메뉴 건너뛰기




Volumn 7, Issue 1, 2019, Pages 6-39

Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art

Author keywords

[No Author keywords available]

Indexed keywords

DATA FUSION;

EID: 85063456875     PISSN: 24732397     EISSN: 21686831     Source Type: Journal    
DOI: 10.1109/MGRS.2018.2890023     Document Type: Review
Times cited : (406)

References (205)
  • 1
    • 85042181249 scopus 로고    scopus 로고
    • Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL
    • Apr
    • M. Appel, F. Lahn, W. Buytaert, and E. Pebesma, "Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL," ISPRS J. Photogrammetry Remote Sens., vol. 138, pp. 47-56, Apr. 2018.
    • (2018) ISPRS J. Photogrammetry Remote Sens. , vol.138 , pp. 47-56
    • Appel, M.1    Lahn, F.2    Buytaert, W.3    Pebesma, E.4
  • 2
    • 85034623511 scopus 로고    scopus 로고
    • Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks
    • June
    • N. Audebert, B. L. Saux, and S. Lefvre, "Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks," ISPRS J. Photogrammetry Remote Sens., vol. 140, pp. 20-32, June 2018.
    • (2018) ISPRS J. Photogrammetry Remote Sens. , vol.140 , pp. 20-32
    • Audebert, N.1    Saux, B.L.2    Lefvre, S.3
  • 3
    • 85032865390 scopus 로고    scopus 로고
    • Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
    • J. E. Ball, D. T. Anderson, and C. S. Chan, "Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community," J. Appl. Remote Sens., vol. 11, no. 4, 2017. doi: 10.1117/1.JRS.11.042609.
    • (2017) J. Appl. Remote Sens. , vol.11 , Issue.4
    • Ball, J.E.1    Anderson, D.T.2    Chan, C.S.3
  • 4
    • 85045218654 scopus 로고    scopus 로고
    • Fusion of hyperspectral and lidar data with a novel ensemble classifier
    • J. Xia, N. Yokoya, and A. Iwasaki, "Fusion of hyperspectral and lidar data with a novel ensemble classifier," IEEE Geosci. Remote Sens. Lett., vol. 15, no. 6, pp. 957-961, 2018.
    • (2018) IEEE Geosci. Remote Sens. Lett. , vol.15 , Issue.6 , pp. 957-961
    • Xia, J.1    Yokoya, N.2    Iwasaki, A.3
  • 5
    • 84946762037 scopus 로고    scopus 로고
    • Developing a spectralbased strategy for urban object detection from airborne hyperspectral TIR and visible data
    • M. Eslami and A. Mohammadzadeh, "Developing a spectralbased strategy for urban object detection from airborne hyperspectral TIR and visible data," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 5, pp. 1808-1816, 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.9 , Issue.5 , pp. 1808-1816
    • Eslami, M.1    Mohammadzadeh, A.2
  • 6
    • 85040080279 scopus 로고    scopus 로고
    • Multiple 3-D feature fusion framework for hyperspectral image classification
    • J. Zhu, J. Hu, S. Jia, X. Jia, and Q. Li, "Multiple 3-D feature fusion framework for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 1873-1886, 2018.
    • (2018) IEEE Trans. Geosci. Remote Sens. , vol.56 , Issue.4 , pp. 1873-1886
    • Zhu, J.1    Hu, J.2    Jia, S.3    Jia, X.4    Li, Q.5
  • 7
    • 84959098456 scopus 로고    scopus 로고
    • A platform for crowdsourcing the creation of representative, accurate landcover maps
    • June
    • L. Estes et al., "A platform for crowdsourcing the creation of representative, accurate landcover maps," Environ. Modelling Software, vol. 80, pp. 41-53, June 2016.
    • (2016) Environ. Modelling Software , vol.80 , pp. 41-53
    • Estes, L.1
  • 8
    • 84962654261 scopus 로고    scopus 로고
    • Using remote sensing for building damage assessment: Geocan study and validation for 2011 Christchurch earthquake
    • R. Foulser-Piggott, R. Spence, R. Eguchi, and A. King, "Using remote sensing for building damage assessment: Geocan study and validation for 2011 Christchurch earthquake," Earthquake Spectra, vol. 32, no. 1, pp. 611-631, 2016.
    • (2016) Earthquake Spectra , vol.32 , Issue.1 , pp. 611-631
    • Foulser-Piggott, R.1    Spence, R.2    Eguchi, R.3    King, A.4
  • 9
    • 85028474147 scopus 로고    scopus 로고
    • Spatial technology and social media in remote sensing: A survey
    • J. Li, J. A. Benediktsson, B. Zhang, T. Yang, and A. Plaza, "Spatial technology and social media in remote sensing: A survey," Proc. IEEE, vol. 105, no. 10, pp. 1855-1864, 2017.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1855-1864
    • Li, J.1    Benediktsson, J.A.2    Zhang, B.3    Yang, T.4    Plaza, A.5
  • 10
    • 85045645809 scopus 로고    scopus 로고
    • Open data for global multimodal land use classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest
    • N. Yokoya et al., "Open data for global multimodal land use classification: Outcome of the 2017 IEEE GRSS Data Fusion Contest," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 11, no. 5, pp. 1363-1377, 2018.
    • (2018) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.11 , Issue.5 , pp. 1363-1377
    • Yokoya, N.1
  • 11
    • 84977975160 scopus 로고    scopus 로고
    • A review of remote sensing image fusion methods
    • Nov
    • H. Ghassemian, "A review of remote sensing image fusion methods," Inf. Fusion, vol. 32, pp. 75-89, Nov. 2016.
    • (2016) Inf. Fusion , vol.32 , pp. 75-89
    • Ghassemian, H.1
  • 12
    • 84970983713 scopus 로고    scopus 로고
    • Pixel-level image fusion: A survey of the state of the art
    • Jan
    • S. Li, X. Kang, L. Fang, J. Hu, and H. Yin, "Pixel-level image fusion: A survey of the state of the art," Inf. Fusion, vol. 33, pp. 100-112, Jan. 2017.
    • (2017) Inf. Fusion , vol.33 , pp. 100-112
    • Li, S.1    Kang, X.2    Fang, L.3    Hu, J.4    Yin, H.5
  • 13
    • 85033460261 scopus 로고    scopus 로고
    • Deep learning for pixel-level image fusion: Recent advances and future prospects
    • July
    • Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang, "Deep learning for pixel-level image fusion: Recent advances and future prospects," Inf. Fusion, vol. 42, pp. 158-173, July 2018.
    • (2018) Inf. Fusion , vol.42 , pp. 158-173
    • Liu, Y.1    Chen, X.2    Wang, Z.3    Wang, Z.J.4    Ward, R.K.5    Wang, X.6
  • 15
    • 84941199948 scopus 로고    scopus 로고
    • An ontological system for interoperable spatial generalisation in biodiversity monitoring
    • Nov
    • S. Nieland, N. Moran, B. Kleinschmit, and M. Frster, "An ontological system for interoperable spatial generalisation in biodiversity monitoring," Comput. Geosci., vol. 84, pp. 86-95, Nov. 2015.
    • (2015) Comput. Geosci. , vol.84 , pp. 86-95
    • Nieland, S.1    Moran, N.2    Kleinschmit, B.3    Frster, M.4
  • 16
    • 0025841253 scopus 로고
    • Parameter trade-offs for imaging spectroscopy systems [Remote Sensing]
    • J. P. Kerekes and D. A. Landgrebe, "Parameter trade-offs for imaging spectroscopy systems [Remote Sensing]," IEEE Trans. Geosci. Remote Sens., vol. 29, no. 1, pp. 57-65, 1991.
    • (1991) IEEE Trans. Geosci. Remote Sens. , vol.29 , Issue.1 , pp. 57-65
    • Kerekes, J.P.1    Landgrebe, D.A.2
  • 17
    • 0034008862 scopus 로고    scopus 로고
    • How well do we understand earth observation electro-optical sensor parameters?
    • G. Joseph, "How well do we understand earth observation electro-optical sensor parameters?" ISPRS J. Photogrammetry Remote Sens., vol. 55, no. 1, pp. 9-12, 2000.
    • (2000) ISPRS J. Photogrammetry Remote Sens. , vol.55 , Issue.1 , pp. 9-12
    • Joseph, G.1
  • 18
    • 0035036394 scopus 로고    scopus 로고
    • Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6s code
    • W. Zhao, M. Tamura, and H. Takahashi, "Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6s code," Remote Sens. Environ., vol. 76, no. 2, pp. 202-212, 2001.
