메뉴 건너뛰기




Volumn 14, Issue 10, 2017, Pages 1685-1689

Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks

Author keywords

Deep learning; land cover classification; recurrent neural networks (RNNs); satellite image time series

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; LONG SHORT-TERM MEMORY; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; REMOTE SENSING; SATELLITES; TIME SERIES;

EID: 85029152660     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2017.2728698     Document Type: Article
Times cited : (255)

References (18)
  • 1
    • 84942532243 scopus 로고    scopus 로고
    • Comparative analysis of modis time-series classification using support vector machines and methods based upon distance and similarity measures in the Brazilian Cerrado-Caatinga boundary
    • N. A. Abade, O. A. de C. Júnior, R. F. Guimarães, S. N. de Oliveira, "Comparative analysis of modis time-series classification using support vector machines and methods based upon distance and similarity measures in the Brazilian Cerrado-Caatinga boundary, " Remote Sens., vol. 7, no. 9, pp. 12160-12191, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.9 , pp. 12160-12191
    • Abade, N.A.1    De Júnior, C.O.A.2    Guimarães, R.F.3    De Oliveira, S.N.4
  • 2
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • Jan.
    • M. Baatz and A. Schäpe, "Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation, " Angew. Geographische Informationsverarbeitung, vol. 58, pp. 12-23, Jan. 2000.
    • (2000) Angew. Geographische Informationsverarbeitung , vol.58 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 4
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A library for support vector machines, " ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27-1-27-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chang, C.-C.1    Lin, C.-J.2
  • 5
    • 84971640658 scopus 로고    scopus 로고
    • [Online]. Available
    • F. Chollet. (2015). Keras. [Online]. Available: Https://github.com/fchollet/keras
    • (2015) Keras
    • Chollet, F.1
  • 7
    • 85028167248 scopus 로고    scopus 로고
    • Analysis of multitemporal classification techniques for forecasting image time series
    • May
    • R. Flamary, M. Fauvel, M. D. Mura, S. Valero, "Analysis of multitemporal classification techniques for forecasting image time series, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 5, pp. 953-957, May 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.5 , pp. 953-957
    • Flamary, R.1    Fauvel, M.2    Mura, M.D.3    Valero, S.4
  • 8
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A.-R. Mohamed, G. Hinton, "Speech recognition with deep recurrent neural networks, " in Proc. ICASSP, 2013, pp. 6645-6649.
    • (2013) Proc. ICASSP , pp. 6645-6649
    • Graves, A.1    Mohamed, A.-R.2    Hinton, G.3
  • 10
    • 84926382691 scopus 로고    scopus 로고
    • A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENS and Sentinel-2 images
    • O. Hagolle, M. Huc, D. V. Pascual, G. Dedieu, "A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENS and Sentinel-2 images, " Remote Sens., vol. 7, no. 3, pp. 2668-2691, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.3 , pp. 2668-2691
    • Hagolle, O.1    Huc, M.2    Pascual, D.V.3    Dedieu, G.4
  • 11
    • 85014052346 scopus 로고    scopus 로고
    • Classification and monitoring of Reed belts using dual-polarimetric TerraSAR-X time series
    • I. Heine, T. Jagdhuber, S. Itzerott, "Classification and monitoring of Reed belts using dual-polarimetric TerraSAR-X time series, " Remote Sens., vol. 8, no. 7, p. 552, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.7 , pp. 552
    • Heine, I.1    Jagdhuber, T.2    Itzerott, S.3
  • 13
    • 85021663297 scopus 로고    scopus 로고
    • Assessing the ability of LSTMs to learn syntax-sensitive dependencies
    • T. Linzen, E. Dupoux, Y. Goldberg, "Assessing the ability of LSTMs to learn syntax-sensitive dependencies, " Trans. ACL, vol. 4, pp. 521-535, 2016.
    • (2016) Trans. ACL , vol.4 , pp. 521-535
    • Linzen, T.1    Dupoux, E.2    Goldberg, Y.3
  • 14
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • H. Lyu, H. Lu, L. Mou, "Learning a transferable change rule from a recurrent neural network for land cover change detection, " Remote Sens., vol. 8, no. 6, p. 506, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.6 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 15
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in Python
    • Oct.
    • F. Pedregosa et al., "Scikit-learn: Machine learning in Python, " J. Mach. Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1
  • 16
    • 84928004000 scopus 로고    scopus 로고
    • Simultaneous multichannel signal transfers via chaos in a recurrent neural network
    • K. Soma, R. Mori, R. Sato, N. Furumai, S. Nara, "Simultaneous multichannel signal transfers via chaos in a recurrent neural network, " Neural Comput., vol. 27, no. 5, pp. 1083-1101, 2015.
    • (2015) Neural Comput. , vol.27 , Issue.5 , pp. 1083-1101
    • Soma, K.1    Mori, R.2    Sato, R.3    Furumai, N.4    Nara, S.5
  • 18
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the art
    • Jun.
    • L. Zhang, L. Zhang, B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the art, " IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.