-
1
-
-
84859427372
-
Sentinel-2: ESA's optical high-resolution mission for GMES operational services
-
May
-
M. Drusch et al., "Sentinel-2: ESA's optical high-resolution mission for GMES operational services," Remote Sens. Environ., vol. 120, pp. 25-36, May 2012.
-
(2012)
Remote Sens. Environ.
, vol.120
, pp. 25-36
-
-
Drusch, M.1
-
2
-
-
84863393480
-
GMES sentinel-1 mission
-
May
-
R. Torres et al., "GMES Sentinel-1 mission," Remote Sens. Environ., vol. 120, pp. 9-24, May 2012.
-
(2012)
Remote Sens. Environ.
, vol.120
, pp. 9-24
-
-
Torres, R.1
-
3
-
-
84896818071
-
Landsat-8: Science and product vision for terrestrial global change research
-
Apr.
-
D. P. Roy et al., "Landsat-8: Science and product vision for terrestrial global change research," Remote Sens. Environ., vol. 145, pp. 154-172, Apr. 2014.
-
(2014)
Remote Sens. Environ.
, vol.145
, pp. 154-172
-
-
Roy, D.P.1
-
4
-
-
79551513995
-
Multi-source remote sensing data fusion: Status and trends
-
Nov.
-
J. Zhang, "Multi-source remote sensing data fusion: Status and trends," Int. J. Image Data Fusion, vol. 1, no. 1, pp. 5-24, Nov. 2010.
-
(2010)
Int. J. Image Data Fusion
, vol.1
, Issue.1
, pp. 5-24
-
-
Zhang, J.1
-
5
-
-
85027927995
-
Challenges and opportunities of multimodality and data fusion in remote sensing
-
Sep.
-
M. D. Mura, S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A. Benediktsson, "Challenges and opportunities of multimodality and data fusion in remote sensing," Proc. IEEE, vol. 103, no. 9, pp. 1585-1601, Sep. 2015.
-
(2015)
Proc. IEEE
, vol.103
, Issue.9
, pp. 1585-1601
-
-
Mura, M.D.1
Prasad, S.2
Pacifici, F.3
Gamba, P.4
Chanussot, J.5
Benediktsson, J.A.6
-
6
-
-
84930408057
-
Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine
-
A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., vol. 40, no. 7, p. 35, 2015, doi: 10.5194/isprsarchives-XL-7-W3-39-2015.
-
(2015)
Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci.
, vol.40
, Issue.7
, pp. 35
-
-
Kolotii, A.1
-
7
-
-
84883343032
-
Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models
-
F. Kogan et al., "Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models," J. Autom. Inf. Sci., vol. 45, no. 6, pp. 68-81, 2013.
-
(2013)
J. Autom. Inf. Sci.
, vol.45
, Issue.6
, pp. 68-81
-
-
Kogan, F.1
-
8
-
-
84880317742
-
Winter wheat yield forecasting in Ukraine based on earth observation, meteorological data and biophysical models
-
Aug.
-
F. Kogan et al., "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," Int. J. Appl. Earth Observat. Geoinf., vol. 23, pp. 192-203, Aug. 2013.
-
(2013)
Int. J. Appl. Earth Observat. Geoinf.
, vol.23
, pp. 192-203
-
-
Kogan, F.1
-
9
-
-
84897378292
-
Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2
-
May
-
H. McNairn, A. Kross, D. Lapen, R. Caves, and J. Shang, "Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2," Int. J. Appl. Earth Observat. Geoinf., vol. 28, pp. 252-259, May 2014.
-
(2014)
Int. J. Appl. Earth Observat. Geoinf.
, vol.28
, pp. 252-259
-
-
McNairn, H.1
Kross, A.2
Lapen, D.3
Caves, R.4
Shang, J.5
-
10
-
-
84938815954
-
Efficiency assessment of multitemporal C-band radarsat-2 intensity and landsat-8 surface reflectance satellite imagery for crop classification in Ukraine
-
Aug.
-
S. Skakun, N. Kussul, A. Y. Shelestov, M. Lavreniuk, and O. Kussul, "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3712-3719, Aug. 2016.
-
(2016)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.9
, Issue.8
, pp. 3712-3719
-
-
Skakun, S.1
Kussul, N.2
Shelestov, A.Y.3
Lavreniuk, M.4
Kussul, O.5
-
11
-
-
84958236853
-
A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
-
May
-
R. Khatami, G. Mountrakis, and S. V. Stehman, "A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research," Remote Sens. Environ., vol. 177, pp. 89-100, May 2016.
-
(2016)
Remote Sens. Environ.