    • (2001) Remote Sens. Environ. , vol.76 , Issue.2 , pp. 202-212
    • Zhao, W.1    Tamura, M.2    Takahashi, H.3
  • 19
    • 78049285255 scopus 로고    scopus 로고
    • End-toend simulation and analytical model of remotesensing systems: Application to crism
    • M. Parente, J. T. Clark, A. J. Brown, and J. L. Bishop, "End-toend simulation and analytical model of remotesensing systems: Application to crism," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3877-3888, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 3877-3888
    • Parente, M.1    Clark, J.T.2    Brown, A.J.3    Bishop, J.L.4
  • 20
    • 85012952410 scopus 로고    scopus 로고
    • Physically based model for multispectral image simulation of earth observation sensors
    • X. He and X. Xu, "Physically based model for multispectral image simulation of earth observation sensors," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 10, no. 5, pp. 1897-1908, 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.10 , Issue.5 , pp. 1897-1908
    • He, X.1    Xu, X.2
  • 21
    • 85018876359 scopus 로고    scopus 로고
    • Toward seamless multiview scene analysis from satellite to street level
    • S. Lefvre, D. Tuia, J. D. Wegner, T. Produit, and A. S. Nassar, "Toward seamless multiview scene analysis from satellite to street level," Proc. IEEE, vol. 105, no. 10, pp. 1884-1899, 2017.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1884-1899
    • Lefvre, S.1    Tuia, D.2    Wegner, J.D.3    Produit, T.4    Nassar, A.S.5
  • 22
    • 85014666791 scopus 로고    scopus 로고
    • The effect of the point spread function on sub-pixel mapping
    • May
    • Q. Wang and P. M. Atkinson, "The effect of the point spread function on sub-pixel mapping," Remote Sens. Environ., vol. 193, pp. 127-137, May 2017.
    • (2017) Remote Sens. Environ. , vol.193 , pp. 127-137
    • Wang, Q.1    Atkinson, P.M.2
  • 24
    • 84990041955 scopus 로고    scopus 로고
    • A review of image fusion algorithms based on the super-resolution paradigm
    • A. Garzelli, "A review of image fusion algorithms based on the super-resolution paradigm," Remote Sens., vol. 8, no. 10, p. 797, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.10 , pp. 797
    • Garzelli, A.1
  • 25
    • 85044388326 scopus 로고    scopus 로고
    • Full scale regressionbased injection coefficients for panchromatic sharpening
    • G. Vivone, R. Restaino, and J. Chanussot, "Full scale regressionbased injection coefficients for panchromatic sharpening," IEEE Trans. Image Process., vol. 27, no. 7, pp. 3418-3431, 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.7 , pp. 3418-3431
    • Vivone, G.1    Restaino, R.2    Chanussot, J.3
  • 26
    • 85040808085 scopus 로고    scopus 로고
    • On statistical approaches to generate Level 3 products from satellite remote sensing retrievals
    • A. Z. Mangion, N. Cressie, and C. Shumack, "On statistical approaches to generate Level 3 products from satellite remote sensing retrievals," Remote Sens., vol. 10, no. 1, 2018. doi: 10.3390/rs10010155.
    • (2018) Remote Sens. , vol.10 , Issue.1
    • Mangion, A.Z.1    Cressie, N.2    Shumack, C.3
  • 27
    • 84935001783 scopus 로고    scopus 로고
    • Downscaling modis images with area-to-point regression kriging
    • Q. Wang, W. Shi, P. M. Atkinson, and Y. Zhao, "Downscaling modis images with area-to-point regression kriging," Remote Sens. Environ., vol. 166, no. Supplement C, pp. 191-204, 2015.
    • (2015) Remote Sens. Environ. , vol.166 , pp. 191-204
    • Wang, Q.1    Shi, W.2    Atkinson, P.M.3    Zhao, Y.4
  • 28
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • June
    • W. R. Tobler, "A computer movie simulating urban growth in the Detroit region," Econ. Geog., vol. 46, pp. 234-240, June 1970.
    • (1970) Econ. Geog. , vol.46 , pp. 234-240
    • Tobler, W.R.1
  • 29
    • 85026643598 scopus 로고    scopus 로고
    • A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
    • June
    • C. Zhang et al., "A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification," ISPRS J. Photogrammetry Remote Sens., vol. 140, pp. 133-144, June 2018.
    • (2018) ISPRS J. Photogrammetry Remote Sens. , vol.140 , pp. 133-144
    • Zhang, C.1
  • 30
    • 85019930085 scopus 로고    scopus 로고
    • Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping
    • Feb.
    • A. Shelestov, M. Lavreniuk, N. Kussul, A. Novikov, and S. Skakun, "Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping," Front. Earth Sci., vol. 5, p. 17, Feb. 2017.
    • (2017) Front. Earth Sci. , vol.5 , pp. 17
    • Shelestov, A.1    Lavreniuk, M.2    Kussul, N.3    Novikov, A.4    Skakun, S.5
  • 31
    • 84992090962 scopus 로고    scopus 로고
    • Fusion of Sentinel-2 images
    • Q. Wang, W. Shi, Z. Li, and P. M. Atkinson, "Fusion of Sentinel-2 images," Remote Sens. Environ., vol. 187, no. Supplement C, pp. 241-252, 2016. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0034425716304023
    • (2016) Remote Sens. Environ. , vol.187 , pp. 241-252
    • Wang, Q.1    Shi, W.2    Li, Z.3    Atkinson, P.M.4
  • 32
    • 84947594795 scopus 로고    scopus 로고
    • A flexible spatiotemporal method for fusing satellite images with different resolutions
    • X. Zhu, E. H. Helmer, F. Gao, D. Liu, J. Chen, and M. A. Lefsky, "A flexible spatiotemporal method for fusing satellite images with different resolutions," Remote Sens. Environ., vol. 172, no. Supplement C, pp. 165-177, 2016.
    • (2016) Remote Sens. Environ. , vol.172 , pp. 165-177
    • Zhu, X.1    Helmer, E.H.2    Gao, F.3    Liu, D.4    Chen, J.5    Lefsky, M.A.6
  • 33
    • 85030260874 scopus 로고    scopus 로고
    • Spatiotemporal fusion of modis and landsat-7 reflectance images via compressed sensing
    • J. Wei, L. Wang, P. Liu, X. Chen, W. Li, and A. Y. Zomaya, "Spatiotemporal fusion of modis and landsat-7 reflectance images via compressed sensing," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 7126-7139, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.12 , pp. 7126-7139
    • Wei, J.1    Wang, L.2    Liu, P.3    Chen, X.4    Li, W.5    Zomaya, A.Y.6
  • 34
    • 85033214493 scopus 로고    scopus 로고
    • Spatio-temporal fusion for daily Sentinel-2 images
    • Q. Wang and P. M. Atkinson, "Spatio-temporal fusion for daily Sentinel-2 images," Remote Sens. Environ., vol. 204, no. Supplement C, pp. 31-42, 2018.
    • (2018) Remote Sens. Environ. , vol.204 , pp. 31-42
    • Wang, Q.1    Atkinson, P.M.2
  • 35
    • 85016188297 scopus 로고    scopus 로고
    • Advanced spectral classifiers for hyperspectral images: A review
    • P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, "Advanced spectral classifiers for hyperspectral images: A review," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8-32, 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , Issue.1 , pp. 8-32
    • Ghamisi, P.1    Plaza, J.2    Chen, Y.3    Li, J.4    Plaza, A.J.5
  • 36
    • 85040360938 scopus 로고    scopus 로고
    • Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art
    • P. Ghamisi et al., "Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 37-78, 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , Issue.4 , pp. 37-78
    • Ghamisi, P.1
  • 37
    • 84991030117 scopus 로고    scopus 로고
    • Learning-based spatial-temporal superresolution mapping of forest cover with modis images
    • Y. Zhang, P. M. Atkinson, X. Li, F. Ling, Q. Wang, and Y. Du, "Learning-based spatial-temporal superresolution mapping of forest cover with modis images," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 600-614, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.1 , pp. 600-614
    • Zhang, Y.1    Atkinson, P.M.2    Li, X.3    Ling, F.4    Wang, Q.5    Du, Y.6
  • 38
    • 85047778316 scopus 로고    scopus 로고
    • Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1a and Landsat data
    • A. O. Onojeghuo, G. A. Blackburn, Q. Wang, P. M. Atkinson, D. Kindred, and Y. Miao, "Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1a and Landsat data," Int. J. Remote Sens., vol. 39, no. 4, pp. 1042-1067, 2018.
    • (2018) Int. J. Remote Sens. , vol.39 , Issue.4 , pp. 1042-1067
    • Onojeghuo, A.O.1    Blackburn, G.A.2    Wang, Q.3    Atkinson, P.M.4    Kindred, D.5    Miao, Y.6
  • 39
    • 85046121182 scopus 로고    scopus 로고
    • Examining spatial distribution and dynamic change of urban land covers in the Brazilian Amazon using multitemporal multisensor high spatial resolution satellite imagery
    • Y. Feng, D. Lu, E. F. Moran, L. V. Dutra, M. F. Calvi, and M. A. F. de Oliveira, "Examining spatial distribution and dynamic change of urban land covers in the Brazilian Amazon using multitemporal multisensor high spatial resolution satellite imagery," Remote Sens., vol. 9, no. 4, p. 381, 2017.
    • (2017) Remote Sens. , vol.9 , Issue.4 , pp. 381
    • Feng, Y.1    Lu, D.2    Moran, E.F.3    Dutra, L.V.4    Calvi, M.F.5    De Oliveira, M.A.F.6
  • 40
    • 85022176708 scopus 로고    scopus 로고
    • Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications
    • Aug
    • Z. Zhu, "Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications," ISPRS J. Photogrammetry Remote Sens., vol. 130, pp. 370-384, Aug. 2017.
    • (2017) ISPRS J. Photogrammetry Remote Sens. , vol.130 , pp. 370-384
    • Zhu, Z.1
  • 41
    • 85021068034 scopus 로고    scopus 로고
    • Hyperspectral and multispectral data fusion: A comparative review of the recent literature
    • N. Yokoya, C. Grohnfeldt, and J. Chanussot, "Hyperspectral and multispectral data fusion: A comparative review of the recent literature," IEEE Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 29-56, 2017.
