메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Publisher Correction: Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis (Scientific Reports, (2017), 7, 1, (10800), 10.1038/s41598-017-09766-1);Combining Biomarkers with EMR Data to Identify Patients in Different Phases of Sepsis

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 85029125816     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-019-53691-4     Document Type: Erratum
Times cited : (57)

References (36)
  • 1
    • 84900318211 scopus 로고    scopus 로고
    • Assessment of the worldwide burden of critical illness: The Intensive Care over Nations (ICON) audit
    • Vincent, J.-L. et al. Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. Lancet Respir. Med. 2, 380-386 (2014).
    • (2014) Lancet Respir. Med. , vol.2 , pp. 380-386
    • Vincent, J.-L.1
  • 2
    • 84928156751 scopus 로고    scopus 로고
    • Sepsis: A roadmap for future research
    • Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis. 15, 581-614 (2015).
    • (2015) Lancet Infect. Dis. , vol.15 , pp. 581-614
    • Cohen, J.1
  • 3
    • 84959273475 scopus 로고    scopus 로고
    • The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)
    • Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801 (2016).
    • (2016) JAMA , vol.315 , pp. 801
    • Singer, M.1
  • 4
    • 84857641733 scopus 로고    scopus 로고
    • Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007
    • Lagu, T. et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Criti. Care Med. 40, 754-761 (2012).
    • (2012) Criti. Care Med. , vol.40 , pp. 754-761
    • Lagu, T.1
  • 5
    • 0035829842 scopus 로고    scopus 로고
    • Early goal-directed therapy in the treatment of severe sepsis and septic shock
    • Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368-77 (2001).
    • (2001) N. Engl. J. Med. , vol.345 , pp. 1368-1377
    • Rivers, E.1
  • 6
    • 84873339299 scopus 로고    scopus 로고
    • Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012
    • Dellinger, R. P. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41, 580-637 (2013).
    • (2013) Crit. Care Med. , vol.41 , pp. 580-637
    • Dellinger, R.P.1
  • 7
    • 84983606243 scopus 로고    scopus 로고
    • Vital signs: Epidemiology of sepsis: Prevalence of health care factors and opportunities for prevention
    • Novosad, S. A. et al. Vital Signs: Epidemiology of Sepsis: Prevalence of Health Care Factors and Opportunities for Prevention. MMWR. Morb. Mortal. Wkly. Rep. 65, 864-869 (2016).
    • (2016) MMWR. Morb. Mortal. Wkly. Rep. , vol.65 , pp. 864-869
    • Novosad, S.A.1
  • 8
    • 84926301084 scopus 로고    scopus 로고
    • Trial of early, goal-directed resuscitation for septic shock
    • Mouncey, P. R. et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N. Engl. J. Med. 372, 1301-1311 (2015).
    • (2015) N. Engl. J. Med. , vol.372 , pp. 1301-1311
    • Mouncey, P.R.1
  • 9
    • 84899074550 scopus 로고    scopus 로고
    • Automated electronic medical record sepsis detection in the emergency department
    • Nguyen, S. Q. et al. Automated electronic medical record sepsis detection in the emergency department. PeerJ 2, e343 (2014).
    • (2014) PeerJ , vol.2 , pp. e343
    • Nguyen, S.Q.1
  • 10
    • 84862765998 scopus 로고    scopus 로고
    • Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit
    • Hooper, M. H. et al. Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit. Crit. Care Med. 40, 2096-2101 (2012).
    • (2012) Crit. Care Med. , vol.40 , pp. 2096-2101
    • Hooper, M.H.1
  • 11
    • 84964314565 scopus 로고    scopus 로고
    • Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department
    • Alsolamy, S. et al. Diagnostic accuracy of a screening electronic alert tool for severe sepsis and septic shock in the emergency department. BMC Med. Inform. Decis. Mak. 14, 105 (2014).
    • (2014) BMC Med. Inform. Decis. Mak. , vol.14 , pp. 105
    • Alsolamy, S.1
  • 12
    • 84938704873 scopus 로고    scopus 로고
    • A targeted real-time early warning score (TREWScore) for septic shock
    • Henry, K., Hager, D., Pronovost, P. & Saria, S. A targeted real-time early warning score (TREWScore) for septic shock. Sci. Transl. Med. 7, (2015).
