메뉴 건너뛰기




Volumn 14, Issue 5, 2017, Pages 778-782

Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data

Author keywords

Agriculture; convolutional neural networks (CNNs); crop classification; deep learning (DL); joint experiment of crop assessment and monitoring (JECAM); Landsat 8; remote sensing (RS); Sentinel 1; TensorFlow; Ukraine

Indexed keywords

CROPS; DECISION TREES; DEEP LEARNING; IMAGE PROCESSING; NETWORK ARCHITECTURE; OPTICAL DATA PROCESSING; SATELLITE IMAGERY; SUGAR BEETS;

EID: 85017192157     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2017.2681128     Document Type: Article
Times cited : (1432)

References (40)
  • 1
    • 84859427372 scopus 로고    scopus 로고
    • Sentinel-2: ESA's optical high-resolution mission for GMES operational services
    • May
    • M. Drusch et al., "Sentinel-2: ESA's optical high-resolution mission for GMES operational services," Remote Sens. Environ., vol. 120, pp. 25-36, May 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 25-36
    • Drusch, M.1
  • 2
    • 84863393480 scopus 로고    scopus 로고
    • GMES sentinel-1 mission
    • May
    • R. Torres et al., "GMES Sentinel-1 mission," Remote Sens. Environ., vol. 120, pp. 9-24, May 2012.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 9-24
    • Torres, R.1
  • 3
    • 84896818071 scopus 로고    scopus 로고
    • Landsat-8: Science and product vision for terrestrial global change research
    • Apr.
    • D. P. Roy et al., "Landsat-8: Science and product vision for terrestrial global change research," Remote Sens. Environ., vol. 145, pp. 154-172, Apr. 2014.
    • (2014) Remote Sens. Environ. , vol.145 , pp. 154-172
    • Roy, D.P.1
  • 4
    • 79551513995 scopus 로고    scopus 로고
    • Multi-source remote sensing data fusion: Status and trends
    • Nov.
    • J. Zhang, "Multi-source remote sensing data fusion: Status and trends," Int. J. Image Data Fusion, vol. 1, no. 1, pp. 5-24, Nov. 2010.
    • (2010) Int. J. Image Data Fusion , vol.1 , Issue.1 , pp. 5-24
    • Zhang, J.1
  • 5
    • 85027927995 scopus 로고    scopus 로고
    • Challenges and opportunities of multimodality and data fusion in remote sensing
    • Sep.
    • M. D. Mura, S. Prasad, F. Pacifici, P. Gamba, J. Chanussot, and J. A. Benediktsson, "Challenges and opportunities of multimodality and data fusion in remote sensing," Proc. IEEE, vol. 103, no. 9, pp. 1585-1601, Sep. 2015.
    • (2015) Proc. IEEE , vol.103 , Issue.9 , pp. 1585-1601
    • Mura, M.D.1    Prasad, S.2    Pacifici, F.3    Gamba, P.4    Chanussot, J.5    Benediktsson, J.A.6
  • 6
    • 84930408057 scopus 로고    scopus 로고
    • Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine
    • A. Kolotii et al., "Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine," Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., vol. 40, no. 7, p. 35, 2015, doi: 10.5194/isprsarchives-XL-7-W3-39-2015.
    • (2015) Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. , vol.40 , Issue.7 , pp. 35
    • Kolotii, A.1
  • 7
    • 84883343032 scopus 로고    scopus 로고
    • Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models
    • F. Kogan et al., "Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models," J. Autom. Inf. Sci., vol. 45, no. 6, pp. 68-81, 2013.
    • (2013) J. Autom. Inf. Sci. , vol.45 , Issue.6 , pp. 68-81
    • Kogan, F.1
  • 8
    • 84880317742 scopus 로고    scopus 로고
    • Winter wheat yield forecasting in Ukraine based on earth observation, meteorological data and biophysical models
    • Aug.
    • F. Kogan et al., "Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models," Int. J. Appl. Earth Observat. Geoinf., vol. 23, pp. 192-203, Aug. 2013.
    • (2013) Int. J. Appl. Earth Observat. Geoinf. , vol.23 , pp. 192-203
    • Kogan, F.1
  • 10
    • 84938815954 scopus 로고    scopus 로고
    • Efficiency assessment of multitemporal C-band radarsat-2 intensity and landsat-8 surface reflectance satellite imagery for crop classification in Ukraine