    • (2017) IEEE Geosci. Remote Sens. Mag. , vol.5 , Issue.2 , pp. 29-56
    • Yokoya, N.1    Grohnfeldt, C.2    Chanussot, J.3
  • 42
    • 0023314268 scopus 로고
    • Merging multiresolution SPOT HRV and Landsat TM data
    • R. Welch, "Merging multiresolution SPOT HRV and Landsat TM data," Photogrammetric Eng. Remote Sens., vol. 53, no. 3, pp. 301-303, 1987.
    • (1987) Photogrammetric Eng. Remote Sens. , vol.53 , Issue.3 , pp. 301-303
    • Welch, R.1
  • 43
    • 0024471260 scopus 로고
    • Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis
    • P. Kwarteng and A. Chavez, "Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis," Photogrammetric Eng. Remote Sens., vol. 55, no. 3, pp. 339-348, 1989.
    • (1989) Photogrammetric Eng. Remote Sens. , vol.55 , Issue.3 , pp. 339-348
    • Kwarteng, P.1    Chavez, A.2
  • 44
    • 0025573209 scopus 로고
    • The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
    • W. Carper, T. M. Lillesand, and P. W. Kiefer, "The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data," Photogrammetric Eng. Remote Sens., vol. 56, no. 4, pp. 459-467, 1990.
    • (1990) Photogrammetric Eng. Remote Sens. , vol.56 , Issue.4 , pp. 459-467
    • Carper, W.1    Lillesand, T.M.2    Kiefer, P.W.3
  • 45
    • 0033982849 scopus 로고    scopus 로고
    • Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation
    • T. Ranchin and L. Wald, "Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation," Photogrammetric Eng. Remote Sens., vol. 66, no. 1, pp. 49-61, 2000.
    • (2000) Photogrammetric Eng. Remote Sens. , vol.66 , Issue.1 , pp. 49-61
    • Ranchin, T.1    Wald, L.2
  • 47
    • 0036821708 scopus 로고    scopus 로고
    • Contextdriven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis
    • B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, "Contextdriven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 10, pp. 2300-2312, 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.10 , pp. 2300-2312
    • Aiazzi, B.1    Alparone, L.2    Baronti, S.3    Garzelli, A.4
  • 48
    • 65049091833 scopus 로고    scopus 로고
    • Improving component substitution pansharpening through multivariate regression of MS + Pan data
    • B. Aiazzi, S. Baronti, and M. Selva, "Improving component substitution pansharpening through multivariate regression of MS + Pan data," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230-3239, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3230-3239
    • Aiazzi, B.1    Baronti, S.2    Selva, M.3
  • 49
    • 53349157432 scopus 로고    scopus 로고
    • An efficient pansharpening method via a combined adaptive PCA approach and contourlets
    • V. P. Shah, N. H. Younan, and R. L. King, "An efficient pansharpening method via a combined adaptive PCA approach and contourlets," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1323-1335, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1323-1335
    • Shah, V.P.1    Younan, N.H.2    King, R.L.3
  • 51
    • 0029659962 scopus 로고    scopus 로고
    • Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data
    • D. A. Yocky, "Multiresolution wavelet decomposition image merger of Landsat Thematic Mapper and SPOT panchromatic data," Photogrammetric Eng. Remote Sens., vol. 62, no. 9, pp. 1067-1074, 1996.
    • (1996) Photogrammetric Eng. Remote Sens. , vol.62 , Issue.9 , pp. 1067-1074
    • Yocky, D.A.1
  • 52
    • 0032029701 scopus 로고    scopus 로고
    • A wavelet transform method to merge Landsat TM and SPOT panchromatic data
    • J. Zhou, D. Civco, and J. Silander, "A wavelet transform method to merge Landsat TM and SPOT panchromatic data," Int. J. Remote Sens., vol. 19, no. 4, pp. 743-757, 1998.
    • (1998) Int. J. Remote Sens. , vol.19 , Issue.4 , pp. 743-757
    • Zhou, J.1    Civco, D.2    Silander, J.3
  • 54
    • 0034521444 scopus 로고    scopus 로고
    • Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details
    • J. G. Liu, "Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details," Int. J. Remote Sens., vol. 21, no. 18, pp. 3461-3472, 2000.
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.18 , pp. 3461-3472
    • Liu, J.G.1
  • 55
    • 27844607355 scopus 로고    scopus 로고
    • Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods
    • X. Otazu, M. González-Audícana, O. Fors, and J. Núñez, "Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 10, pp. 2376-2385, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.10 , pp. 2376-2385
    • Otazu, X.1    González-Audícana, M.2    Fors, O.3    Núñez, J.4
  • 57
    • 33846636743 scopus 로고    scopus 로고
    • Remote sensing image fusion using the curvelet transform
    • F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, "Remote sensing image fusion using the curvelet transform," Inf. Fusion, vol. 8, no. 2, pp. 143-156, 2007.
    • (2007) Inf. Fusion , vol.8 , Issue.2 , pp. 143-156
    • Nencini, F.1    Garzelli, A.2    Baronti, S.3    Alparone, L.4
  • 58
    • 33646130619 scopus 로고    scopus 로고
    • Downscaling cokriging for image sharpening
    • E. Pardo-Igzquiza, M. Chica-Olmo, and P. M. Atkinson, "Downscaling cokriging for image sharpening," Remote Sens. Environ., vol. 102, no. 1, pp. 86-98, 2006. [Online]. Available: http:// www.sciencedirect.com/science/article/pii/S003442570 600068X
    • (2006) Remote Sens. Environ. , vol.102 , Issue.1 , pp. 86-98
    • Pardo-Igzquiza, E.1    Chica-Olmo, M.2    Atkinson, P.M.3
  • 59
    • 38349110220 scopus 로고    scopus 로고
    • Downscaling cokriging for super-resolution mapping of continua in remotely sensed images
    • P. M. Atkinson, E. Pardo-Iguzquiza, and M. Chica-Olmo, "Downscaling cokriging for super-resolution mapping of continua in remotely sensed images," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 573-580, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.2 , pp. 573-580
    • Atkinson, P.M.1    Pardo-Iguzquiza, E.2    Chica-Olmo, M.3
  • 61
    • 84875697410 scopus 로고    scopus 로고
    • Fusion of modis images using kriging with external drift
    • M. H. R. Sales, C. M. Souza, and P. C. Kyriakidis, "Fusion of modis images using kriging with external drift," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2250-2259, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 2250-2259
    • Sales, M.H.R.1    Souza, C.M.2    Kyriakidis, P.C.3
  • 62
    • 84958974360 scopus 로고    scopus 로고
    • Area-to-point regression kriging for pan-sharpening
    • Q. Wang, W. Shi, and P. M. Atkinson, "Area-to-point regression kriging for pan-sharpening," ISPRS J. Photogrammetry Remote Sens., vol. 114, no. Supplement C, pp. 151-165, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0924271616000496
    • (2016) ISPRS J. Photogrammetry Remote Sens. , vol.114 , pp. 151-165
    • Wang, Q.1    Shi, W.2    Atkinson, P.M.3
  • 63
  • 64
    • 4344583032 scopus 로고    scopus 로고
    • MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor
    • R. C. Hardie, M. T. Eismann, and G. L. Wilson, "MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor," IEEE Trans. Image Process., vol. 13, no. 9, pp. 1174-1184, 2004.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.9 , pp. 1174-1184
    • Hardie, R.C.1    Eismann, M.T.2    Wilson, G.L.3
  • 65
    • 14644411721 scopus 로고    scopus 로고
    • Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions
    • M. T. Eismann and R. C. Hardie, "Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 455-465, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 455-465
    • Eismann, M.T.1    Hardie, R.C.2
  • 66
    • 84856329450 scopus 로고    scopus 로고
    • Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
    • N. Yokoya, T. Yairi, and A. Iwasaki, "Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 2, pp. 528-537, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.2 , pp. 528-537
    • Yokoya, N.1    Yairi, T.2    Iwasaki, A.3
  • 67
    • 85027944334 scopus 로고    scopus 로고
    • A convex formulation for hyperspectral image superresolution via subspace-based regularization
    • M. Simões, J. B. Dias, L. Almeida, and J. Chanussot, "A convex formulation for hyperspectral image superresolution via subspace-based regularization," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373-3388, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.6 , pp. 3373-3388
    • Simões, M.1    Dias, J.B.2    Almeida, L.3    Chanussot, J.4
  • 69
    • 84939234402 scopus 로고    scopus 로고
    • Fast fusion of multiband images based on solving a Sylvester equation
    • Q. Wei, N. Dobigeon, and J.-Y. Tourneret, "Fast fusion of multiband images based on solving a Sylvester equation," IEEE Trans. Image Process., vol. 24, no. 11, pp. 4109-4121, 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.11 , pp. 4109-4121
    • Wei, Q.1    Dobigeon, N.2    Tourneret, J.-Y.3
  • 70
    • 79151485703 scopus 로고    scopus 로고
    • A new pan-sharpening method using a compressed sensing technique
    • S. Li and B. Yang, "A new pan-sharpening method using a compressed sensing technique," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 738-746, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 738-746
    • Li, S.1    Yang, B.2
  • 71
    • 84885018469 scopus 로고    scopus 로고
    • A sparse image fusion algorithm with application to pan-sharpening
    • X. X. Zhu and R. Bamler, "A sparse image fusion algorithm with application to pan-sharpening," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2827-2836, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2827-2836
    • Zhu, X.X.1    Bamler, R.2
  • 72
    • 84945312168 scopus 로고    scopus 로고
    • Hyperspectral and multispectral image fusion based on a sparse representation
    • Q. Wei, J. M. B. Dias, N. Dobigeon, and J.-Y. Tourneret, "Hyperspectral and multispectral image fusion based on a sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 7, pp. 3658-3668, 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.7 , pp. 3658-3668
    • Wei, Q.1    Dias, J.M.B.2    Dobigeon, N.3    Tourneret, J.-Y.4
  • 73
    • 84897734702 scopus 로고    scopus 로고
    • Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images
    • W. Sun, B. Chen, and D. Messinger, "Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images," Opt. Eng., vol. 53, no. 1, 2014. doi: 10.1117/1.OE.53.1.013107.
