메뉴 건너뛰기




Volumn 6, Issue 3, 2015, Pages 189-215

Land-cover classification using both hyperspectral and LiDAR data

Author keywords

extended multi attribute profile; hyperspectral; LiDAR; random forest classification; support vector machine classification

Indexed keywords

DATA INTEGRATION; DATA MINING; DECISION TREES; FEATURE EXTRACTION; LITHIUM COMPOUNDS; OPTICAL RADAR; SUPPORT VECTOR MACHINES;

EID: 84938975533     PISSN: 19479832     EISSN: 19479824     Source Type: Journal    
DOI: 10.1080/19479832.2015.1055833     Document Type: Article
Times cited : (79)

References (26)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L.Breiman,, 2001. Random forests. Mach Learning, 45 (1), 532.
    • (2001) Mach Learning , vol.45 , Issue.1 , pp. 532
    • Breiman, L.1
  • 2
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    • M.Dalponte,, L.Bruzzone,, and D.Gianelle,, 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46 (5), 1416–1427. doi:10.1109/TGRS.2008.916480
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 3
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • M.Dalla Mura,, et al., 2010. Morphological attribute profiles for the analysis of very high resolution images. IEEE Transactions onGeoscience and Remote Sensing, 48 (10), 3747–3762. doi:10.1109/TGRS.2010.2048116
    • (2010) IEEE Transactions onGeoscience and Remote Sensing , vol.48 , Issue.10 , pp. 3747-3762
    • Dalla Mura, M.1
  • 5
    • 84906951013 scopus 로고    scopus 로고
    • Feature selection based on hybridization of genetic algorithm and particle swarm optimization
    • P.Ghamisi, and J.A.Benediktsson,, 2015. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters, 12 (2), 309–313. doi:10.1109/LGRS.2014.2337320
    • (2015) IEEE Geoscience and Remote Sensing Letters , vol.12 , Issue.2 , pp. 309-313
    • Ghamisi, P.1    Benediktsson, J.A.2
  • 6
    • 84894272775 scopus 로고    scopus 로고
    • The spectral spatial classification of hyperspectral images based on hidden Markov random field and its expectation-maximization
    • Melbourne, VIC: IEEE
    • P.Ghamisi,, et al., 2013. The spectral spatial classification of hyperspectral images based on hidden Markov random field and its expectation-maximization. In: IGARSS’13. Melbourne, VIC: IEEE.
    • (2013) IGARSS’13
    • Ghamisi, P.1
  • 7
    • 84900815487 scopus 로고    scopus 로고
    • Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction
    • P.Ghamisi,, J.A.Benediktsson,, and J.R.Sveinsson,, 2014a. Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 52 (9), 5771–5782. doi:10.1109/TGRS.2013.2292544
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.9 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 8
    • 84896316919 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral images based on hidden Markov random fields
    • P.Ghamisi,, J.A.Benediktsson,, and M.O.Ulfarsson,, 2014b. Spectral–spatial classification of hyperspectral images based on hidden Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 52 (5), 2565–2574. doi:10.1109/TGRS.2013.2263282
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 9
    • 84896317057 scopus 로고    scopus 로고
    • Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
    • P.Ghamisi,, et al., 2014c. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 52 (5), 2382–2394. doi:10.1109/TGRS.2013.2260552
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.5 , pp. 2382-2394
    • Ghamisi, P.1
  • 10
    • 84888263781 scopus 로고    scopus 로고
    • Integration of segmentation techniques for classification of hyperspectral images
    • P.Ghamisi,, et al., 2014d. Integration of segmentation techniques for classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 11 (1), 342–346. doi:10.1109/LGRS.2013.2257675
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , Issue.1 , pp. 342-346
    • Ghamisi, P.1
  • 11
    • 84911439068 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LiDAR data in classification of urban areas
    • Québec City, QC: IEEE
    • P.Ghamisi,, et al., 2014e. Fusion of hyperspectral and LiDAR data in classification of urban areas. In: IEEE international geoscience and remote sensing symposium (IGARSS’14), 13–18 July.Québec City, QC: IEEE, 181–184.
    • (2014) IEEE international geoscience and remote sensing symposium (IGARSS’14) , pp. 181-184
    • Ghamisi, P.1
  • 12
    • 84905903346 scopus 로고    scopus 로고
    • Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles
    • P.Ghamisi,, et al., 2014f. Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing, 7 (6), 2147–2160. doi:10.1109/JSTARS.2014.2298876
    • (2014) IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.6 , pp. 2147-2160
    • Ghamisi, P.1
  • 14
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral–spatial classification techniques based on attribute profiles
    • P.Ghamisi,, M.Dalla Mura,, and J.A.Benediktsson,, 2015b. A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), 2335–2353. doi:10.1109/TGRS.2014.2358934
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 15
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G.Hughes,, 1968. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14 (1), 55–63. doi:10.1109/TIT.1968.1054102
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 16
    • 33646159066 scopus 로고    scopus 로고
    • Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy
    • P.Hyde,, et al., 2006. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sensing of Environment, 102 (1–2), 63–73. doi:10.1016/j.rse.2006.01.021
    • (2006) Remote Sensing of Environment , vol.102 , Issue.1-2 , pp. 63-73
    • Hyde, P.1
  • 17
    • 0003946510 scopus 로고    scopus 로고
    • Principal component analysis
    • New York: Springer
    • I.Jolliffe,, 2002. Principal component analysis. In: Springer series in statistics. New York: Springer.
    • (2002) Springer series in statistics
    • Jolliffe, I.1
  • 18
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • B.-C.Kuo, and D.A.Landgrebe,, 2002. A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2486–2494. doi:10.1109/TGRS.2002.805088
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2486-2494
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 21
    • 30444444937 scopus 로고    scopus 로고
    • Mapping sagebrush distribution using fusion of hyperspectral and LIDAR classifications
    • J.T.Mundt,, D.R.Streutker,, and N.F.Glenn,, 2006. Mapping sagebrush distribution using fusion of hyperspectral and LIDAR classifications. Photogrammetric Engineering &Remote Sensing, 72 (1), 47–54. doi:10.14358/PERS.72.1.47
    • (2006) Photogrammetric Engineering &Remote Sensing , vol.72 , Issue.1 , pp. 47-54
    • Mundt, J.T.1    Streutker, D.R.2    Glenn, N.F.3
  • 22
    • 33745685587 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis
    • Seoul:
    • J.A.Palmason,, et al., 2005. Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In: IEEE international geoscience and remote sensing symposium (IGARSS’05), 25–29 July, Seoul, 176–179.
    • (2005) In: IEEE international geoscience and remote sensing symposium (IGARSS’05) , pp. 176-179
    • Palmason, J.A.1
  • 23
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • M.Pesaresi, and J.A.Benediktsson,, 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39 (2), 309–320. doi:10.1109/36.905239
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 25
    • 0003752735 scopus 로고    scopus 로고
    • Classification of high dimensional data with limited training samples
    • West Lafayette, IN: Purdue University
    • S.Tadjudin, and D.Landgrebe,, 1998. Classification of high dimensional data with limited training samples. In: Tech. rep., school of electrical and computer engineering. West Lafayette, IN: Purdue University.
    • (1998) Tech. rep., school of electrical and computer engineering
    • Tadjudin, S.1    Landgrebe, D.2
  • 26
    • 67949115614 scopus 로고    scopus 로고
    • Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Y.Tarabalka,, J.A.Benediktsson,, and J.Chanussot,, 2009. Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47 (8), 2973–2987. doi:10.1109/TGRS.2009.2016214
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.