메뉴 건너뛰기




Volumn 10, Issue 6, 2017, Pages 3011-3024

Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network

Author keywords

Convolutional neural network (CNN); Deep learning; Extinction profile (EP); Graph based feature fusion (GBFF); Hyperspectral; Light detection and ranging (LiDAR); Random forest (RF); Support vector machines (SVMs)

Indexed keywords

CONVOLUTION; DATA FUSION; DECISION TREES; DEEP LEARNING; GRAPHIC METHODS; NEURAL NETWORKS; OPTICAL RADAR; SUPPORT VECTOR MACHINES;

EID: 85007305421     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2634863     Document Type: Article
Times cited : (202)

References (63)
  • 1
    • 84905924444 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest
    • Jun.
    • C. Debes et al., "Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2405-2418, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2405-2418
    • Debes, C.1
  • 2
    • 84896316919 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images based on hidden Markov random fields
    • May
    • P. Ghamisi, J. A. Benediktsson, and M. O. Ulfarsson, "Spectral-spatial classification of hyperspectral images based on hidden Markov random fields", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2565-2574, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2565-2574
    • Ghamisi, P.1    Benediktsson, J.A.2    Ulfarsson, M.O.3
  • 3
    • 84896317057 scopus 로고    scopus 로고
    • Multilevel image segmentation approach for remote sensing images based on fractional-order Darwinian particle swarm optimization
    • May
    • P. Ghamisi, M. S. Couceiro, F. M. L. Martins, and J. A. Benediktsson, "Multilevel image segmentation approach for remote sensing images based on fractional-order Darwinian particle swarm optimization", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2382-2394, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2382-2394
    • Ghamisi, P.1    Couceiro, M.S.2    Martins, F.M.L.3    Benediktsson, J.A.4
  • 4
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles", IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 5
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning", IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, p. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 6
    • 78049241977 scopus 로고    scopus 로고
    • Multiple spectral-spatial classification approach for hyperspectral data
    • Nov.
    • Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Multiple spectral-spatial classification approach for hyperspectral data", IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4122-4132, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4122-4132
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3    Tilton, J.C.4
  • 7
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers", IEEE Trans. Syst. Man, Cybern., Part B, vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst. Man, Cybern., Part B , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 8
    • 84888297111 scopus 로고    scopus 로고
    • Spectral-spatial classification of multispectral images using kernel feature space representation
    • Jan.
    • S. Bernabé, P. R. Marpu, A. Plaza, M. D. Mura, and J. A. Benediktsson, "Spectral-spatial classification of multispectral images using kernel feature space representation", IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 288-292, Jan. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 288-292
    • Bernabé, S.1    Marpu, P.R.2    Plaza, A.3    Mura, M.D.4    Benediktsson, J.A.5
  • 10
    • 84894620489 scopus 로고    scopus 로고
    • Ontology-based classification of building types detected from airborne laser scanning data
    • M. Belgiu, I. Tomljenovic, T. J. Lampoltshammer, T. Blaschke, and B. Höfle, "Ontology-based classification of building types detected from airborne laser scanning data", Remote Sens., vol. 6, no. 2, pp. 1347-1366, 2014.
    • (2014) Remote Sens. , vol.6 , Issue.2 , pp. 1347-1366
    • Belgiu, M.1    Tomljenovic, I.2    Lampoltshammer, T.J.3    Blaschke, T.4    Höfle, B.5
  • 11
    • 77952509728 scopus 로고    scopus 로고
    • Automatic roof plane detection and analysis in airborne Lidar point clouds for solar potential assessment
    • A. Jochem, B. Höfle, M. Rutzinger, and N. Pfeifer, "Automatic roof plane detection and analysis in airborne Lidar point clouds for solar potential assessment", Sensors, vol. 9, no. 7, pp. 5241-5262, 2009.
    • (2009) Sensors , vol.9 , Issue.7 , pp. 5241-5262
    • Jochem, A.1    Höfle, B.2    Rutzinger, M.3    Pfeifer, N.4
  • 12
    • 50849093278 scopus 로고    scopus 로고
    • Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification
    • M. Rutzinger, B. Höfle, M. Hollaus, and N. Pfeifer, "Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification", Sensors, vol. 8, no. 8, pp. 4505-4528, 2008.
    • (2008) Sensors , vol.8 , Issue.8 , pp. 4505-4528
    • Rutzinger, M.1    Höfle, B.2    Hollaus, M.3    Pfeifer, N.4
  • 13
    • 85026579079 scopus 로고    scopus 로고
    • Quantifying structural physical habitat attributes using Lidar and hyperspectral imagery
    • R. K. Hall et al., "Quantifying structural physical habitat attributes using Lidar and hyperspectral imagery", Int. J. Image Data Fusion, vol. 59, no. 1, pp. 63-83, 2009.
    • (2009) Int. J. Image Data Fusion , vol.59 , Issue.1 , pp. 63-83
    • Hall, R.K.1
  • 14
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and Lidar remote sensing data for classification of complex forest areas
    • May
    • M. Dalponte, L. Bruzzone, and D. Gianelle, "Fusion of hyperspectral and Lidar remote sensing data for classification of complex forest areas", IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1416-1427, May 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 15
    • 84937823094 scopus 로고    scopus 로고
    • Building extraction from airborne laser scanning data: An analysis of the state of the art
    • I. Tomljenovic, B. Hofle, D. Tiede, and T. Blaschke, "Building extraction from airborne laser scanning data: An analysis of the state of the art", Remote Sens., vol. 7, no. 4, pp. 3826-3862, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.4 , pp. 3826-3862
    • Tomljenovic, I.1    Hofle, B.2    Tiede, D.3    Blaschke, T.4
  • 16
    • 84855418272 scopus 로고    scopus 로고
    • Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne Lidar data
    • B. Hofle, M. Hollaus, and J. Hagenauer, "Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne Lidar data", ISPRS J. Photogrammetry Remote Sens., vol. 67, pp. 134-147, 2012.
    • (2012) ISPRS J. Photogrammetry Remote Sens. , vol.67 , pp. 134-147
    • Hofle, B.1    Hollaus, M.2    Hagenauer, J.3
  • 17
    • 17444404910 scopus 로고    scopus 로고
    • Urban remote sensing using multiple data sets: Past, present, and future
    • P. Gamba, F. Dell'Acqua, and B. V. Dasarathy, "Urban remote sensing using multiple data sets: Past, present, and future", Inf. Fusion, vol. 6, pp. 319-326, 2005.
    • (2005) Inf. Fusion , vol.6 , pp. 319-326
    • Gamba, P.1    Dell'Acqua, F.2    Dasarathy, B.V.3
  • 18
    • 33846821752 scopus 로고    scopus 로고
    • Airborne Lidar data processing and information extraction
    • Q. Chen, "Airborne Lidar data processing and information extraction", Photogrammetric Eng. Remote Sens., vol. 73, no. 2, pp. 109-112, 2007.
    • (2007) Photogrammetric Eng. Remote Sens. , vol.73 , Issue.2 , pp. 109-112
    • Chen, Q.1
  • 19
    • 84938975533 scopus 로고    scopus 로고
    • Land-cover classification using both hyperspectral and Lidar data
    • P. Ghamisi, J. A. Benediktsson, and S. Phinn, "Land-cover classification using both hyperspectral and Lidar data", Int. J. Image Data Fusion, vol. 6, no. 3, pp. 189-215, 2015.
    • (2015) Int. J. Image Data Fusion , vol.6 , Issue.3 , pp. 189-215
    • Ghamisi, P.1    Benediktsson, J.A.2    Phinn, S.3
  • 20
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers", IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 22
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote-sensing data over urban areas", EURASIP J. Adv. Signal Process., vol. 2009, 2009, Art.no. 783194.
    • (2009) EURASIP J. Adv. Signal Process. , vol.2009
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 23
    • 84906951013 scopus 로고    scopus 로고
    • Feature selection based on hybridization of genetic algorithm and particle swarm optimization
    • Feb.
    • P. Ghamisi and J. A. Benediktsson, "Feature selection based on hybridization of genetic algorithm and particle swarm optimization", IEEE Geosci. Remote Sens. Lett, vol. 12, no. 2, pp. 309-313, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.2 , pp. 309-313
    • Ghamisi, P.1    Benediktsson, J.A.2
  • 24
    • 84921033974 scopus 로고    scopus 로고
    • A novel feature selection approach based on FODPSO and SVM
    • May
    • P. Ghamisi, M. S. Couceiro, and J. A. Benediktsson, "A novel feature selection approach based on FODPSO and SVM", IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2935-2947, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2935-2947
    • Ghamisi, P.1    Couceiro, M.S.2    Benediktsson, J.A.3
  • 25
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Nov.
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images", IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3374-3385, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 26