    • (2014) Opt. Eng. , vol.53 , Issue.1
    • Sun, W.1    Chen, B.2    Messinger, D.3
  • 79
    • 70350294320 scopus 로고    scopus 로고
    • Hypercomplex quality assessment of multi/hyperspectral images
    • A. Garzelli and F. Nencini, "Hypercomplex quality assessment of multi/hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 662-665, 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.4 , pp. 662-665
    • Garzelli, A.1    Nencini, F.2
  • 80
    • 84943803653 scopus 로고    scopus 로고
    • Fusing Landsat and MODIS data for vegetation monitoring
    • F. Gao et al., "Fusing Landsat and MODIS data for vegetation monitoring," IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 47-60, 2015.
    • (2015) IEEE Geosci. Remote Sens. Mag. , vol.3 , Issue.3 , pp. 47-60
    • Gao, F.1
  • 81
    • 84941112049 scopus 로고    scopus 로고
    • A generalization of spatial and temporal fusion methods for remotely sensed surface parameters
    • H. K. Zhang, B. Huang, M. Zhang, K. Cao, and L. Yu, "A generalization of spatial and temporal fusion methods for remotely sensed surface parameters," Int. J. Remote Sens., vol. 36, no. 17, pp. 4411-4445, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.17 , pp. 4411-4445
    • Zhang, H.K.1    Huang, B.2    Zhang, M.3    Cao, K.4    Yu, L.5
  • 82
    • 84928777398 scopus 로고    scopus 로고
    • Comparison of spatiotemporal fusion models: A review
    • B. Chen, B. Huang, and B. Xu, "Comparison of spatiotemporal fusion models: A review," Remote Sens., vol. 7, no. 2, pp. 1798-1835, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.2 , pp. 1798-1835
    • Chen, B.1    Huang, B.2    Xu, B.3
  • 83
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
    • F. Gao, J. Masek, M. Schwaller, and F. Hall, "On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2207-2218, 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 84
    • 77956177720 scopus 로고    scopus 로고
    • An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
    • X. Zhu, J. Chen, F. Gao, X. Chen, and J. G. Masek, "An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions," Remote Sens. Environ., vol. 114, no. 11, pp. 2610-2623, 2010.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.11 , pp. 2610-2623
    • Zhu, X.1    Chen, J.2    Gao, F.3    Chen, X.4    Masek, J.G.5
  • 85
    • 84875063135 scopus 로고    scopus 로고
    • Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection
    • I. V. Emelyanova, T. R. McVicar, T. G. V. Niel, L. T. Li, and A. I. van Dijk, "Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection," Remote Sens. Environ., vol. 133, no. Supplement C, pp. 193-209, 2013.
    • (2013) Remote Sens. Environ. , vol.133 , pp. 193-209
    • Emelyanova, I.V.1    McVicar, T.R.2    Niel, T.G.V.3    Li, L.T.4    Van Dijk, A.I.5
  • 86
    • 84867089572 scopus 로고    scopus 로고
    • Spatiotemporal reflectance fusion via sparse representation
    • B. Huang and H. Song, "Spatiotemporal reflectance fusion via sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3707-3716, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3707-3716
    • Huang, B.1    Song, H.2
  • 87
    • 84875725334 scopus 로고    scopus 로고
    • Spatiotemporal satellite image fusion through one-pair image learning
    • H. Song and B. Huang, "Spatiotemporal satellite image fusion through one-pair image learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 1883-1896, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 1883-1896
    • Song, H.1    Huang, B.2
  • 88
    • 84996761516 scopus 로고    scopus 로고
    • Fast and accurate spatiotemporal fusion based upon extreme learning machine
    • X. Liu, C. Deng, S. Wang, G. B. Huang, B. Zhao, and P. Lauren, "Fast and accurate spatiotemporal fusion based upon extreme learning machine," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 2039-2043, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 2039-2043
    • Liu, X.1    Deng, C.2    Wang, S.3    Huang, G.B.4    Zhao, B.5    Lauren, P.6
  • 89
    • 84940056836 scopus 로고    scopus 로고
    • A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature
    • V. Moosavi, A. Talebi, M. H. Mokhtari, S. R. F. Shamsi, and Y. Niazi, "A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature," Remote Sens. Environ., vol. 169, no. Supplement C, pp. 243-254, 2015. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0034425715301036
    • (2015) Remote Sens. Environ. , vol.169 , pp. 243-254
    • Moosavi, V.1    Talebi, A.2    Mokhtari, M.H.3    Shamsi, S.R.F.4    Niazi, Y.5
  • 90
    • 84997638197 scopus 로고    scopus 로고
    • Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data
    • M. Das and S. K. Ghosh, "Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1984-1988, 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 1984-1988
    • Das, M.1    Ghosh, S.K.2
  • 94
    • 84896315647 scopus 로고    scopus 로고
    • Improvement of spatio-temporal growth estimates in heterogeneous forests using Gaussian Bayesian networks
    • Y. T. Mustafa, V. A. Tolpekin, and A. Stein, "Improvement of spatio-temporal growth estimates in heterogeneous forests using Gaussian Bayesian networks," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4980-4991, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4980-4991
    • Mustafa, Y.T.1    Tolpekin, V.A.2    Stein, A.3
  • 95
    • 67651098848 scopus 로고    scopus 로고
    • Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics
    • R. Zurita-Milla, G. Kaiser, J. Clevers, W. Schneider, and M. Schaepman, "Downscaling time series of MERIS full resolution data to monitor vegetation seasonal dynamics," Remote Sens. Environ., vol. 113, no. 9, pp. 1874-1885, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.9 , pp. 1874-1885
    • Zurita-Milla, R.1    Kaiser, G.2    Clevers, J.3    Schneider, W.4    Schaepman, M.5
  • 96
    • 84885433268 scopus 로고    scopus 로고
    • Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model
    • M. Wu, Z. Niu, C. Wang, C. Wu, and L. Wang, "Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model," J. Appl. Remote Sens., vol. 6, no. 1, 2012. doi: 10.1117/1.JRS.6.063507.
    • (2012) J. Appl. Remote Sens. , vol.6 , Issue.1
    • Wu, M.1    Niu, Z.2    Wang, C.3    Wu, C.4    Wang, L.5
  • 97
    • 84907963084 scopus 로고    scopus 로고
    • A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
    • C. M. Gevaert and F. J. Garca-Haro, "A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion," Remote Sens. Environ., vol. 156, no. Supplement C, pp. 34-44, 2015.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 34-44
    • Gevaert, C.M.1    Garca-Haro, F.J.2
  • 98
    • 85027918089 scopus 로고    scopus 로고
    • Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes
    • B. Huang and H. Zhang, "Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes," Int. J. Remote Sens., vol. 35, no. 16, pp. 6213-6233, 2014.
    • (2014) Int. J. Remote Sens. , vol.35 , Issue.16 , pp. 6213-6233
    • Huang, B.1    Zhang, H.2
  • 99
    • 85027936834 scopus 로고    scopus 로고
    • Spatial and temporal image fusion via regularized spatial unmixing
    • Y. Xu, B. Huang, Y. Xu, K. Cao, C. Guo, and D. Meng, "Spatial and temporal image fusion via regularized spatial unmixing," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1362-1366, 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.6 , pp. 1362-1366
    • Xu, Y.1    Huang, B.2    Xu, Y.3    Cao, K.4    Guo, C.5    Meng, D.6
  • 100
    • 84957541432 scopus 로고    scopus 로고
    • An improved STARFM with help of an unmixingbased method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions
    • D. Xie et al., "An improved STARFM with help of an unmixingbased method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions," Sensors, vol. 16, no. 2, p. 207, 2016.
    • (2016) Sensors , vol.16 , Issue.2 , pp. 207
    • Xie, D.1
  • 102
    • 85179413441 scopus 로고    scopus 로고
    • IEEE Geoscience and Remote Sensing Society. GRSS Data and Algorithm Standard Evaluation website
    • IEEE Geoscience and Remote Sensing Society. GRSS Data and Algorithm Standard Evaluation website. [Online]. Available: http://dase.grss-ieee.org/
  • 103
    • 85027417634 scopus 로고    scopus 로고
    • Processing of extremely high resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS Data Fusion Contest
    • A. V. Vo et al., "Processing of extremely high resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS Data Fusion Contest," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 9, no. 12, pp. 5560-5575, 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.9 , Issue.12 , pp. 5560-5575
    • Vo, A.V.1
  • 104
    • 84961205631 scopus 로고    scopus 로고
    • Advances in fusion of optical imagery and lidar point cloud applied to photogrammetry and remote sensing
    • J. Zhang and X. Lin, "Advances in fusion of optical imagery and lidar point cloud applied to photogrammetry and remote sensing," Int. J. Image Data Fusion, vol. 8, no. 1, pp. 1-31, 2017.