    • Aug.
    • S. Skakun, N. Kussul, A. Y. Shelestov, M. Lavreniuk, and O. Kussul, "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3712-3719, Aug. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.9 , Issue.8 , pp. 3712-3719
    • Skakun, S.1    Kussul, N.2    Shelestov, A.Y.3    Lavreniuk, M.4    Kussul, O.5
  • 11
    • 84958236853 scopus 로고    scopus 로고
    • A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
    • May
    • R. Khatami, G. Mountrakis, and S. V. Stehman, "A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research," Remote Sens. Environ., vol. 177, pp. 89-100, May 2016.
    • (2016) Remote Sens. Environ. , vol.177 , pp. 89-100
    • Khatami, R.1    Mountrakis, G.2    Stehman, S.V.3
  • 13
    • 82655173888 scopus 로고    scopus 로고
    • Remote sensing image classification based on neural network ensemble algorithm
    • M. Han, X. Zhu, and W. Yao, "Remote sensing image classification based on neural network ensemble algorithm," Neurocomputing, vol. 78, no. 1, pp. 133-138, 2012.
    • (2012) Neurocomputing , vol.78 , Issue.1 , pp. 133-138
    • Han, M.1    Zhu, X.2    Yao, W.3
  • 14
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
    • Jan.
    • X. Huang and L. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 15
    • 85007384910 scopus 로고    scopus 로고
    • Large-scale classification of land cover using retrospective satellite data
    • M. S. Lavreniuk et al., "Large-scale classification of land cover using retrospective satellite data," Cybern. Syst. Anal., vol. 52, no. 1, pp. 127-138, 2016.
    • (2016) Cybern. Syst. Anal. , vol.52 , Issue.1 , pp. 127-138
    • Lavreniuk, M.S.1
  • 18
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Mar.
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155-165, Mar. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 19
    • 84981350581 scopus 로고    scopus 로고
    • Land cover changes analysis based on deep machine learning technique
    • N. Kussul, N. Lavreniuk, A. Shelestov, B. Yailymov, and I. Butko, "Land cover changes analysis based on deep machine learning technique," J. Autom. Inf. Sci., vol. 48, no. 5, pp. 42-54, 2016.
    • (2016) J. Autom. Inf. Sci. , vol.48 , Issue.5 , pp. 42-54
    • Kussul, N.1    Lavreniuk, N.2    Shelestov, A.3    Yailymov, B.4    Butko, I.5
  • 20
    • 84930335603 scopus 로고    scopus 로고
    • Geospatial intelligence and data fusion techniques for sustainable development problems
    • N. Kussul, A. Shelestov, R. Basarab, S. Skakun, O. Kussul, and M. Lavrenyuk, "Geospatial intelligence and data fusion techniques for sustainable development problems," in Proc. ICTERI, 2015, pp. 196-203.
    • (2015) Proc. ICTERI , pp. 196-203
    • Kussul, N.1    Shelestov, A.2    Basarab, R.3    Skakun, S.4    Kussul, O.5    Lavrenyuk, M.6
  • 21
    • 84961338765 scopus 로고    scopus 로고
    • Convolutional neural network with data augmentation for SAR target recognition
    • Mar.
    • J. Ding, B. Chen, H. Liu, and M. Huang, "Convolutional neural network with data augmentation for SAR target recognition," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 364-368, Mar. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.3 , pp. 364-368
    • Ding, J.1    Chen, B.2    Liu, H.3    Huang, M.4
  • 22
    • 33845597145 scopus 로고    scopus 로고
    • Large-scale learning with SVM and convolutional for generic object categorization
    • Jun.
    • F. J. Huang and Y. LeCun, "Large-scale learning with SVM and convolutional for generic object categorization," in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2006, pp. 284-291.
    • (2006) Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit , pp. 284-291
    • Huang, F.J.1    LeCun, Y.2
  • 24
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 25
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Apr.