, vol.177
, pp. 89-100
-
-
Khatami, R.1
Mountrakis, G.2
Stehman, S.V.3
-
12
-
-
30344471525
-
Random forests for land cover classification
-
P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson, "Random Forests for land cover classification," Pattern Recognit. Lett., vol. 27, no. 4, pp. 294-300, 2006.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, Issue.4
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
13
-
-
82655173888
-
Remote sensing image classification based on neural network ensemble algorithm
-
M. Han, X. Zhu, and W. Yao, "Remote sensing image classification based on neural network ensemble algorithm," Neurocomputing, vol. 78, no. 1, pp. 133-138, 2012.
-
(2012)
Neurocomputing
, vol.78
, Issue.1
, pp. 133-138
-
-
Han, M.1
Zhu, X.2
Yao, W.3
-
14
-
-
84871748730
-
An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
-
Jan.
-
X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
-
(2013)
IEEE Trans. Geosci. Remote Sens
, vol.51
, Issue.1
, pp. 257-272
-
-
Huang, X.1
Zhang, L.2
-
15
-
-
85007384910
-
Large-scale classification of land cover using retrospective satellite data
-
M. S. Lavreniuk et al., "Large-scale classification of land cover using retrospective satellite data," Cybern. Syst. Anal., vol. 52, no. 1, pp. 127-138, 2016.
-
(2016)
Cybern. Syst. Anal.
, vol.52
, Issue.1
, pp. 127-138
-
-
Lavreniuk, M.S.1
-
16
-
-
84969492132
-
Parcel-based crop classification in Ukraine using landsat-8 data and sentinel-1A data
-
Jan.
-
N. Kussul, G. Lemoine, F. J. Gallego, S. V. Skakun, M. Lavreniuk, and A. Y. Shelestov, "Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 6, pp. 2500-2508, Jan. 2016.
-
(2016)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.9
, Issue.6
, pp. 2500-2508
-
-
Kussul, N.1
Lemoine, G.2
Gallego, F.J.3
Skakun, S.V.4
Lavreniuk, M.5
Shelestov, A.Y.6
-
17
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun.
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
18
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
Mar.
-
W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155-165, Mar. 2016.
-
(2016)
ISPRS J. Photogramm. Remote Sens
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
19
-
-
84981350581
-
Land cover changes analysis based on deep machine learning technique
-
N. Kussul, N. Lavreniuk, A. Shelestov, B. Yailymov, and I. Butko, "Land cover changes analysis based on deep machine learning technique," J. Autom. Inf. Sci., vol. 48, no. 5, pp. 42-54, 2016.
-
(2016)
J. Autom. Inf. Sci.
, vol.48
, Issue.5
, pp. 42-54
-
-
Kussul, N.1
Lavreniuk, N.2
Shelestov, A.3
Yailymov, B.4
Butko, I.5
-
20
-
-
84930335603
-
Geospatial intelligence and data fusion techniques for sustainable development problems
-
N. Kussul, A. Shelestov, R. Basarab, S. Skakun, O. Kussul, and M. Lavrenyuk, "Geospatial intelligence and data fusion techniques for sustainable development problems," in Proc. ICTERI, 2015, pp. 196-203.
-
(2015)
Proc. ICTERI
, pp. 196-203
-
-
Kussul, N.1
Shelestov, A.2
Basarab, R.3
Skakun, S.4
Kussul, O.5
Lavrenyuk, M.6
-
21
-
-
84961338765
-
Convolutional neural network with data augmentation for SAR target recognition
-
Mar.
-
J. Ding, B. Chen, H. Liu, and M. Huang, "Convolutional neural network with data augmentation for SAR target recognition," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 364-368, Mar. 2016.
-
(2016)
IEEE Geosci. Remote Sens. Lett.
, vol.13
, Issue.3
, pp. 364-368
-
-
Ding, J.1
Chen, B.2
Liu, H.3
Huang, M.4
-
23
-
-
84941249240
-
Surface object recognition with CNN and SVM in landsat 8 images
-
May
-
T. Ishii, R. Nakamura, H. Nakada, Y. Mochizuki, and H. Ishikawa, "Surface object recognition with CNN and SVM in Landsat 8 images," in Proc. 14th IAPR Int. Conf. Mach. Vis. Appl. (MVA), May 2015, pp. 341-344.
-
(2015)
Proc. 14th IAPR Int. Conf. Mach. Vis. Appl. (MVA)
, pp. 341-344
-
-
Ishii, T.1
Nakamura, R.2
Nakada, H.3
Mochizuki, Y.4
Ishikawa, H.5
-
24
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
25
-
-
84908032942
-
Saliency-guided unsupervised feature learning for scene classification
-
Apr.
-
F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.53
, Issue.4
, pp. 2175-2184
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
26
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Mar.
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
27
-
-
78149333575
-
Learning to detect roads in highresolution aerial images
-
V. Mnih and G. E. Hinton, "Learning to detect roads in highresolution aerial images," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 210-223.
-
(2010)
Proc. Eur. Conf. Comput. Vis.
, pp. 210-223
-
-
Mnih, V.1
Hinton, G.E.2
-
28
-
-
84947126879
-
High-resolution SAR image classification via deep convolutional autoencoders
-
Nov.