    • (2017) Int. J. Image Data Fusion , vol.8 , Issue.1 , pp. 1-31
    • Zhang, J.1    Lin, X.2
  • 106
    • 84896400409 scopus 로고    scopus 로고
    • Facade reconstruction using multiview spaceborne TomoSAR point clouds
    • X. X. Zhu and M. Shahzad, "Facade reconstruction using multiview spaceborne TomoSAR point clouds," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3541-3552, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3541-3552
    • Zhu, X.X.1    Shahzad, M.2
  • 107
    • 85031816991 scopus 로고    scopus 로고
    • Mobile low-cost 3D camera maize crop height measurements under field conditions
    • Oct
    • M. Hämmerle and B. Höfle, "Mobile low-cost 3D camera maize crop height measurements under field conditions," Precision Agric., vol. 19, no. 4, pp. 630-647, Oct. 2017.
    • (2017) Precision Agric. , vol.19 , Issue.4 , pp. 630-647
    • Hämmerle, M.1    Höfle, B.2
  • 109
    • 84896494690 scopus 로고    scopus 로고
    • Georeferenced point clouds: A survey of features and point cloud management
    • J. Otepka, S. Ghuffar, C. Waldhauser, R. Hochreiter, and N. Pfeifer, "Georeferenced point clouds: A survey of features and point cloud management," ISPRS Int. J. Geo-Inf., vol. 2, no. 4, pp. 1038-1065, 2013.
    • (2013) ISPRS Int. J. Geo-Inf. , vol.2 , Issue.4 , pp. 1038-1065
    • Otepka, J.1    Ghuffar, S.2    Waldhauser, C.3    Hochreiter, R.4    Pfeifer, N.5
  • 110
    • 84987981756 scopus 로고    scopus 로고
    • Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences
    • Dec
    • J. U. Eitel et al., "Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences," Remote Sens. Environ., vol. 186, pp. 372-392, Dec. 2016.
    • (2016) Remote Sens. Environ. , vol.186 , pp. 372-392
    • Eitel, J.U.1
  • 111
    • 84990966925 scopus 로고    scopus 로고
    • Full-waveform airborne laser scanning in vegetation studies: A review of point cloud and waveform features for tree species classification
    • K. Koenig and B. Höfle, "Full-waveform airborne laser scanning in vegetation studies: A review of point cloud and waveform features for tree species classification," Forests, vol. 7, no. 9, p. 198, 2016.
    • (2016) Forests , vol.7 , Issue.9 , pp. 198
    • Koenig, K.1    Höfle, B.2
  • 112
    • 33645400374 scopus 로고    scopus 로고
    • Segmentation of airborne laser scanning data using a slope adaptive neighborhood
    • S. Filin and N. Pfeifer, "Segmentation of airborne laser scanning data using a slope adaptive neighborhood," ISPRS J. Photogrammetry Remote Sens., vol. 60, no. 2, pp. 71-80, 2006.
    • (2006) ISPRS J. Photogrammetry Remote Sens. , vol.60 , Issue.2 , pp. 71-80
    • Filin, S.1    Pfeifer, N.2
  • 113
    • 84875253488 scopus 로고    scopus 로고
    • Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis
    • Apr
    • S. J. Buckley, T. H. Kurz, J. A. Howell, and D. Schneider, "Terrestrial lidar and hyperspectral data fusion products for geological outcrop analysis," Comput. Geosci., vol. 54, pp. 249-258, Apr. 2013.
    • (2013) Comput. Geosci. , vol.54 , pp. 249-258
    • Buckley, S.J.1    Kurz, T.H.2    Howell, J.A.3    Schneider, D.4
  • 115
    • 85046249470 scopus 로고    scopus 로고
    • Unstructured point cloud semantic labeling using deep segmentation networks
    • I. Pratikakis, F. Dupont, and M. Ovsjanikov, Eds. Eurographics Association
    • A. Boulch, B. L. Saux, and N. Audebert, "Unstructured point cloud semantic labeling using deep segmentation networks," in Eurographics Workshop on 3D Object Retrieval, I. Pratikakis, F. Dupont, and M. Ovsjanikov, Eds. Eurographics Association, 2017.
    • (2017) Eurographics Workshop on 3D Object Retrieval
    • Boulch, A.1    Saux, B.L.2    Audebert, N.3
  • 116
    • 84943516368 scopus 로고    scopus 로고
    • Comparison of 3D interest point detectors and descriptors for point cloud fusion
    • R. Hänsch, T. Weber, and O. Hellwich, "Comparison of 3D interest point detectors and descriptors for point cloud fusion," ISPRS Ann. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. II-3, pp. 57-64, 2014. doi: 10.5194/isprsannals-II-3-57-2014.
    • (2014) ISPRS Ann. Photogrammetry, Remote Sens. Spatial Inf. Sci. , vol.2-3 , pp. 57-64
    • Hänsch, R.1    Weber, T.2    Hellwich, O.3
  • 117
    • 85018630064 scopus 로고    scopus 로고
    • A novel automatic method for the fusion of ALS and TLS lidar data for robust assessment of tree crown structure
    • C. Paris, D. Kelbe, J. van Aardt, and L. Bruzzone, "A novel automatic method for the fusion of ALS and TLS lidar data for robust assessment of tree crown structure," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3679-3693, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3679-3693
    • Paris, C.1    Kelbe, D.2    Van Aardt, J.3    Bruzzone, L.4
  • 118
    • 85041309915 scopus 로고    scopus 로고
    • Considerations for achieving crossplatform point cloud data fusion across different dryland ecosystem structural states
    • Jan
    • T. L. Swetnam et al., "Considerations for achieving crossplatform point cloud data fusion across different dryland ecosystem structural states," Front. Plant Sci., vol. 8, p. 2144, Jan. 2018.
    • (2018) Front. Plant Sci. , vol.8 , pp. 2144
    • Swetnam, T.L.1
  • 119
    • 85014870346 scopus 로고    scopus 로고
    • Lidar data classification using extinction profiles and a composite kernel support vector machine
    • P. Ghamisi and B. Höfle, "Lidar data classification using extinction profiles and a composite kernel support vector machine," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 659-663, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.5 , pp. 659-663
    • Ghamisi, P.1    Höfle, B.2
  • 120
    • 85017531995 scopus 로고    scopus 로고
    • UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
    • June
    • T. Sankey, J. Donager, J. McVay, and J. B. Sankey, "UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA," Remote Sens. Environ., vol. 195, pp. 30-43, June 2017.
    • (2017) Remote Sens. Environ. , vol.195 , pp. 30-43
    • Sankey, T.1    Donager, J.2    McVay, J.3    Sankey, J.B.4
  • 121
    • 84888787649 scopus 로고    scopus 로고
    • Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification
    • Jan
    • M. Gerke and J. Xiao, "Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification," ISPRS J. Photogrammetry Remote Sens., vol. 87, pp. 78-92, Jan. 2014.
    • (2014) ISPRS J. Photogrammetry Remote Sens. , vol.87 , pp. 78-92
    • Gerke, M.1    Xiao, J.2
  • 122
    • 84934904017 scopus 로고    scopus 로고
    • Fusion of waveform lidar data and hyperspectral imagery for land cover classification
    • Oct
    • H. Wang and C. Glennie, "Fusion of waveform lidar data and hyperspectral imagery for land cover classification," ISPRS J. Photogrammetry Remote Sens., vol. 108, pp. 1-11, Oct. 2015.
    • (2015) ISPRS J. Photogrammetry Remote Sens. , vol.108 , pp. 1-11
    • Wang, H.1    Glennie, C.2
  • 123
    • 84926163182 scopus 로고    scopus 로고
    • Pixel-and feature-level fusion of hyperspectral and lidar data for urban land-use classification
    • Q. Man, P. Dong, and H. Guo, "Pixel-and feature-level fusion of hyperspectral and lidar data for urban land-use classification," Int. J. Remote Sens., vol. 36, no. 6, pp. 1618-1644, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.6 , pp. 1618-1644
    • Man, Q.1    Dong, P.2    Guo, H.3
  • 124
    • 84855418272 scopus 로고    scopus 로고
    • Urban vegetation detection using radiometrically calibrated small-footprint fullwaveform airborne LiDAR data
    • Jan
    • B. Höfle, M. Hollaus, and J. Hagenauer, "Urban vegetation detection using radiometrically calibrated small-footprint fullwaveform airborne LiDAR data," ISPRS J. Photogrammetry Remote Sens., vol. 67, pp. 134-147, Jan. 2012.
    • (2012) ISPRS J. Photogrammetry Remote Sens. , vol.67 , pp. 134-147
    • Höfle, B.1    Hollaus, M.2    Hagenauer, J.3
  • 125
    • 84898634853 scopus 로고    scopus 로고
    • Urban tree species mapping using hyperspectral and lidar data fusion
    • May
    • M. Alonzo, B. Bookhagen, and D. A. Roberts, "Urban tree species mapping using hyperspectral and lidar data fusion," Remote Sens. Environ., vol. 148, pp. 70-83, May 2014.