    • F. Zhang, B. Du, and L. Zhang, "Saliency-guided unsupervised feature learning for scene classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2175-2184, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.4 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 26
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar.
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 27
    • 78149333575 scopus 로고    scopus 로고
    • Learning to detect roads in highresolution aerial images
    • V. Mnih and G. E. Hinton, "Learning to detect roads in highresolution aerial images," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 210-223.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 210-223
    • Mnih, V.1    Hinton, G.E.2
  • 28
    • 84947126879 scopus 로고    scopus 로고
    • High-resolution SAR image classification via deep convolutional autoencoders
    • Nov.
    • J. Geng, J. Fan, H. Wang, X. Ma, B. Li, and F. Chen, "High-resolution SAR image classification via deep convolutional autoencoders," IEEE Trans. Geosci. Remote Sens., vol. 12, no. 11, pp. 2351-2355, Nov. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.12 , Issue.11 , pp. 2351-2355
    • Geng, J.1    Fan, J.2    Wang, H.3    Ma, X.4    Li, B.5    Chen, F.6
  • 29
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 30
    • 84962611241 scopus 로고    scopus 로고
    • Hyperspectral imagery classification using sparse representations of convolutional neural network features
    • H. Liang and Q. Li, "Hyperspectral imagery classification using sparse representations of convolutional neural network features," Remote Sens., vol. 8, no. 2, p. 99, 2016.
    • (2016) Remote Sens , vol.8 , Issue.2 , pp. 99
    • Liang, H.1    Li, Q.2
  • 31
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • H. Lyu, H. Lu, and L. Mou, "Learning a transferable change rule from a recurrent neural network for land cover change detection," Remote Sens., vol. 8, no. 6, p. 506, 2016.
    • (2016) Remote Sens , vol.8 , Issue.6 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 32
    • 84964645155 scopus 로고    scopus 로고
    • Preliminary analysis of the performance of the landsat 8/OLI land surface reflectance product
    • E. Vermote, C. Justice, M. Claverie, and B. Franch, "Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product," Remote Sens. Environ., vol. 185, pp. 46-56, 2016, doi: 10.1016/j.rse.2016.04.008.
    • (2016) Remote Sens. Environ. , vol.185 , pp. 46-56
    • Vermote, E.1    Justice, C.2    Claverie, M.3    Franch, B.4
  • 33
    • 84923804077 scopus 로고    scopus 로고
    • Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4-7, 8, and sentinel 2 images
    • Mar.
    • Z. Zhu, S. Wang, and C. E. Woodcock, "Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images," Remote Sens. Environ., vol. 159, pp. 269-277, Mar. 2015.
    • (2015) Remote Sens. Environ. , vol.159 , pp. 269-277
    • Zhu, Z.1    Wang, S.2    Woodcock, C.E.3
  • 34
    • 84982913053 scopus 로고    scopus 로고
    • Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
    • F. Waldner et al., "Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity," Int. J. Remote Sens., vol. 37, no. 14, pp. 3196-3231, 2016.
    • (2016) Int. J. Remote Sens , vol.37 , Issue.14 , pp. 3196-3231
    • Waldner, F.1
  • 35
    • 84920511605 scopus 로고    scopus 로고
    • Reconstruction of missing data in time-series of optical satellite images using self-organizing kohonen maps
    • S. V. Skakun and R. M. Basarab, "Reconstruction of missing data in time-series of optical satellite images using self-organizing Kohonen maps," J. Autom. Inform. Sci., vol. 46, no. 12, pp. 19-26, 2014.
    • (2014) J. Autom. Inform. Sci. , vol.46 , Issue.12 , pp. 19-26
    • Skakun, S.V.1    Basarab, R.M.2
  • 37
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification," J. Sens., vol. 2015, art. no. 258619, 2015.
    • (2015) J. Sens , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.