메뉴 건너뛰기




Volumn 39, Issue 12, 2018, Pages 1457-1462

Introduction to Machine Learning in Digital Healthcare Epidemiology

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; EPIDEMIOLOGIST; HUMAN; INFORMATION TECHNOLOGY; MACHINE LEARNING; ELECTRONIC HEALTH RECORD; EPIDEMIOLOGY; MEDICAL RESEARCH; PROCEDURES;

EID: 85056208374     PISSN: 0899823X     EISSN: 15596834     Source Type: Journal    
DOI: 10.1017/ice.2018.265     Document Type: Review
Times cited : (68)

References (47)
  • 1
    • 78751507447 scopus 로고    scopus 로고
    • Hospital epidemiology and infection control in acute-care settings
    • Sydnor ER, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 2011;24:141-173.
    • (2011) Clin Microbiol Rev , vol.24 , pp. 141-173
    • Sydnor, E.R.1    Perl, T.M.2
  • 3
    • 85040572144 scopus 로고    scopus 로고
    • Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology
    • Wiens J, Shenoy ES. Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology. Clin Infect Dis 2018;66:149-153.
    • (2018) Clin Infect Dis , vol.66 , pp. 149-153
    • Wiens, J.1    Shenoy, E.S.2
  • 5
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: Using analytics to identify and manage high-risk and highcost patients
    • Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and highcost patients. Health Aff 2014;33:1123-1131.
    • (2014) Health Aff , vol.33 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 6
    • 0000793139 scopus 로고
    • Cramming more components onto integrated circuits
    • Moore GE. Cramming more components onto integrated circuits. Electronics 1965;38:114-117.
    • (1965) Electronics , vol.38 , pp. 114-117
    • Moore, G.E.1
  • 7
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-260.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 8
    • 85040096804 scopus 로고    scopus 로고
    • Digital epidemiology: What is it, and where is it going?
    • Salathé M. Digital epidemiology: What is it, and where is it going? Life Sci Soc Policy 2018;14:1.
    • (2018) Life Sci Soc Policy , vol.14 , pp. 1
    • Salathé, M.1
  • 9
    • 85015899308 scopus 로고    scopus 로고
    • Digital pharmacovigilance and disease surveillance: Combining traditional and big-data systems for better public health
    • Salathé M. Digital pharmacovigilance and disease surveillance: combining traditional and big-data systems for better public health. J Infect Dis 2016;214:S399-S403.
    • (2016) J Infect Dis , vol.214 , pp. S399-S403
    • Salathé, M.1
  • 11
    • 85021767773 scopus 로고    scopus 로고
    • Automated surveillance of healthcare-associated infections: State of the art
    • Sips ME, Bonten MJM, van Mourik MSM. Automated surveillance of healthcare-associated infections: state of the art. Curr Opin Infect Dis 2017;30:425-431.
    • (2017) Curr Opin Infect Dis , vol.30 , pp. 425-431
    • Sips, M.E.1    Bonten, M.J.M.2    Van Mourik, M.S.M.3
  • 12
    • 85053111688 scopus 로고    scopus 로고
    • Big data's role in precision public health
    • Dolley S. Big data's role in precision public health. Front Public Health 2018;6:68.
    • (2018) Front Public Health , vol.6 , pp. 68
    • Dolley, S.1
  • 13
    • 85102429043 scopus 로고    scopus 로고
    • Challenges and opportunities of big data in health care: A systematic review
    • Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform 2016;4:e38.
    • (2016) JMIR Med Inform , vol.4 , pp. e38
    • Kruse, C.S.1    Goswamy, R.2    Raval, Y.3    Marawi, S.4
  • 14
    • 84906222774 scopus 로고    scopus 로고
    • Big data and large sample size: A cautionary note on the potential for bias
    • Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Transl Sci 2014;7:342-346.