    • (2014) Remote Sens. Environ. , vol.148 , pp. 70-83
    • Alonzo, M.1    Bookhagen, B.2    Roberts, D.A.3
  • 126
    • 85033667269 scopus 로고    scopus 로고
    • UAV-based photogrammetric point clouds and hyperspectral imaging for mapping biodiversity indicators in boreal forests
    • XLII-3/W3 Oct
    • N. Saarinen et al., "UAV-based photogrammetric point clouds and hyperspectral imaging for mapping biodiversity indicators in boreal forests," ISPRS Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. XLII-3/W3, pp. 171-175, Oct. 2017.
    • (2017) ISPRS Int. Archives Photogrammetry, Remote Sens. Spatial Inf. Sci. , pp. 171-175
    • Saarinen, N.1
  • 127
    • 85028948905 scopus 로고    scopus 로고
    • Mapping urban tree species using integrated airborne hyperspectral and lidar remote sensing data
    • Oct
    • L. Liu, N. C. Coops, N. W. Aven, and Y. Pang, "Mapping urban tree species using integrated airborne hyperspectral and lidar remote sensing data," Remote Sens. Environ., vol. 200, pp. 170-182, Oct. 2017.
    • (2017) Remote Sens. Environ. , vol.200 , pp. 170-182
    • Liu, L.1    Coops, N.C.2    Aven, N.W.3    Pang, Y.4
  • 128
    • 84979582078 scopus 로고    scopus 로고
    • Distributed adaptive framework for multispectral/hyperspectral imagery and threedimensional point cloud fusion
    • R. S. Rand, T. Khuon, and E. Truslow, "Distributed adaptive framework for multispectral/hyperspectral imagery and threedimensional point cloud fusion," Opt. Eng., vol. 55, 2016. doi: 10.1117/1.OE.55.7.073101.
    • (2016) Opt. Eng. , vol.55
    • Rand, R.S.1    Khuon, T.2    Truslow, E.3
  • 129
    • 85010686465 scopus 로고    scopus 로고
    • Feasibility of multispectral airborne laser scanning data for road mapping
    • K. Karila, L. Matikainen, E. Puttonen, and J. Hyyppa, "Feasibility of multispectral airborne laser scanning data for road mapping," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 3, pp. 294-298, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.3 , pp. 294-298
    • Karila, K.1    Matikainen, L.2    Puttonen, E.3    Hyyppa, J.4
  • 130
    • 84879959396 scopus 로고    scopus 로고
    • Classification of spruce and pine trees using active hyperspectral lidar
    • J. Vauhkonen et al., "Classification of spruce and pine trees using active hyperspectral lidar," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1138-1141, 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1138-1141
    • Vauhkonen, J.1
  • 132
    • 85012977527 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration
    • M. Brell, K. Segl, L. Guanter, and B. Bookhagen, "Hyperspectral and LiDAR intensity data fusion: A framework for the rigorous correction of illumination, anisotropic effects, and cross calibration," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 5, pp. 2799-2810, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.5 , pp. 2799-2810
    • Brell, M.1    Segl, K.2    Guanter, L.3    Bookhagen, B.4
  • 133
    • 74049108984 scopus 로고    scopus 로고
    • Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery
    • Dec
    • R. K. Hall et al., "Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery," Environ. Monitoring Assessment, vol. 159, pp. 63-83, Dec. 2009.
    • (2009) Environ. Monitoring Assessment , vol.159 , pp. 63-83
    • Hall, R.K.1
  • 134
    • 85027954925 scopus 로고    scopus 로고
    • Hyperspectral tree species classification of Japanese complex mixed forest with the aid of lidar data
    • T. Matsuki, N. Yokoya, and A. Iwasaki, "Hyperspectral tree species classification of Japanese complex mixed forest with the aid of lidar data," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 8, no. 5, pp. 2177-2187, 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.8 , Issue.5 , pp. 2177-2187
    • Matsuki, T.1    Yokoya, N.2    Iwasaki, A.3
  • 135
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and lidar remote sensing data for classification of complex forest areas
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and lidar remote sensing data for classification of complex forest areas," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1416-1427, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 136
    • 84905924444 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest
    • C. Debes et al., "Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 7, no. 6, pp. 2405-2418, 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.7 , Issue.6 , pp. 2405-2418
    • Debes, C.1
  • 137
    • 85006984491 scopus 로고    scopus 로고
    • New SHARE 2010 HSI-LiDAR dataset: Recalibration, detection assessment and delivery
    • E. J. Ientilucci, "New SHARE 2010 HSI-LiDAR dataset: Recalibration, detection assessment and delivery," in Proc. SPIE Imaging Spectrometry XXI, 2016. doi: 10.1117/12.2239044.
    • (2016) Proc. SPIE Imaging Spectrometry XXI
    • Ientilucci, E.J.1
  • 138
    • 85018628243 scopus 로고    scopus 로고
    • Hyperspectral and lidar fusion using extinction profiles and total variation component analysis
    • B. Rasti, P. Ghamisi, and R. Gloaguen, "Hyperspectral and lidar fusion using extinction profiles and total variation component analysis," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3997-4007, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3997-4007
    • Rasti, B.1    Ghamisi, P.2    Gloaguen, R.3
  • 139
    • 85020532300 scopus 로고    scopus 로고
    • Classification of hyperspectral and lidar data using extinction profiles with feature fusion
    • M. Zhang, P. Ghamisi, and W. Li, "Classification of hyperspectral and lidar data using extinction profiles with feature fusion," Remote Sens. Lett., vol. 8, no. 10, pp. 957-966, 2017.
    • (2017) Remote Sens. Lett. , vol.8 , Issue.10 , pp. 957-966
    • Zhang, M.1    Ghamisi, P.2    Li, W.3
  • 141
    • 84955098676 scopus 로고    scopus 로고
    • Multisource geospatial data fusion via local joint sparse representation
    • Y. Zhang and S. Prasad, "Multisource geospatial data fusion via local joint sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3265-3276, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3265-3276
    • Zhang, Y.1    Prasad, S.2
  • 142
    • 85007305421 scopus 로고    scopus 로고
    • Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network
    • P. Ghamisi, B. Höfle, and X. X. Zhu, "Hyperspectral and lidar data fusion using extinction profiles and deep convolutional neural network," IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens., vol. 10, no. 6, pp. 3011-3024, 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. in Remote Sens. , vol.10 , Issue.6 , pp. 3011-3024
    • Ghamisi, P.1    Höfle, B.2    Zhu, X.X.3
  • 143
    • 85029143056 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis
    • B. Rasti, P. Ghamisi, J. Plaza, and A. Plaza, "Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis," IEEE Trans. Geosci. Remote Sens., vol., 55, no. 11, pp. 6354-6365, 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.11 , pp. 6354-6365
    • Rasti, B.1    Ghamisi, P.2    Plaza, J.3    Plaza, A.4
  • 144
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 145
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, "Morphological attribute profiles for the analysis of very high resolution images," IEEE Trans. Geos. Remote Sens., vol. 48, no. 10, pp. 3747-3762, 2010.
    • (2010) IEEE Trans. Geos. Remote Sens. , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 147
    • 84878147291 scopus 로고    scopus 로고
    • A novel technique for optimal feature selection in attribute profiles based on genetic algorithms
    • M. Pedergnana, P. R. Marpu, M. D. Mura, J. A. Benediktsson, and L. Bruzzone, "A novel technique for optimal feature selection in attribute profiles based on genetic algorithms," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3514-3528, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.6 , pp. 3514-3528
    • Pedergnana, M.1    Marpu, P.R.2    Mura, M.D.3    Benediktsson, J.A.4    Bruzzone, L.5
  • 148
    • 84938975533 scopus 로고    scopus 로고
    • Land-cover classification using both hyperspectral and lidar data
    • P. Ghamisi, J. A. Benediktsson, and S. Phinn, "Land-cover classification using both hyperspectral and lidar data," Int. J. Image Data Fusion, vol. 6, no. 3, pp. 189-215, 2015.
