메뉴 건너뛰기




Volumn 204, Issue , 2018, Pages 31-42

Spatio-temporal fusion for daily Sentinel-2 images

Author keywords

Downscaling; Image fusion; Sentinel 2; Sentinel 3

Indexed keywords

REGRESSION ANALYSIS;

EID: 85033214493     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2017.10.046     Document Type: Article
Times cited : (289)

References (58)
  • 3
    • 84859422300 scopus 로고    scopus 로고
    • Preface: the Sentinel missions—new opportunities for science
    • Berger, M., Aschbacher, J., Preface: the Sentinel missions—new opportunities for science. Remote Sens. Environ. 120 (2012), 1–2.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 1-2
    • Berger, M.1    Aschbacher, J.2
  • 4
    • 84920935754 scopus 로고    scopus 로고
    • A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution
    • Bhattarai, N., Quackenbush, L.J., Dougherty, M., Marzen, L.J., A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int. J. Remote Sens. 36:1 (2014), 115–143.
    • (2014) Int. J. Remote Sens. , vol.36 , Issue.1 , pp. 115-143
    • Bhattarai, N.1    Quackenbush, L.J.2    Dougherty, M.3    Marzen, L.J.4
  • 5
    • 36248982099 scopus 로고    scopus 로고
    • Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series
    • Busetto, L., Meroni, M., Colombo, R., Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sens. Environ. 112 (2008), 118–131.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 118-131
    • Busetto, L.1    Meroni, M.2    Colombo, R.3
  • 6
    • 84928777398 scopus 로고    scopus 로고
    • Comparison of spatiotemporal fusion models: a review
    • Chen, B., Huang, B., Xu, B., Comparison of spatiotemporal fusion models: a review. Remote Sens., 2015, 1798–1835.
    • (2015) Remote Sens. , pp. 1798-1835
    • Chen, B.1    Huang, B.2    Xu, B.3
  • 7
    • 84997638197 scopus 로고    scopus 로고
    • Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data
    • Das, M., Ghosh, S.K., Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 13 (2016), 1984–1988.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , pp. 1984-1988
    • Das, M.1    Ghosh, S.K.2
  • 8
    • 84879064950 scopus 로고    scopus 로고
    • Classification of time series of multispectral images with limited training data
    • Demir, B., Bovolo, F., Bruzzone, L., Classification of time series of multispectral images with limited training data. IEEE Trans. Image Process. 22:8 (2013), 219–3233.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.8 , pp. 219-3233
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 10
    • 84859429155 scopus 로고    scopus 로고
    • The global monitoring for environment and security (GMES) Sentinel-3 mission
    • Donlon, C. et al., The global monitoring for environment and security (GMES) Sentinel-3 mission. Remote Sens. Environ. 120 (2012), 37–57.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 37-57
    • Donlon, C.1
  • 11
    • 84859427372 scopus 로고    scopus 로고
    • Sentinel-2: ESA's optical high-resolution mission for GMES operational services
    • Drusch, M. et al., Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120 (2012), 25–36.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 25-36
    • Drusch, M.1
  • 12
    • 84971671499 scopus 로고    scopus 로고
    • Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR Band
    • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X., Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR Band. Remote Sens., 8, 2016, 354.
    • (2016) Remote Sens. , vol.8 , pp. 354
    • Du, Y.1    Zhang, Y.2    Ling, F.3    Wang, Q.4    Li, W.5    Li, X.6
  • 13
    • 85019867909 scopus 로고    scopus 로고
    • The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes
    • Duncan, J.M.A., Dash, J., Atkinson, P.M., The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes. Front. Environ. Sci., 3, 2015, 56.
    • (2015) Front. Environ. Sci. , vol.3 , pp. 56
    • Duncan, J.M.A.1    Dash, J.2    Atkinson, P.M.3
  • 14
    • 84875063135 scopus 로고    scopus 로고
    • Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection
    • Emelyanova, I.V., McVicar, T.R., Van Niel, T.G., Li, L.T., van Dijk, A.I.J.M., Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection. Remote Sens. Environ. 133 (2013), 193–209.
    • (2013) Remote Sens. Environ. , vol.133 , pp. 193-209
    • Emelyanova, I.V.1    McVicar, T.R.2    Van Niel, T.G.3    Li, L.T.4    van Dijk, A.I.J.M.5
  • 16
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance
    • Gao, F., Masek, J., Schwaller, M., Hall, F., On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44:8 (2006), 2207–2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 19
    • 84907963084 scopus 로고    scopus 로고
    • A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
    • Gevaert, C.M., García-Haro, F.J., A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 156 (2015), 34–44.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 34-44
    • Gevaert, C.M.1    García-Haro, F.J.2
  • 20
    • 84942540471 scopus 로고    scopus 로고
    • SPOT-4 (Take 5): simulation of Sentinel-2 time series on 45 large sites
    • Hagolle, O. et al., SPOT-4 (Take 5): simulation of Sentinel-2 time series on 45 large sites. Remote Sens. 7 (2015), 12242–12264.
    • (2015) Remote Sens. , vol.7 , pp. 12242-12264
    • Hagolle, O.1
  • 21
    • 84922572581 scopus 로고    scopus 로고
    • Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images
    • Hazaymeh, K., Hassan, Q.K., Spatiotemporal image-fusion model for enhancing the temporal resolution of Landsat-8 surface reflectance images using MODIS images. J. Appl. Remote. Sens. 9 (2015), 096095-1–096095-14.
    • (2015) J. Appl. Remote. Sens. , vol.9 , pp. 096095-1-096095-14
    • Hazaymeh, K.1    Hassan, Q.K.2
  • 22
    • 67349083870 scopus 로고    scopus 로고
    • A new data fusion model for high spatial- and temporal-resolution mapping of forest based on Landsat and MODIS
    • Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, J., Masek, J.G., Gao, F., White, J.C., A new data fusion model for high spatial- and temporal-resolution mapping of forest based on Landsat and MODIS. Remote Sens. Environ. 113 (2009), 1613–1627.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1613-1627
    • Hilker, T.1    Wulder, M.A.2    Coops, N.C.3    Linke, J.4    McDermid, J.5    Masek, J.G.6    Gao, F.7    White, J.C.8
  • 23
    • 84988700674 scopus 로고    scopus 로고
    • A spatio-temporal enhancement method for medium resolution LAI (STEM-LAI)
    • Houborg, R., McCabe, M.F., Gao, F., A spatio-temporal enhancement method for medium resolution LAI (STEM-LAI). Int. J. Appl. Earth Obs. Geoinf. 47 (2016), 15–29.
    • (2016) Int. J. Appl. Earth Obs. Geoinf. , vol.47 , pp. 15-29
    • Houborg, R.1    McCabe, M.F.2    Gao, F.3
  • 24
    • 84867089572 scopus 로고    scopus 로고
    • Spatiotemporal reflectance fusion via sparse representation
    • Huang, B., Song, H., Spatiotemporal reflectance fusion via sparse representation. IEEE Trans. Geosci. Remote Sens. 50 (2012), 3707–3716.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 3707-3716
    • Huang, B.1    Song, H.2
  • 25
    • 85027918089 scopus 로고    scopus 로고
    • Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land cover changes
    • Huang, B., Zhang, H., Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land cover changes. Int. J. Remote Sens. 35 (2014), 6213–6233.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 6213-6233
    • Huang, B.1    Zhang, H.2
  • 26
    • 84962488348 scopus 로고    scopus 로고
    • First experience with Sentinel-2 data for crop and tree species classifications in central Europe
    • Immitzer, M., Vuolo, F., Atzberger, C., First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens., 8, 2016, 166.
    • (2016) Remote Sens. , vol.8 , pp. 166
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 27
    • 84923608088 scopus 로고    scopus 로고
    • Blending Landsat and MODIS data to generate multispectral indices: a comparison of “Index-then-Blend” and “Blend-then-Index” approaches