    • 41249102807 scopus 로고    scopus 로고
    • Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR
    • G. P. Asner, D. E. Knapp, T. Kennedy-Bowdoin, M. O. Jones, R. E. Martin, and J. Boardman, "Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR", Remote Sens. Environ., vol. 112, pp. 1942-1955, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1942-1955
    • Asner, G.P.1    Knapp, D.E.2    Kennedy-Bowdoin, T.3    Jones, M.O.4    Martin, R.E.5    Boardman, J.6
  • 27
    • 0036788865 scopus 로고    scopus 로고
    • Remote sensing of forest pigments using airborne imaging spectrometer and LiDAR imagery
    • G. A. Blackburn, "Remote sensing of forest pigments using airborne imaging spectrometer and LiDAR imagery", Remote Sens. Environ., vol. 82, pp. 311-321, 2002.
    • (2002) Remote Sens. Environ. , vol.82 , pp. 311-321
    • Blackburn, G.A.1
  • 28
    • 44649176419 scopus 로고    scopus 로고
    • Seasonal effect on tree species classification in an urban environment using hyperspectral data, Lidar, and an objectoriented approach
    • M. Voss and R. Sugumaran, "Seasonal effect on tree species classification in an urban environment using hyperspectral data, Lidar, and an objectoriented approach", Sensors, vol. 8, pp. 3020-3036, 2008.
    • (2008) Sensors , vol.8 , pp. 3020-3036
    • Voss, M.1    Sugumaran, R.2
  • 29
    • 40049083404 scopus 로고    scopus 로고
    • Retrieving forest biomass through integration of CASI and LiDAR data
    • R. M. Lucas, A. C. Lee, and P. J. Bunting, "Retrieving forest biomass through integration of CASI and LiDAR data", Int. J. Remote Sens., vol. 29, pp. 1553-1577, 2008.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 1553-1577
    • Lucas, R.M.1    Lee, A.C.2    Bunting, P.J.3
  • 30
    • 84858336613 scopus 로고    scopus 로고
    • Urban structure type characterization using hyperspectral remote sensing and height information
    • Jun.
    • U. Heiden, W. Heldens, S. Roessner, K. Segl, T. Esch, and A. Mueller, "Urban structure type characterization using hyperspectral remote sensing and height information", Landscape Urban Planning, vol. 105, no. 6, pp. 361-375, Jun. 2012.
    • (2012) Landscape Urban Planning , vol.105 , Issue.6 , pp. 361-375
    • Heiden, U.1    Heldens, W.2    Roessner, S.3    Segl, K.4    Esch, T.5    Mueller, A.6
  • 32
    • 45849107278 scopus 로고    scopus 로고
    • Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data
    • B. Koetz, F. Morsdorf, S. Linder, T. Curt, and B. Allgower, "Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data", Forest Ecology Manage., vol. 256, pp. 263-271, 2008.
    • (2008) Forest Ecology Manage. , vol.256 , pp. 263-271
    • Koetz, B.1    Morsdorf, F.2    Linder, S.3    Curt, T.4    Allgower, B.5
  • 33
    • 30444444937 scopus 로고    scopus 로고
    • Mapping sagebrush distribution using fusion of hyperspectral and Lidar classifications
    • Sep.
    • J. T. Mundt, D. R. Streutker, and N. F. Glenn, "Mapping sagebrush distribution using fusion of hyperspectral and Lidar classifications", Photogrammetric Eng. Remote Sens., vol. 72, no. 1, pp. 47-54, Sep. 2006.
    • (2006) Photogrammetric Eng. Remote Sens. , vol.72 , Issue.1 , pp. 47-54
    • Mundt, J.T.1    Streutker, D.R.2    Glenn, N.F.3
  • 34
    • 34648828198 scopus 로고    scopus 로고
    • Object-oriented classification of Lidar fused hyperspectral imagery for tree species identification in an urban environment
    • Apr.
    • R. Sugumaran and M. Voss, "Object-oriented classification of Lidar fused hyperspectral imagery for tree species identification in an urban environment", in Proc. Urban Remote Sens. Joint Event, Apr. 2007, pp. 1-6.
    • (2007) Proc. Urban Remote Sens. Joint Event , pp. 1-6
    • Sugumaran, R.1    Voss, M.2
  • 35
    • 84907495101 scopus 로고    scopus 로고
    • Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features
    • Mar.
    • W. Liao, R. Bellens, A. Pizurica, S. Gautama, and W. Philips, "Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features", IEEE Geosci. Remote Sens. Lett, vol. 12, no. 3, pp. 552-556, Mar. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.3 , pp. 552-556
    • Liao, W.1    Bellens, R.2    Pizurica, A.3    Gautama, S.4    Philips, W.5
  • 36
    • 77957007028 scopus 로고    scopus 로고
    • Morphological attribute profiles for the analysis of very high resolution images
    • Oct.
    • M. D. Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, "Morphological attribute profiles for the analysis of very high resolution images", IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3747-3762