    • (2015) Int. J. Image Data Fusion , vol.6 , Issue.3 , pp. 189-215
    • Ghamisi, P.1    Benediktsson, J.A.2    Phinn, S.3
  • 149
    • 84981321229 scopus 로고    scopus 로고
    • Hyperspectral feature extraction using total variation component analysis
    • B. Rasti, M. O. Ulfarsson, and J. R. Sveinsson, "Hyperspectral feature extraction using total variation component analysis," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 6976-6985, 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.12 , pp. 6976-6985
    • Rasti, B.1    Ulfarsson, M.O.2    Sveinsson, J.R.3
  • 150
    • 84901822956 scopus 로고    scopus 로고
    • Wavelet-based sparse reduced-rank regression for hyperspectral image restoration
    • B. Rasti, J. R. Sveinsson, and M. O. Ulfarsson, "Wavelet-based sparse reduced-rank regression for hyperspectral image restoration," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6688-6698, 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6688-6698
    • Rasti, B.1    Sveinsson, J.R.2    Ulfarsson, M.O.3
  • 151
    • 85011096863 scopus 로고    scopus 로고
    • Sparse and low-rank feature extraction for the classification of target's tracking capability
    • B. Rasti and K. S. Gudmundsson, "Sparse and low-rank feature extraction for the classification of target's tracking capability," Proc. SPIE, vol. 9970, 2016. doi: 10.1117/12.2240282. [Online]. Available: http://dx.doi.org/10.1117/12.2240282
    • (2016) Proc. SPIE , vol.9970
    • Rasti, B.1    Gudmundsson, K.S.2
  • 153
    • 85020375761 scopus 로고    scopus 로고
    • Deep fusion of remote sensing data for accurate classification
    • Y. Chen, C. Li, P. Ghamisi, X. Jia, and Y. Gu, "Deep fusion of remote sensing data for accurate classification," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 8, pp. 1253-1257, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.8 , pp. 1253-1257
    • Chen, Y.1    Li, C.2    Ghamisi, P.3    Jia, X.4    Gu, Y.5
  • 154
    • 85055410919 scopus 로고    scopus 로고
    • Hyperspectral and lidar fusion using deep three-stream convolutional neural networks
    • H. Li, P. Ghamisi, U. Soergel, and X. X. Zhu, "Hyperspectral and lidar fusion using deep three-stream convolutional neural networks," Remote Sens., vol. 10, no. 10, p. 1649, 2018.
    • (2018) Remote Sens. , vol.10 , Issue.10 , pp. 1649
    • Li, H.1    Ghamisi, P.2    Soergel, U.3    Zhu, X.X.4
  • 155
    • 85042846217 scopus 로고    scopus 로고
    • Img2dsm: Height simulation from single imagery using conditional generative adversarial net
    • May
    • P. Ghamisi and N. Yokoya, "Img2dsm: Height simulation from single imagery using conditional generative adversarial net," IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 794-798, May 2018.
    • (2018) IEEE Geosci. Remote Sens. Lett. , vol.15 , Issue.5 , pp. 794-798
    • Ghamisi, P.1    Yokoya, N.2
  • 157
    • 84961815144 scopus 로고    scopus 로고
    • Optical remotely sensed time series data for land cover classification: A review
    • C. Gomez, J. C. White, and M. A. Wulder, "Optical remotely sensed time series data for land cover classification: A review," ISPRS J. Photogrammetry Remote Sens., vol. 116, pp. 55-72, 2016. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0924271616000769
    • (2016) ISPRS J. Photogrammetry Remote Sens. , vol.116 , pp. 55-72
    • Gomez, C.1    White, J.C.2    Wulder, M.A.3
  • 158
    • 84943795616 scopus 로고    scopus 로고
    • The time variable in data fusion: A change detection perspective
    • F. Bovolo and L. Bruzzone, "The time variable in data fusion: A change detection perspective," IEEE Geosci. Remote Sens. Mag., vol. 3, no. 3, pp. 8-26, 2015.
    • (2015) IEEE Geosci. Remote Sens. Mag. , vol.3 , Issue.3 , pp. 8-26
    • Bovolo, F.1    Bruzzone, L.2
  • 159
    • 0024855524 scopus 로고
    • Digital change detection techniques using remotely sensed data
    • A. Singh, "Digital change detection techniques using remotely sensed data," Int. J. Remote Sens., vol. 10, no. 6, pp. 989-1003, 1988.
    • (1988) Int. J. Remote Sens. , vol.10 , Issue.6 , pp. 989-1003
    • Singh, A.1
  • 160
    • 84874545870 scopus 로고    scopus 로고
    • A novel framework for the design of change-detection systems for very-high-resolution remote sensing images
    • L. Bruzzone and F. Bovolo, "A novel framework for the design of change-detection systems for very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 609-630, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 609-630
    • Bruzzone, L.1    Bovolo, F.2
  • 161
    • 85179382555 scopus 로고    scopus 로고
    • ESA Sentinel Online
    • ESA Sentinel Online. [Online]. Available: https://sentinel.esa .int/web/sentinel/home
  • 163
    • 85045963810 scopus 로고    scopus 로고
    • An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors
    • Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, "An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors," Remote Sens., vol. 10, no. 4, p. 533, 2018.
    • (2018) Remote Sens. , vol.10 , Issue.4 , pp. 533
    • Solano-Correa, Y.T.1    Bovolo, F.2    Bruzzone, L.3
  • 164
    • 53349101395 scopus 로고    scopus 로고
    • Conditional copulas for change detection in heterogeneous remote sensing images
    • G. Mercier, G. Moser, and S. B. Serpico, "Conditional copulas for change detection in heterogeneous remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1428-1441, 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1428-1441
    • Mercier, G.1    Moser, G.2    Serpico, S.B.3
  • 165
    • 77951295197 scopus 로고    scopus 로고
    • Earthquake damage assessment of buildings using VHR optical and SAR imagery
    • D. Brunner, G. Lemoine, and L. Bruzzone, "Earthquake damage assessment of buildings using VHR optical and SAR imagery," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2403-2420, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2403-2420
    • Brunner, D.1    Lemoine, G.2    Bruzzone, L.3
  • 167
    • 70350061503 scopus 로고    scopus 로고
    • Detecting trend and seasonal changes in satellite image time series
    • J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, "Detecting trend and seasonal changes in satellite image time series," Remote Sens. Environ., vol. 114, no. 1, pp. 106-115, 2010. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S003442570900265X
    • (2010) Remote Sens. Environ. , vol.114 , Issue.1 , pp. 106-115
    • Verbesselt, J.1    Hyndman, R.2    Newnham, G.3    Culvenor, D.4
  • 168
    • 85010648872 scopus 로고    scopus 로고
    • High-resolution mapping of global surface water and its long-term changes
    • J. Pekel, A. Cottam, N. Gorelick, and A. Belward, "High-resolution mapping of global surface water and its long-term changes," Nature, vol. 540, no. 7633, pp. 418-422, 2016.
    • (2016) Nature , vol.540 , Issue.7633 , pp. 418-422
    • Pekel, J.1    Cottam, A.2    Gorelick, N.3    Belward, A.4
  • 169
    • 84978680222 scopus 로고    scopus 로고
    • Monitoring desertification by remote sensing using the tasselled cap transform for long-term change detection
    • A. Zanchetta, G. Bitelli, and A. Karnieli, "Monitoring desertification by remote sensing using the tasselled cap transform for long-term change detection," Natural Hazards, vol. 83, no. 1, pp. 223-237, 2016. [Online]. Available: https://doi.org/10.1007/ s11069-016-2342-9
    • (2016) Natural Hazards , vol.83 , Issue.1 , pp. 223-237
    • Zanchetta, A.1    Bitelli, G.2    Karnieli, A.3
  • 170
    • 22744440241 scopus 로고    scopus 로고
    • Prototyping a global algorithm for systematic fire-affected area mapping using modis time series data
    • D. Roy, Y. Jin, P. Lewis, and C. Justice, "Prototyping a global algorithm for systematic fire-affected area mapping using modis time series data," Remote Sens. Environ., vol. 97, no. 2, pp. 137-162, 2005. [Online]. Available: http://www.sciencedirect .com/science/article/pii/S0034425705001136
    • (2005) Remote Sens. Environ. , vol.97 , Issue.2 , pp. 137-162
    • Roy, D.1    Jin, Y.2    Lewis, P.3    Justice, C.4
  • 171
    • 0032638011 scopus 로고    scopus 로고
    • A neural-statistical approach to multitemporal and multisource remote-sensing image classification
    • L. Bruzzone, D. F. Prieto, and S. B. Serpico, "A neural-statistical approach to multitemporal and multisource remote-sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 3, pp. 1350-1359, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.3 , pp. 1350-1359
    • Bruzzone, L.1    Prieto, D.F.2    Serpico, S.B.3
  • 172
    • 0031186955 scopus 로고    scopus 로고
    • An iterative technique for the detection of land-cover transitions in multitemporal remotesensing images
    • L. Bruzzone and S. B. Serpico, "An iterative technique for the detection of land-cover transitions in multitemporal remotesensing images," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 858-867, 1997.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , Issue.4 , pp. 858-867
    • Bruzzone, L.1    Serpico, S.B.2
  • 173
    • 85042372983 scopus 로고    scopus 로고
    • Effective sequential classifier training for SVM-based multitemporal remote sensing image classification
    • Y. Guo, X. Jia, and D. Paull, "Effective sequential classifier training for SVM-based multitemporal remote sensing image classification," IEEE Trans. Image Process., vol. 27, no. 6, pp. 3036-3048, 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.6 , pp. 3036-3048
    • Guo, Y.1    Jia, X.2    Paull, D.3
  • 174
    • 3042559631 scopus 로고    scopus 로고
    • An advanced system for the automatic classification of multitemporal SAR images
    • L. Bruzzone, M. Marconcini, U. Wegmuller, and A. Wiesmann, "An advanced system for the automatic classification of multitemporal SAR images," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 6, pp. 1321-1334, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.6 , pp. 1321-1334
    • Bruzzone, L.1    Marconcini, M.2    Wegmuller, U.3    Wiesmann, A.4
  • 175
    • 4544379476 scopus 로고    scopus 로고
    • Detection of landcover transitions by combining multidate classifiers
    • L. Bruzzone, R. Cossu, and G. Vernazza, "Detection of landcover transitions by combining multidate classifiers," Pattern Recogn. Lett., vol. 25, no. 13, pp. 1491-1500, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2004 .06.002
    • (2004) Pattern Recogn. Lett. , vol.25 , Issue.13 , pp. 1491-1500
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 176
    • 0018155973 scopus 로고
    • Bayesian classification in a time-varying environment
    • P. H. Swain, "Bayesian classification in a time-varying environment," IEEE Trans. Syst., Man, Cybern., vol. 8, no. 12, pp. 879-883, 1978.