    • (2015) Sci. Transl. Med. , vol.7
    • Henry, K.1    Hager, D.2    Pronovost, P.3    Saria, S.4
  • 13
    • 85008247993 scopus 로고    scopus 로고
    • From data to optimal decision making: A data-driven, probabilistic machine learning approach to decision support for patients with sepsis
    • Tsoukalas, A., Albertson, T. & Tagkopoulos, I. From Data to Optimal Decision Making: A Data-Driven, Probabilistic Machine Learning Approach to Decision Support for Patients With Sepsis. JMIR Med. Informatics 3, e11 (2015).
    • (2015) JMIR Med. Informatics , vol.3 , pp. e11
    • Tsoukalas, A.1    Albertson, T.2    Tagkopoulos, I.3
  • 15
    • 84894101089 scopus 로고    scopus 로고
    • From vital signs to clinical outcomes for patients with sepsis: A machine learning basis for a clinical decision support system
    • Gultepe, E. et al. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J. Am. Med. Informatics Assoc. 21, 315-325 (2014).
    • (2014) J. Am. Med. Informatics Assoc. , vol.21 , pp. 315-325
    • Gultepe, E.1
  • 16
    • 77956628404 scopus 로고    scopus 로고
    • Sepsis biomarkers: A review
    • Pierrakos, C. & Vincent, J.-L. Sepsis biomarkers: a review. Crit. Care 14, R15 (2010).
    • (2010) Crit. Care , vol.14 , pp. R15
    • Pierrakos, C.1    Vincent, J.-L.2
  • 17
    • 84872271584 scopus 로고    scopus 로고
    • Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: A meta-analysis
    • Li, S. et al. Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a meta-analysis. Int. J. Infect. Dis. 17, e12-e23 (2013).
    • (2013) Int. J. Infect. Dis. , vol.17 , pp. e12-e23
    • Li, S.1
  • 19
    • 84876708502 scopus 로고    scopus 로고
    • Procalcitonin as a diagnostic marker for sepsis: A systematic review and meta-analysis
    • Wacker, C., Prkno, A., Brunkhorst, F. M. & Schlattmann, P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect. Dis. 13, 426-435 (2013).
    • (2013) Lancet Infect. Dis. , vol.13 , pp. 426-435
    • Wacker, C.1    Prkno, A.2    Brunkhorst, F.M.3    Schlattmann, P.4
  • 20
    • 28044470484 scopus 로고    scopus 로고
    • Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-dr expression: A multicenter standardized study
    • Docke, W.-D. Monitoring Temporary Immunodepression by Flow Cytometric Measurement of Monocytic HLA-DR Expression: A Multicenter Standardized Study. Clin. Chem. 51, 2341-2347 (2005).
    • (2005) Clin. Chem. , vol.51 , pp. 2341-2347
    • Docke, W.-D.1
  • 21
    • 84896595576 scopus 로고    scopus 로고
    • A multibiomarker-based outcome risk stratification model for adult septic shock
    • Wong, H. R. et al. A multibiomarker-based outcome risk stratification model for adult septic shock. Crit. Care Med. 42, 781-9 (2014).
    • (2014) Crit. Care Med , vol.42 , pp. 781-789
    • Wong, H.R.1
  • 22
    • 84956638767 scopus 로고    scopus 로고
    • A novel host-proteome signature for distinguishing between acute bacterial and viral infections
    • Oved, K. et al. A Novel Host-Proteome Signature for Distinguishing between Acute Bacterial and Viral Infections. PLoS One 10, e0120012 (2015).
    • (2015) PLoS One , vol.10 , pp. e0120012
    • Oved, K.1
  • 23
    • 84863448198 scopus 로고    scopus 로고
    • Combination biomarkers to diagnose sepsis in the critically ill patient
    • Gibot, S. et al. Combination Biomarkers to Diagnose Sepsis in the Critically Ill Patient. Am. J. Respir. Crit. Care Med. 186, 65-71 (2012).
