메뉴 건너뛰기




Volumn 47, Issue 4, 2009, Pages 1108-1122

Toward the automatic updating of land-cover maps by a domain-adaptation SVM classifier and a circular validation strategy

Author keywords

Domain adaptation; Kernel methods; Partially unsupervised classification; Semisupervised classification; Support vector machines (SVMs); Transfer learning; Updating land cover maps; Validation strategy

Indexed keywords

CLASSIFIERS; GEARS; IMAGE RETRIEVAL; LANDFORMS; MULTILAYER NEURAL NETWORKS; REMOTE SENSING;

EID: 63149099144     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2008.2007741     Document Type: Article
Times cited : (109)

References (37)
  • 2
    • 0018155973 scopus 로고
    • Bayesian classification in a time-varying environment
    • Dec
    • P. H. Swain, "Bayesian classification in a time-varying environment," IEEE Trans. Syst., Man, Cybem., vol. SMC-8, no. 12, pp. 880-883, Dec. 1978.
    • (1978) IEEE Trans. Syst., Man, Cybem , vol.SMC-8 , Issue.12 , pp. 880-883
    • Swain, P.H.1
  • 3
    • 63149113547 scopus 로고    scopus 로고
    • Comput. Sci, Univ. Wisconsin-Madison, Madison, WI
    • X. Zhu, "Semi-supervised learning literature survey," Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, TR-1530, 2005.
    • Semi-supervised learning literature survey , vol.TR-1530 , pp. 2005
    • Zhu, X.1
  • 4
    • 0035248272 scopus 로고    scopus 로고
    • Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
    • Feb
    • L. Bruzzone and D. Fernandez Prieto, "Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 456-460, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.2 , pp. 456-460
    • Bruzzone, L.1    Fernandez Prieto, D.2
  • 5
    • 0036643396 scopus 로고    scopus 로고
    • A partially unsupervised approach to the automatic classification of multitemporal remote-sensing images
    • L. Bruzzone and D. Fernandez Prieto, "A partially unsupervised approach to the automatic classification of multitemporal remote-sensing images," Pattern Recognit. Lett., vol. 33, no. 9, pp. 1063-1071, 2002.
    • (2002) Pattern Recognit. Lett , vol.33 , Issue.9 , pp. 1063-1071
    • Bruzzone, L.1    Fernandez Prieto, D.2
  • 6
    • 0036896357 scopus 로고    scopus 로고
    • Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
    • Dec
    • L. Bruzzone, R. Cossu, and G. Vernazza, "Combining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images," Inf. Fusion, vol. 3, no. 4, pp. 289-297, Dec. 2002.
    • (2002) Inf. Fusion , vol.3 , Issue.4 , pp. 289-297
    • Bruzzone, L.1    Cossu, R.2    Vernazza, G.3
  • 7
    • 0036762743 scopus 로고    scopus 로고
    • A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
    • Sep
    • L. Bruzzone and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps." IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 1984-1996, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.9 , pp. 1984-1996
    • Bruzzone, L.1    Cossu, R.2
  • 8
    • 33749028480 scopus 로고    scopus 로고
    • Domain adaptation for statistical classifiers
    • H. Daumé, III and D. Marcu, "Domain adaptation for statistical classifiers," J. Artif. Intell. Res., vol. 26, pp. 101-126, 2006.
    • (2006) J. Artif. Intell. Res , vol.26 , pp. 101-126
    • Daumé III, H.1    Marcu, D.2
  • 9
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in NLP
    • Prague, Czech Republic
    • J. Jiang and C. Zhai, "Instance weighting for domain adaptation in NLP," in Proc. 45th Annu. Meeting Assoc. Comput. Linguistics, Prague, Czech Republic, 2007, pp. 264-271.
    • (2007) Proc. 45th Annu. Meeting Assoc. Comput. Linguistics , pp. 264-271
    • Jiang, J.1    Zhai, C.2
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," in J. R. Stat. Soc., B, vol. 39, 1977, pp. 1-38.
    • (1977) J. R. Stat. Soc., B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 13
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Sep
    • B. M. Shahshahani and D. A. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon." IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 14
    • 0033886917 scopus 로고    scopus 로고
    • Robust parameter estimation for mixture model
    • Jan
    • S. Tadjudin and D. A. Landgrebe, "Robust parameter estimation for mixture model," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 439-445, Jan. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens , vol.38 , Issue.1 , pp. 439-445
    • Tadjudin, S.1    Landgrebe, D.A.2
  • 15
    • 0036564114 scopus 로고    scopus 로고
    • An adaptive method for combined covariance estimation and classification
    • May
    • Q. Jackson and D. A. Landgrebe, "An adaptive method for combined covariance estimation and classification," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 5, pp. 1082-1087, May 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.5 , pp. 1082-1087
    • Jackson, Q.1    Landgrebe, D.A.2
  • 19
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 20
    • 1242308803 scopus 로고    scopus 로고