    • (1978) IEEE Trans. Syst., Man, Cybern. , vol.8 , Issue.12 , pp. 879-883
    • Swain, P.H.1
  • 177
    • 63149099144 scopus 로고    scopus 로고
    • Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy
    • L. Bruzzone and M. Marconcini, "Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1108-1122, 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1108-1122
    • Bruzzone, L.1    Marconcini, M.2
  • 178
    • 77953132953 scopus 로고    scopus 로고
    • A support vector domain method for change detection in multitemporal images
    • F. Bovolo, G. Camps-Valls, and L. Bruzzone, "A support vector domain method for change detection in multitemporal images," Pattern Recog. Lett., vol. 31, no. 10, pp. 1148-1154, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0167865509001676
    • (2010) Pattern Recog. Lett. , vol.31 , Issue.10 , pp. 1148-1154
    • Bovolo, F.1    Camps-Valls, G.2    Bruzzone, L.3
  • 179
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of landcover maps
    • L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of landcover maps," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 180
    • 0036896357 scopus 로고    scopus 로고
    • Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
    • L. Bruzzone, R. Cossu, and G. Vernazza, "Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images," Inf. Fusion, vol. 3, no. 4, pp. 289-297, 2002. [Online]. Available: http://www .sciencedirect.com/science/article/pii/S156625350200091X
    • (2002) Inf. Fusion , vol.3 , Issue.4 , pp. 289-297
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 181
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, "Deep learning classification of land cover and crop types using remote sensing data," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778-782, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.5 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 182
    • 85029152660 scopus 로고    scopus 로고
    • Land cover classification via multitemporal spatial data by deep recurrent neural networks
    • D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, "Land cover classification via multitemporal spatial data by deep recurrent neural networks," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1685-1689, 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.10 , pp. 1685-1689
    • Ienco, D.1    Gaetano, R.2    Dupaquier, C.3    Maurel, P.4
  • 183
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • L. Bruzzone and D. F. Prieto, "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Prieto, D.F.2
  • 184
    • 0036643396 scopus 로고    scopus 로고
    • A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images
    • L. Bruzzone and D. F. Prieto, "A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images," Pattern Recog. Lett., vol. 23, no. 9, pp. 1063-1071, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0167865502000533
    • (2002) Pattern Recog. Lett. , vol.23 , Issue.9 , pp. 1063-1071
    • Bruzzone, L.1    Prieto, D.F.2
  • 185
    • 84860338492 scopus 로고    scopus 로고
    • Detection of landcover transitions in multitemporal remote sensing images with active-learning-based compound classification
    • B. Demir, F. Bovolo, and L. Bruzzone, "Detection of landcover transitions in multitemporal remote sensing images with active-learning-based compound classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1930-1941, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1930-1941
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 186
    • 84862996106 scopus 로고    scopus 로고
    • A novel domain adaptation Bayesian classifier for updating landcover maps with class differences in source and target domains
    • K. Bahirat, F. Bovolo, L. Bruzzone, and S. Chaudhuri, "A novel domain adaptation bayesian classifier for updating landcover maps with class differences in source and target domains," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2810-2826, 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2810-2826
    • Bahirat, K.1    Bovolo, F.2    Bruzzone, L.3    Chaudhuri, S.4
  • 187
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 300-312, 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 188
    • 84879064950 scopus 로고    scopus 로고
    • Classification of time series of multispectral images with limited training data
    • B. Demir, F. Bovolo, and L. Bruzzone, "Classification of time series of multispectral images with limited training data," IEEE Trans. Image Process., vol. 22, no. 8, pp. 3219-3233, 2013.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.8 , pp. 3219-3233
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 189
    • 77949852900 scopus 로고    scopus 로고
    • Domain adaptation problems: A DASVM classification technique and a circular validation strategy
    • L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM classification technique and a circular validation strategy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 770-787
    • Bruzzone, L.1    Marconcini, M.2
  • 190
    • 84994297166 scopus 로고    scopus 로고
    • Big data for remote sensing: Challenges and opportunities
    • M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, "Big data for remote sensing: Challenges and opportunities," Proc. IEEE, vol. 104, no. 11, pp. 2207-2219, 2016.
    • (2016) Proc. IEEE , vol.104 , Issue.11 , pp. 2207-2219
    • Chi, M.1    Plaza, A.2    Benediktsson, J.A.3    Sun, Z.4    Shen, J.5    Zhu, Y.6
  • 191
    • 85179436776 scopus 로고    scopus 로고
    • Xinhua China Daily, Jan. 27
    • Xinhua, "China to launch 60 Jilin-1 video satellites by 2020," China Daily, Jan. 27, 2018. [Online]. Available: http://www .chinadaily.com.cn/a/201801/27/WS5a6c360ea3106e7dcc137247 .html
    • (2018) China to Launch 60 Jilin-1 Video Satellites by 2020
  • 192
    • 85029173213 scopus 로고    scopus 로고
    • A novel methodology to label urban remote sensing images based on location-based social media photos
    • M. Chi, Z. Sun, Y. Qin, J. Shen, and J. A. Benediktsson, "A novel methodology to label urban remote sensing images based on location-based social media photos," Proc. IEEE, vol. 105, no. 10, pp. 1926-1936, 2017.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1926-1936
    • Chi, M.1    Sun, Z.2    Qin, Y.3    Shen, J.4    Benediktsson, J.A.5
  • 193
    • 33745433012 scopus 로고    scopus 로고
    • Smart cities: Quality of life, productivity, and the growth effects of human capital
    • J. M. Shapiro, "Smart cities: Quality of life, productivity, and the growth effects of human capital," Rev. Econ. Statist., vol. 88, no. 2, pp. 324-335, 2006.
    • (2006) Rev. Econ. Statist. , vol.88 , Issue.2 , pp. 324-335
    • Shapiro, J.M.1
  • 194
    • 84874548105 scopus 로고    scopus 로고
    • Human settlements: A global challenge for EO data processing and interpretation
    • P. Gamba, "Human settlements: A global challenge for EO data processing and interpretation," Proc. IEEE, vol. 101, no. 3, pp. 570-581, 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 570-581
    • Gamba, P.1
  • 195
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, "Automated hyperspectral cueing for civilian search and rescue," Proc. IEEE, vol. 97, no. 6, pp. 1031-1055, 2009.
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.T.1    Stocker, A.D.2    Nasrabadi, N.M.3
  • 196
    • 84866550700 scopus 로고    scopus 로고
    • Information extraction from remote sensing images for flood monitoring and damage evaluation
    • S. B. Serpico, S. Dellepiane, G. Boni, G. Moser, E. Angiati, and R. Rudari, "Information extraction from remote sensing images for flood monitoring and damage evaluation," Proc. IEEE, vol. 100, no. 10, pp. 2946-2970, 2012.
    • (2012) Proc. IEEE , vol.100 , Issue.10 , pp. 2946-2970
    • Serpico, S.B.1    Dellepiane, S.2    Boni, G.3    Moser, G.4    Angiati, E.5    Rudari, R.6
  • 198
    • 81355138524 scopus 로고    scopus 로고
    • Mobile crowdsensing: Current state and future challenges
    • R. Ganti, F. Ye, and H. Lei, "Mobile crowdsensing: Current state and future challenges," IEEE Commun. Mag., vol. 49, no. 11, pp. 32-39, 2011.
    • (2011) IEEE Commun. Mag. , vol.49 , Issue.11 , pp. 32-39
    • Ganti, R.1    Ye, F.2    Lei, H.3
  • 199
    • 84856005946 scopus 로고    scopus 로고
    • Crowdsourcing earthquake damage assessment using remote sensing imagery
    • L. Barrington, S. Ghosh, M. Greene, and S. Harnoy, "Crowdsourcing earthquake damage assessment using remote sensing imagery," Ann. Geophys., vol. 54, no. 6, pp. 680-687, 2011.
    • (2011) Ann. Geophys. , vol.54 , Issue.6 , pp. 680-687
    • Barrington, L.1    Ghosh, S.2    Greene, M.3    Harnoy, S.4
  • 201
    • 84953314366 scopus 로고    scopus 로고
    • Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study
    • G. Cervone, E. Sava, Q. Huang, E. Schnebele, J. Harrison, and N. Waters, "Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study," Int. J. Remote Sens., vol. 37, no. 1, pp. 100-124, 2015.
    • (2015) Int. J. Remote Sens. , vol.37 , Issue.1 , pp. 100-124
    • Cervone, G.1    Sava, E.2    Huang, Q.3    Schnebele, E.4    Harrison, J.5    Waters, N.6
  • 202
    • 74049113467 scopus 로고    scopus 로고
    • 1st ed. Sebastopol, CA: O'Reilly Media, Inc.
    • T. White, Hadoop: The Definitive Guide, 1st ed. Sebastopol, CA: O'Reilly Media, Inc., 2009.
    • (2009) Hadoop: The Definitive Guide
    • White, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.