    • (2014) Clin Transl Sci , vol.7 , pp. 342-346
    • Kaplan, R.M.1    Chambers, D.A.2    Glasgow, R.E.3
  • 15
    • 84920847860 scopus 로고    scopus 로고
    • Comparative effectiveness research and big data: Balancing potential with legal and ethical considerations
    • Gray EA, Thorpe JH. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J Comp Eff Res 2015;4:61-74.
    • (2015) J Comp Eff Res , vol.4 , pp. 61-74
    • Gray, E.A.1    Thorpe, J.H.2
  • 16
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Devel 1959;3:210-229.
    • (1959) IBM J Res Devel , vol.3 , pp. 210-229
    • Samuel, A.L.1
  • 17
    • 0000209388 scopus 로고
    • The regression analysis of binary sequences
    • Cox D. The regression analysis of binary sequences. J Roy Stat Soc 1958:215-242.
    • (1958) J Roy Stat Soc , pp. 215-242
    • Cox, D.1
  • 19
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learn 2001;45:5-32.
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 20
    • 85044594960 scopus 로고    scopus 로고
    • A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers
    • Oh J, Makar M, Fusco C, et al. A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infect Control Hosp Epidemiol 2018;39:425-433.
    • (2018) Infect Control Hosp Epidemiol , vol.39 , pp. 425-433
    • Oh, J.1    Makar, M.2    Fusco, C.3
  • 21
    • 85032453950 scopus 로고    scopus 로고
    • Calibration drift in regression and machine learning models for acute kidney injury
    • Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. J Am Med Inform Assoc 2017;24:1052-1061.
    • (2017) J Am Med Inform Assoc , vol.24 , pp. 1052-1061
    • Davis, S.E.1    Lasko, T.A.2    Chen, G.3    Siew, E.D.4    Matheny, M.E.5
  • 22
    • 85029857162 scopus 로고    scopus 로고
    • Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system
    • Escobar GJ, Baker JM, Kipnis P, et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol 2017;38:1196-1203.
    • (2017) Infect Control Hosp Epidemiol , vol.38 , pp. 1196-1203
    • Escobar, G.J.1    Baker, J.M.2    Kipnis, P.3
  • 23
    • 85056189344 scopus 로고    scopus 로고
    • Leveraging clinical timeseries data for prediction: A cautionary tale
    • Sherman E, Gurm H, Balis U, Owens S, Wiens J. Leveraging clinical timeseries data for prediction: a cautionary tale. AMIA Annu Symp Proc 2017;2017:1571-1580.
    • (2017) AMIA Annu Symp Proc , vol.2017 , pp. 1571-1580
    • Sherman, E.1    Gurm, H.2    Balis, U.3    Owens, S.4    Wiens, J.5
  • 24
    • 84975271190 scopus 로고    scopus 로고
    • A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators
    • Neugebauer R, Schmittdiel JA, van der Laan MJ. A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators. Int J Biostat 2016;12:131-155.
    • (2016) Int J Biostat , vol.12 , pp. 131-155
    • Neugebauer, R.1    Schmittdiel, J.A.2    Van Der Laan, M.J.3
  • 27
    • 79959443658 scopus 로고    scopus 로고
    • CcSVM: Correcting support vector machines for confounding factors in biological data classification
    • Li L, Rakitsch B, Borgwardt K. CcSVM: Correcting support vector machines for confounding factors in biological data classification. Bioinformatics 2011;27:i342-348.
    • (2011) Bioinformatics , vol.27 , pp. i342-i348
    • Li, L.1    Rakitsch, B.2    Borgwardt, K.3
  • 28
    • 85045336476 scopus 로고    scopus 로고
    • Assessing patient risk of central lineassociated bacteremia via machine learning
    • Beeler C, Dbeibo L, Kelley K, et al. Assessing patient risk of central lineassociated bacteremia via machine learning. Am J Infect Control 2018;46:986-991.
