, pp. 381-410
-
-
Parasuraman, R.1
Manzey, D.H.2
-
49
-
-
0042334859
-
Computer decision support as a source of interpretation error: The case of electrocardiograms
-
Tsai TL, Fridsma DB, Gatti G. Computer decision support as a source of interpretation error: the case of electrocardiograms. J Am Med Inform Assoc 2003;10:478-83.
-
(2003)
J Am Med Inform Assoc
, vol.10
, pp. 478-483
-
-
Tsai, T.L.1
Fridsma, D.B.2
Gatti, G.3
-
50
-
-
84875199879
-
Safe exploration of state and action spaces in reinforcement learning
-
Garcia J, Fernandez F, Fern F. Safe exploration of state and action spaces in reinforcement learning. J Artif Intell Res 2012;45:515-64.
-
(2012)
J Artif Intell Res
, vol.45
, pp. 515-564
-
-
Garcia, J.1
Fernandez, F.2
Fern, F.3
-
52
-
-
0037230516
-
Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD initiative. Standards for Reporting of Diagnostic Accuracy
-
Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem 2003;49:1-6.
-
(2003)
Clin Chem
, vol.49
, pp. 1-6
-
-
Bossuyt, P.M.1
Reitsma, J.B.2
Bruns, D.E.3
-
53
-
-
85052147470
-
Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial
-
Shimabukuro DW, Barton CW, Feldman MD, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res 2017;4:e000234.
-
(2017)
BMJ Open Respir Res
, vol.4
, pp. e000234
-
-
Shimabukuro, D.W.1
Barton, C.W.2
Feldman, M.D.3
|