-
J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, "High-resolution SAR image classification via deep convolutional autoencoders," IEEE Trans. Geosci. Remote Sens., vol. 12, no. 11, pp. 2351-2355, Nov. 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens
, vol.12
, Issue.11
, pp. 2351-2355
-
-
Geng, J.1
Fan, J.2
Wang, H.3
Ma, X.4
Li, B.5
Chen, F.6
-
29
-
-
85027942618
-
Spectral-spatial classification of hyperspectral data based on deep belief network
-
Jun.
-
Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.8
, Issue.6
, pp. 2381-2392
-
-
Chen, Y.1
Zhao, X.2
Jia, X.3
-
30
-
-
84962611241
-
Hyperspectral imagery classification using sparse representations of convolutional neural network features
-
H. Liang and Q. Li, "Hyperspectral imagery classification using sparse representations of convolutional neural network features," Remote Sens., vol. 8, no. 2, p. 99, 2016.
-
(2016)
Remote Sens
, vol.8
, Issue.2
, pp. 99
-
-
Liang, H.1
Li, Q.2
-
31
-
-
84974817496
-
Learning a transferable change rule from a recurrent neural network for land cover change detection
-
H. Lyu, H. Lu, and L. Mou, "Learning a transferable change rule from a recurrent neural network for land cover change detection," Remote Sens., vol. 8, no. 6, p. 506, 2016.
-
(2016)
Remote Sens
, vol.8
, Issue.6
, pp. 506
-
-
Lyu, H.1
Lu, H.2
Mou, L.3
-
32
-
-
84964645155
-
Preliminary analysis of the performance of the landsat 8/OLI land surface reflectance product
-
E. Vermote, C. Justice, M. Claverie, and B. Franch, "Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product," Remote Sens. Environ., vol. 185, pp. 46-56, 2016, doi: 10.1016/j.rse.2016.04.008.
-
(2016)
Remote Sens. Environ.
, vol.185
, pp. 46-56
-
-
Vermote, E.1
Justice, C.2
Claverie, M.3
Franch, B.4
-
33
-
-
84923804077
-
Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4-7, 8, and sentinel 2 images
-
Mar.
-
Z. Zhu, S. Wang, and C. E. Woodcock, "Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images," Remote Sens. Environ., vol. 159, pp. 269-277, Mar. 2015.
-
(2015)
Remote Sens. Environ.
, vol.159
, pp. 269-277
-
-
Zhu, Z.1
Wang, S.2
Woodcock, C.E.3
-
34
-
-
84982913053
-
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
-
F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. J. Remote Sens., vol. 37, no. 14, pp. 3196-3231, 2016.
-
(2016)
Int. J. Remote Sens
, vol.37
, Issue.14
, pp. 3196-3231
-
-
Waldner, F.1
-
35
-
-
84920511605
-
Reconstruction of missing data in time-series of optical satellite images using self-organizing kohonen maps
-
S. V. Skakun and R. M. Basarab, "Reconstruction of missing data in time-series of optical satellite images using self-organizing Kohonen maps," J. Autom. Inform. Sci., vol. 46, no. 12, pp. 19-26, 2014.
-
(2014)
J. Autom. Inform. Sci.
, vol.46
, Issue.12
, pp. 19-26
-
-
Skakun, S.V.1
Basarab, R.M.2
-
36
-
-
84930397174
-
Regional scale crop mapping using multi-temporal satellite imagery
-
N. Kussul, S. Skakun, A. Shelestov, M. Lavreniuk, B. Yailymov, and O. Kussul, "Regional scale crop mapping using multi-temporal satellite imagery," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 40, no. 7, pp. 45-52, 2015.
-
(2015)
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
, vol.40
, Issue.7
, pp. 45-52
-
-
Kussul, N.1
Skakun, S.2
Shelestov, A.3
Lavreniuk, M.4
Yailymov, B.5
Kussul, O.6
-
37
-
-
84939141053
-
Deep convolutional neural networks for hyperspectral image classification
-
W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sens., vol. 2015, art. no. 258619, 2015.
-
(2015)
J. Sens
, vol.2015
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
40
-
-
84897501332
-
Efficiency assessment of using satellite data for crop area estimation in Ukraine
-
Jun.
-
F. J. Gallego, N. Kussul, S. Skakun, O. Kravchenko, A. Shelestov, and O. Kussul, "Efficiency assessment of using satellite data for crop area estimation in Ukraine," Int. J. Appl. Earth Observat. Geoinf., vol. 29, pp. 22-30, Jun. 2014.
-
(2014)
Int. J. Appl. Earth Observat. Geoinf.
, vol.29
, pp. 22-30
-
-
Gallego, F.J.1
Kussul, N.2
Skakun, S.3
Kravchenko, O.4
Shelestov, A.5
Kussul, O.6
|