-
1
-
-
0035478854
-
Random forests
-
L.Breiman,, 2001. Random forests. Mach Learning, 45 (1), 532.
-
(2001)
Mach Learning
, vol.45
, Issue.1
, pp. 532
-
-
Breiman, L.1
-
2
-
-
53349084895
-
Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
-
M.Dalponte,, L.Bruzzone,, and D.Gianelle,, 2008. Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 46 (5), 1416–1427. doi:10.1109/TGRS.2008.916480
-
(2008)
IEEE Transactions on Geoscience and Remote Sensing
, vol.46
, Issue.5
, pp. 1416-1427
-
-
Dalponte, M.1
Bruzzone, L.2
Gianelle, D.3
-
3
-
-
77957007028
-
Morphological attribute profiles for the analysis of very high resolution images
-
M.Dalla Mura,, et al., 2010. Morphological attribute profiles for the analysis of very high resolution images. IEEE Transactions onGeoscience and Remote Sensing, 48 (10), 3747–3762. doi:10.1109/TGRS.2010.2048116
-
(2010)
IEEE Transactions onGeoscience and Remote Sensing
, vol.48
, Issue.10
, pp. 3747-3762
-
-
Dalla Mura, M.1
-
5
-
-
84906951013
-
Feature selection based on hybridization of genetic algorithm and particle swarm optimization
-
P.Ghamisi, and J.A.Benediktsson,, 2015. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geoscience and Remote Sensing Letters, 12 (2), 309–313. doi:10.1109/LGRS.2014.2337320
-
(2015)
IEEE Geoscience and Remote Sensing Letters
, vol.12
, Issue.2
, pp. 309-313
-
-
Ghamisi, P.1
Benediktsson, J.A.2
-
6
-
-
84894272775
-
The spectral spatial classification of hyperspectral images based on hidden Markov random field and its expectation-maximization
-
Melbourne, VIC: IEEE
-
P.Ghamisi,, et al., 2013. The spectral spatial classification of hyperspectral images based on hidden Markov random field and its expectation-maximization. In: IGARSS’13. Melbourne, VIC: IEEE.
-
(2013)
IGARSS’13
-
-
Ghamisi, P.1
-
7
-
-
84900815487
-
Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction
-
P.Ghamisi,, J.A.Benediktsson,, and J.R.Sveinsson,, 2014a. Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 52 (9), 5771–5782. doi:10.1109/TGRS.2013.2292544
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, Issue.9
, pp. 5771-5782
-
-
Ghamisi, P.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
8
-
-
84896316919
-
Spectral–spatial classification of hyperspectral images based on hidden Markov random fields
-
P.Ghamisi,, J.A.Benediktsson,, and M.O.Ulfarsson,, 2014b. Spectral–spatial classification of hyperspectral images based on hidden Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 52 (5), 2565–2574. doi:10.1109/TGRS.2013.2263282
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, Issue.5
, pp. 2565-2574
-
-
Ghamisi, P.1
Benediktsson, J.A.2
Ulfarsson, M.O.3
-
9
-
-
84896317057
-
Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization
-
P.Ghamisi,, et al., 2014c. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Transactions on Geoscience and Remote Sensing, 52 (5), 2382–2394. doi:10.1109/TGRS.2013.2260552
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, Issue.5
, pp. 2382-2394
-
-
Ghamisi, P.1
-
10
-
-
84888263781
-
Integration of segmentation techniques for classification of hyperspectral images
-
P.Ghamisi,, et al., 2014d. Integration of segmentation techniques for classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 11 (1), 342–346. doi:10.1109/LGRS.2013.2257675
-
(2014)
IEEE Geoscience and Remote Sensing Letters
, vol.11
, Issue.1
, pp. 342-346
-
-
Ghamisi, P.1
-
11
-
-
84911439068
-
Fusion of hyperspectral and LiDAR data in classification of urban areas
-
Québec City, QC: IEEE
-
P.Ghamisi,, et al., 2014e. Fusion of hyperspectral and LiDAR data in classification of urban areas. In: IEEE international geoscience and remote sensing symposium (IGARSS’14), 13–18 July.Québec City, QC: IEEE, 181–184.