    • (2018) Am J Infect Control , vol.46 , pp. 986-991
    • Beeler, C.1    Dbeibo, L.2    Kelley, K.3
  • 29
    • 85044847275 scopus 로고    scopus 로고
    • Predicting central line-associated bloodstream infections and mortality using supervised machine learning
    • Parreco JP, Hidalgo AE, Badilla AD, Ilyas O, Rattan R. Predicting central line-associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;45:156-162.
    • (2018) J Crit Care , vol.45 , pp. 156-162
    • Parreco, J.P.1    Hidalgo, A.E.2    Badilla, A.D.3    Ilyas, O.4    Rattan, R.5
  • 30
    • 85056164308 scopus 로고    scopus 로고
    • Healthcare-associated ventriculitis and meningitis in a neuro-ICU: Incidence and risk factors selected by machine learning approach
    • Savin I, Ershova K, Kurdyumova N, et al. Healthcare-associated ventriculitis and meningitis in a neuro-ICU: incidence and risk factors selected by machine learning approach. J Crit Care 2018;45:95-104.
    • (2018) J Crit Care , vol.45 , pp. 95-104
    • Savin, I.1    Ershova, K.2    Kurdyumova, N.3
  • 31
    • 84923013798 scopus 로고    scopus 로고
    • The rise of big clinical databases
    • Cook JA, Collins GS. The rise of big clinical databases. Br J Surg 2015; 102:e93-e101.
    • (2015) Br J Surg , vol.102 , pp. e93-e101
    • Cook, J.A.1    Collins, G.S.2
  • 32
    • 84946077182 scopus 로고    scopus 로고
    • The reporting of studies conducted using observational routinely-collected health data (RECORD) statement
    • Benchimol EI, Smeeth L, Guttmann A, et al. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med 2015;12:e1001885.
    • (2015) PLoS Med , vol.12 , pp. e1001885
    • Benchimol, E.I.1    Smeeth, L.2    Guttmann, A.3
  • 33
    • 84995810431 scopus 로고    scopus 로고
    • Extracting information from the text of electronic medical records to improve case detection: A systematic review
    • Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 2016;23:1007-1015.
    • (2016) J Am Med Inform Assoc , vol.23 , pp. 1007-1015
    • Ford, E.1    Carroll, J.A.2    Smith, H.E.3    Scott, D.4    Cassell, J.A.5
  • 34
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017;318:517-518.
    • (2017) JAMA , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 35
    • 85044927780 scopus 로고    scopus 로고
    • Big data and machine learning in health care
    • Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317-1318.
    • (2018) JAMA , vol.319 , pp. 1317-1318
    • Beam, A.L.1    Kohane, I.S.2
  • 36
    • 85028364581 scopus 로고    scopus 로고
    • Multidimensional evidence generation and FDA regulatory decision making: Defining and using "realworld" data
    • Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using "realworld" data. JAMA 2017;318:703-704.
    • (2017) JAMA , vol.318 , pp. 703-704
    • Jarow, J.P.1    LaVange, L.2    Woodcock, J.3
  • 37
    • 84934897215 scopus 로고    scopus 로고
    • Toward a literature-driven definition of big data in healthcare
    • Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-driven definition of big data in healthcare. Biomed Res Int 2015;2015:639021.
    • (2015) Biomed Res Int , vol.2015 , pp. 639021
    • Baro, E.1    Degoul, S.2    Beuscart, R.3    Chazard, E.4
  • 38
    • 84980028545 scopus 로고    scopus 로고
    • Applying GIS and machine learning methods to twitter data for multiscale surveillance of influenza
    • Allen C, Tsou M-H, Aslam A, Nagel A, Gawron J-M. Applying GIS and machine learning methods to twitter data for multiscale surveillance of influenza. PLoS One 2016;11:e0157734.