    • Mura, M.D.1    Benediktsson, J.A.2    Waske, B.3    Bruzzone, L.4
  • 37
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles", IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 38
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectralspatial classification techniques based on attribute profiles
    • May
    • P. Ghamisi, M. D. Mura, and J. A. Benediktsson, "A survey on spectralspatial classification techniques based on attribute profiles", IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335-2353, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 41
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets", Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 45
    • 85027942618 scopus 로고    scopus 로고
    • Spectra-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectra-spatial classification of hyperspectral data based on deep belief network", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2292, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2292-2381
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 47
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • Oct.
    • P. Ghamisi, Y. Chen, and X. X. Zhu, "A self-improving convolution neural network for the classification of hyperspectral data", IEEE Geosci. Remote Sens. Lett, vol. 13, no. 10, pp. 1537-1541, Oct. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 49
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests", Mach. Learn. J., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. J. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 54
    • 84905229819 scopus 로고    scopus 로고
    • A comparative review of component tree computation algorithms
    • Sep.
    • E. Carlinet and T. Geraud, "A comparative review of component tree computation algorithms", IEEE Trans. Image Process., vol. 23, no. 9, pp. 3885-3895, Sep. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3885-3895
    • Carlinet, E.1    Geraud, T.2
  • 56
    • 0002263996 scopus 로고    scopus 로고
    • Convolutional networks for images, speech, and time series
    • M. A. Arbib, Ed. Cambridge, MA, USA: MIT Press
    • Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series", in The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA, USA: MIT Press, 1998, pp. 255-258. [Online]. Available: http://dl.acm.org/citation. cfm?id=303568.303704
    • (1998) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 57
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • D. Scherer, A. Müller, and S. Behnke, "Evaluation of pooling operations in convolutional architectures for object recognition", in Proc. 20th Int. Conf. Artif. Neural Netw., 2010, pp. 92-101.
    • (2010) Proc. 20th Int. Conf. Artif. Neural Netw. , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 58
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks", IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 59
    • 84905903346 scopus 로고    scopus 로고
    • Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles
    • Jun.
    • P. Ghamisi, J. A. Benediktsson, G. Cavallaro, and A. Plaza, "Automatic framework for spectral-spatial classification based on supervised feature extraction and morphological attribute profiles", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2147-2160, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2147-2160
    • Ghamisi, P.1    Benediktsson, J.A.2    Cavallaro, G.3    Plaza, A.4
  • 60
    • 84900815487 scopus 로고    scopus 로고
    • Automatic spectralspatial classification framework based on attribute profiles and supervised feature extraction
    • Dec.
    • P. Ghamisi, J. A. Benediktsson, and J. R. Sveinsson, "Automatic spectralspatial classification framework based on attribute profiles and supervised feature extraction", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 5771-5782, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 61
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K. Müller, "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput., vol. 10, no. 5, pp. 1299-1319, 1998.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 63
    • 85027924180 scopus 로고    scopus 로고
    • Fusion of hyperspectral and Lidar remote sensing data using multiple feature learning
    • Jun.
    • M. Khodadadzadeh, J. Li, S. Prasad, and A. Plaza, "Fusion of hyperspectral and Lidar remote sensing data using multiple feature learning", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2971-2983, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2971-2983
    • Khodadadzadeh, M.1    Li, J.2    Prasad, S.3    Plaza, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.