    • A cost-effective semisupervised classifier approach with kernels
    • Jan
    • M. M. Dundar and D. A. Landgrebe, "A cost-effective semisupervised classifier approach with kernels," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 1, pp. 264-270, Jan. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.1 , pp. 264-270
    • Dundar, M.M.1    Landgrebe, D.A.2
  • 21
    • 34249810956 scopus 로고    scopus 로고
    • Semisupervised classification of hyperspectral images by SVMs optimized in the primal
    • Jun
    • M. Chi and L. Bruzzone, "Semisupervised classification of hyperspectral images by SVMs optimized in the primal," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1870-1880, Jun. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 22
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • May
    • O. Chapelle, "Training a support vector machine in the primal," Neural Comput., vol. 19, no. 5, pp. 1155-1178, May 2007.
    • (2007) Neural Comput , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 23
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct
    • G. Camps-Valls, T. Bandos, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 24
    • 84899006908 scopus 로고    scopus 로고
    • Learning with local and global consistency
    • S. Thrun. L. Saul, and B. Scholkopf, Eds. Cambridge. MA: MIT Press
    • D. Zhou, I. Huang, and B. Scholkopf, "Learning with local and global consistency," in Advances in Neural Information Processing System, vol. 16, S. Thrun. L. Saul, and B. Scholkopf, Eds. Cambridge. MA: MIT Press, 2004, pp. 321-328.
    • (2004) Advances in Neural Information Processing System , vol.16 , pp. 321-328
    • Zhou, D.1    Huang, I.2    Scholkopf, B.3
  • 26
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Nov
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Much. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006.
    • (2006) J. Much. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 28
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for ill-posed classification problems
    • Jan
    • M. Chi and L. Bruzzone, "A semilabeled-sample-driven bagging technique for ill-posed classification problems," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 69-73, Jan. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 29
    • 30344473619 scopus 로고    scopus 로고
    • An ensemble-driven k-NN approach to illposed classification problems
    • Mar
    • M. Chi and L. Bruzzone, "An ensemble-driven k-NN approach to illposed classification problems," Pattern Recognit. Lett., vol. 27, no. 4, pp. 301-307, Mar. 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , Issue.4 , pp. 301-307
    • Chi, M.1    Bruzzone, L.2
  • 32
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • Jun
    • T. M. Cover, "Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition," IEEE Trans. Electron. Comput., vol. EC-14, no. 3, pp. 326-334, Jun. 1965.
    • (1965) IEEE Trans. Electron. Comput , vol.EC-14 , Issue.3 , pp. 326-334
    • Cover, T.M.1
  • 33
    • 0038731227 scopus 로고    scopus 로고
    • Learning with progressive transductive support vector machine
    • Aug
    • Y. Chen, G. Wang, and S. Dong, "Learning with progressive transductive support vector machine," Pattern Recognit. Lett., vol. 24, no. 12, pp. 1845-1855, Aug. 2003.
    • (2003) Pattern Recognit. Lett , vol.24 , Issue.12 , pp. 1845-1855
    • Chen, Y.1    Wang, G.2    Dong, S.3
  • 34
    • 42449121174 scopus 로고    scopus 로고
    • Semisupervised support vector machines for classification of hyperspectral remote sensing images
    • New York: Wiley-Interscience
    • L. Bruzzone, M. Chi, and M. Marconcini, "Semisupervised support vector machines for classification of hyperspectral remote sensing images," in Hyperspectral Data Exploitation Theory and Applications. New York: Wiley-Interscience, 2007, pp. 275-311.
    • (2007) Hyperspectral Data Exploitation Theory and Applications , pp. 275-311
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 35
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Jan
    • J. Lin, "Divergence measures based on the Shannon entropy," IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 145-151, Jan. 1991.
    • (1991) IEEE Trans. Inf. Theory , vol.37 , Issue.1 , pp. 145-151
    • Lin, J.1
  • 36
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Mar
    • S. Kullback and R. Leibler, "On information and sufficiency," Ann. Math. Stat., vol. 22, no. 1, pp. 79-86, Mar. 1951.
    • (1951) Ann. Math. Stat , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.2
  • 37
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scholkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press
    • J. Platt, "Fast training of support vector machines using sequential minimal optimization," in Advances in Kernel Methods: Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, Eds. Cambridge, MA: MIT Press, 1998, pp. 185-208.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.