    • (2016) PLoS One , vol.11 , pp. e0157734
    • Allen, C.1    Tsou, M.-H.2    Aslam, A.3    Nagel, A.4    Gawron, J.-M.5
  • 39
    • 85041631179 scopus 로고    scopus 로고
    • Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting
    • Ehrentraut C, Ekholm M, Tanushi H, Tiedemann J, Dalianis H. Detecting hospital-acquired infections: a document classification approach using support vector machines and gradient tree boosting. Health Informatics J 2018;24:24-42.
    • (2018) Health Informatics J , vol.24 , pp. 24-42
    • Ehrentraut, C.1    Ekholm, M.2    Tanushi, H.3    Tiedemann, J.4    Dalianis, H.5
  • 40
    • 85042731124 scopus 로고    scopus 로고
    • Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer
    • Kuo P-J, Wu S-C, Chien P-C, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 2018; 9:13768-13782.
    • (2018) Oncotarget , vol.9 , pp. 13768-13782
    • Kuo, P.-J.1    Wu, S.-C.2    Chien, P.-C.3
  • 41
    • 85048725741 scopus 로고    scopus 로고
    • Letter to the editor: Predicting central-line-associated bloodstream infections and mortality using supervised machine learning
    • Ferdoash A. Letter to the editor: Predicting central-line-associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;46:162.
    • (2018) J Crit Care , vol.46 , pp. 162
    • Ferdoash, A.1
  • 42
    • 84991259481 scopus 로고    scopus 로고
    • A prognostic model of surgical site infection using daily clinical wound assessment
    • Sanger PC, van Ramshorst GH, Mercan E, et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surg 2016;223:259-270.
    • (2016) J Am Coll Surg , vol.223 , pp. 259-270
    • Sanger, P.C.1    Van Ramshorst, G.H.2    Mercan, E.3
  • 43
    • 84959377705 scopus 로고    scopus 로고
    • A case-based reasoning system for aiding detection and classification of nosocomial infections
    • Gómez-Vallejo HJ, Uriel-Latorre B, Sande-Meijide M, et al. A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Syst 2016;84:104-116.
    • (2016) Decision Support Syst , vol.84 , pp. 104-116
    • Gómez-Vallejo, H.J.1    Uriel-Latorre, B.2    Sande-Meijide, M.3
  • 44
    • 85041040814 scopus 로고    scopus 로고
    • Accurate influenza monitoring and forecasting using novel internet data streams: A case study in the Boston metropolis
    • Lu FS, Hou S, Baltrusaitis K, et al. Accurate influenza monitoring and forecasting using novel internet data streams: a case study in the Boston metropolis. JMIR Public Health Surveill 2018;4:e4.
    • (2018) JMIR Public Health Surveill , vol.4 , pp. e4
    • Lu, F.S.1    Hou, S.2    Baltrusaitis, K.3
  • 46
    • 84994832127 scopus 로고    scopus 로고
    • Detection of clinically important colorectal surgical site infection using Bayesian network
    • Sohn S, Larson DW, Habermann EB, Naessens JM, Alabbad JY, Liu H. Detection of clinically important colorectal surgical site infection using bayesian network. J Surg Res 2017;209:168-173.
    • (2017) J Surg Res , vol.209 , pp. 168-173
    • Sohn, S.1    Larson, D.W.2    Habermann, E.B.3    Naessens, J.M.4    Alabbad, J.Y.5    Liu, H.6
  • 47
    • 85033371762 scopus 로고    scopus 로고
    • Estimating local costs associated with Clostridium difficile infection using machine learning and electronic medical records
    • Pak TR, Chacko KI, O'Donnell T, et al. Estimating local costs associated with Clostridium difficile infection using machine learning and electronic medical records. Infect Control Hosp Epidemiol 2017;38:1478-1486.
    • (2017) Infect Control Hosp Epidemiol , vol.38 , pp. 1478-1486
    • Pak, T.R.1    Chacko, K.I.2    O'Donnell, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.