-
(2014)
IEEE international geoscience and remote sensing symposium (IGARSS’14)
, pp. 181-184
-
-
Ghamisi, P.1
-
12
-
-
84905903346
-
Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles
-
P.Ghamisi,, et al., 2014f. Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing, 7 (6), 2147–2160. doi:10.1109/JSTARS.2014.2298876
-
(2014)
IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, Issue.6
, pp. 2147-2160
-
-
Ghamisi, P.1
-
13
-
-
84921033974
-
A novel feature selection approach based on FODPSO and SVM
-
P.Ghamisi,, M.S.Couceiro,, and J.A.Benediktsson,, 2015a. A novel feature selection approach based on FODPSO and SVM. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), 2935–2947. doi:10.1109/TGRS.2014.2367010
-
(2015)
IEEE Transactions on Geoscience and Remote Sensing
, vol.53
, Issue.5
, pp. 2935-2947
-
-
Ghamisi, P.1
Couceiro, M.S.2
Benediktsson, J.A.3
-
14
-
-
84921020001
-
A survey on spectral–spatial classification techniques based on attribute profiles
-
P.Ghamisi,, M.Dalla Mura,, and J.A.Benediktsson,, 2015b. A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), 2335–2353. doi:10.1109/TGRS.2014.2358934
-
(2015)
IEEE Transactions on Geoscience and Remote Sensing
, vol.53
, Issue.5
, pp. 2335-2353
-
-
Ghamisi, P.1
Dalla Mura, M.2
Benediktsson, J.A.3
-
15
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
G.Hughes,, 1968. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14 (1), 55–63. doi:10.1109/TIT.1968.1054102
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.1
, pp. 55-63
-
-
Hughes, G.1
-
16
-
-
33646159066
-
Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy
-
P.Hyde,, et al., 2006. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sensing of Environment, 102 (1–2), 63–73. doi:10.1016/j.rse.2006.01.021
-
(2006)
Remote Sensing of Environment
, vol.102
, Issue.1-2
, pp. 63-73
-
-
Hyde, P.1
-
17
-
-
0003946510
-
Principal component analysis
-
New York: Springer
-
I.Jolliffe,, 2002. Principal component analysis. In: Springer series in statistics. New York: Springer.
-
(2002)
Springer series in statistics
-
-
Jolliffe, I.1
-
18
-
-
0036875217
-
A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
-
B.-C.Kuo, and D.A.Landgrebe,, 2002. A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40 (11), 2486–2494. doi:10.1109/TGRS.2002.805088
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.11
, pp. 2486-2494
-
-
Kuo, B.-C.1
Landgrebe, D.A.2
-
20
-
-
0027579237
-
Feature extraction based on decision boundaries
-
C.Lee, and D.A.Landgrebe,, 1993. Feature extraction based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15 (4), 388–400. doi:10.1109/34.206958
-
(1993)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.15
, Issue.4
, pp. 388-400
-
-
Lee, C.1
Landgrebe, D.A.2
-
21
-
-
30444444937
-
Mapping sagebrush distribution using fusion of hyperspectral and LIDAR classifications
-
J.T.Mundt,, D.R.Streutker,, and N.F.Glenn,, 2006. Mapping sagebrush distribution using fusion of hyperspectral and LIDAR classifications. Photogrammetric Engineering &Remote Sensing, 72 (1), 47–54. doi:10.14358/PERS.72.1.47
-
(2006)
Photogrammetric Engineering &Remote Sensing
, vol.72
, Issue.1
, pp. 47-54
-
-
Mundt, J.T.1
Streutker, D.R.2
Glenn, N.F.3
-
22
-
-
33745685587
-
Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis
-
Seoul:
-
J.A.Palmason,, et al., 2005. Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In: IEEE international geoscience and remote sensing symposium (IGARSS’05), 25–29 July, Seoul, 176–179.
-
(2005)
In: IEEE international geoscience and remote sensing symposium (IGARSS’05)
, pp. 176-179
-
-
Palmason, J.A.1
-
23
-
-
0035248508
-
A new approach for the morphological segmentation of high-resolution satellite imagery
-
M.Pesaresi, and J.A.Benediktsson,, 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39 (2), 309–320. doi:10.1109/36.905239
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.2
, pp. 309-320
-
-
Pesaresi, M.1
Benediktsson, J.A.2
-
25
-
-
0003752735
-
Classification of high dimensional data with limited training samples
-
West Lafayette, IN: Purdue University
-
S.Tadjudin, and D.Landgrebe,, 1998. Classification of high dimensional data with limited training samples. In: Tech. rep., school of electrical and computer engineering. West Lafayette, IN: Purdue University.
-
(1998)
Tech. rep., school of electrical and computer engineering
-
-
Tadjudin, S.1
Landgrebe, D.2
-
26
-
-
67949115614
-
Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques
-
Y.Tarabalka,, J.A.Benediktsson,, and J.Chanussot,, 2009. Spectral–spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47 (8), 2973–2987. doi:10.1109/TGRS.2009.2016214
-
(2009)
IEEE Transactions on Geoscience and Remote Sensing
, vol.47
, Issue.8
, pp. 2973-2987
-
-
Tarabalka, Y.1
Benediktsson, J.A.2
Chanussot, J.3
|