    • (2012) Am. J. Respir. Crit. Care Med. , vol.186 , pp. 65-71
    • Gibot, S.1
  • 24
    • 84898013136 scopus 로고    scopus 로고
    • The temporal version of the pediatric sepsis biomarker risk model
    • Wong, H. R. et al. The Temporal Version of the Pediatric Sepsis Biomarker Risk Model. PLoS One 9, e92121 (2014).
    • (2014) PLoS One , vol.9 , pp. e92121
    • Wong, H.R.1
  • 25
    • 59649123701 scopus 로고    scopus 로고
    • A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis
    • Shapiro, N. I. et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit. Care Med. 37 (2009).
    • (2009) Crit. Care Med. , vol.37
    • Shapiro, N.I.1
  • 26
    • 84955579105 scopus 로고    scopus 로고
    • Host gene expression classifiers diagnose acute respiratory illness etiology
    • Tsalik, E. L. et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci. Transl. Med. 8, 322ra11-322ra11 (2016).
    • (2016) Sci. Transl. Med. , vol.8 , pp. 322ra11-322ra11
    • Tsalik, E.L.1
  • 27
    • 84882977493 scopus 로고    scopus 로고
    • An integrated clinico-metabolomic model improves prediction of death in sepsis
    • Langley, R. J. et al. An Integrated Clinico-Metabolomic Model Improves Prediction of Death in Sepsis. Sci. Transl. Med. 5, 195ra95-195ra95 (2013).
    • (2013) Sci. Transl. Med. , vol.5 , pp. 195ra95-195ra95
    • Langley, R.J.1
  • 28
    • 84887073310 scopus 로고    scopus 로고
    • Role of biomarkers in sepsis care
    • Samraj, R. S., Zingarelli, B. & Wong, H. R. Role of Biomarkers in Sepsis Care. Shock 40, 358-365 (2013).
    • (2013) Shock , vol.40 , pp. 358-365
    • Samraj, R.S.1    Zingarelli, B.2    Wong, H.R.3
  • 30
    • 84991245958 scopus 로고    scopus 로고
    • The elements of statistical learning
    • Springer New York
    • Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. Elements 1, (Springer New York, 2009).
    • (2009) Elements , vol.1
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 32
    • 84898857912 scopus 로고    scopus 로고
    • Understanding variable importances in forests of randomized trees
    • Louppe, G., Wehenkel, L., Sutera, A. & Geurts, P. Understanding variable importances in forests of randomized trees. Adv. Neural Inf. Process. Syst. 26, 431-439 doi:NIPS2013-4928 (2013).
    • (2013) Adv. Neural Inf. Process. Syst. , vol.26 , pp. 431-439
    • Louppe, G.1    Wehenkel, L.2    Sutera, A.3    Geurts, P.4
  • 33
    • 84962159420 scopus 로고    scopus 로고
    • Diagnosing sepsis is subjective and highly variable: A survey of intensivists using case vignettes
    • Rhee, C. et al. Diagnosing sepsis is subjective and highly variable: a survey of intensivists using case vignettes. Crit. Care 20, 89 (2016).
    • (2016) Crit. Care , vol.20 , pp. 89
    • Rhee, C.1
  • 34
    • 12344275811 scopus 로고    scopus 로고
    • Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis
    • Oda, S. et al. Sequential measurement of IL-6 blood levels in patients with systemic inflammatory response syndrome (SIRS)/sepsis. Cytokine 29, 169-175 (2005).
    • (2005) Cytokine , vol.29 , pp. 169-175
    • Oda, S.1
  • 35
    • 79960653221 scopus 로고    scopus 로고
    • The late phase of sepsis is characterized by an increased microbiological burden and death rate
    • Otto, G. P. et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care Doi 10. 1186/cc10332 (2013).
    • (2013) Crit. Care
    • Otto, G.P.1
  • 36
    • 77950537175 scopus 로고    scopus 로고
    • Regularization Paths for Generalized Linear Models via Coordinate Descent
    • Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, (2010).
    • (2010) J. Stat. Softw. , vol.33
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.