    • Jarihani, A.A., McVicar, T.R., Van Niel, T.G., Emelyanova, I.V., Callow, J.N., Johansen, K., Blending Landsat and MODIS data to generate multispectral indices: a comparison of “Index-then-Blend” and “Blend-then-Index” approaches. Remote Sens. 6 (2014), 9213–9238.
    • (2014) Remote Sens. , vol.6 , pp. 9213-9238
    • Jarihani, A.A.1    McVicar, T.R.2    Van Niel, T.G.3    Emelyanova, I.V.4    Callow, J.N.5    Johansen, K.6
  • 28
    • 85013347183 scopus 로고    scopus 로고
    • Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration
    • Ke, Y., Im, J., Park, S., Gong, H., Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration. ISPRS J. Photogramm. Remote Sens. 126 (2017), 79–93.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.126 , pp. 79-93
    • Ke, Y.1    Im, J.2    Park, S.3    Gong, H.4
  • 30
    • 0035128356 scopus 로고    scopus 로고
    • Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses
    • Maselli, F., Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses. Remote Sens. Environ. 75 (2001), 29–38.
    • (2001) Remote Sens. Environ. , vol.75 , pp. 29-38
    • Maselli, F.1
  • 31
    • 84940056836 scopus 로고    scopus 로고
    • A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature
    • Moosavi, V., Talebi, A., Mokhtari, M.H., Shamsi, S.R.F., Niazi, Y., A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sens. Environ. 169 (2015), 243–254.
    • (2015) Remote Sens. Environ. , vol.169 , pp. 243-254
    • Moosavi, V.1    Talebi, A.2    Mokhtari, M.H.3    Shamsi, S.R.F.4    Niazi, Y.5
  • 32
    • 84988492861 scopus 로고    scopus 로고
    • Sentinel-2 MSI—level-2A prototype processor installation and user manual
    • Available online at
    • Muller-Wilm, U., Sentinel-2 MSI—level-2A prototype processor installation and user manual. Available online at http://step.esa.int/thirdparties/sen2cor/2.2.1/S2PAD-VEGA-SUM-0001-2.2.pdf, 2016.
    • (2016)
    • Muller-Wilm, U.1
  • 33
    • 84896315647 scopus 로고    scopus 로고
    • Improvement of spatio-temporal growth estimates in heterogeneous forests using Gaussian Bayesian networks
    • Mustafa, Y.T., Tolpekin, V.A., Stein, A., Improvement of spatio-temporal growth estimates in heterogeneous forests using Gaussian Bayesian networks. IEEE Trans. Geosci. Remote Sens. 52:8 (2014), 4980–4991.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 4980-4991
    • Mustafa, Y.T.1    Tolpekin, V.A.2    Stein, A.3
  • 34
    • 84998673750 scopus 로고    scopus 로고
    • Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain)
    • Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E., Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 52 (2016), 403–411.
    • (2016) Int. J. Appl. Earth Obs. Geoinf. , vol.52 , pp. 403-411
    • Novelli, A.1    Aguilar, M.A.2    Nemmaoui, A.3    Aguilar, F.J.4    Tarantino, E.5
  • 35
    • 84933575461 scopus 로고    scopus 로고
    • An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM + images
    • Rao, Y., Zhu, X., Chen, J., Wang, J., An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM + images. Remote Sens. 7 (2015), 7865–7891.
    • (2015) Remote Sens. , vol.7 , pp. 7865-7891
    • Rao, Y.1    Zhu, X.2    Chen, J.3    Wang, J.4
  • 37
    • 84946926389 scopus 로고    scopus 로고
    • Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China
    • Shen, H., Huang, L., Zhang, L., Wu, P., Zeng, C., Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: a 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 172 (2016), 109–125.
    • (2016) Remote Sens. Environ. , vol.172 , pp. 109-125
    • Shen, H.1    Huang, L.2    Zhang, L.3    Wu, P.4    Zeng, C.5
  • 38
    • 79952737214 scopus 로고    scopus 로고
    • Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data
    • Singh, D., Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 13 (2011), 59–69.
    • (2011) Int. J. Appl. Earth Obs. Geoinf. , vol.13 , pp. 59-69
    • Singh, D.1
  • 39
    • 84875725334 scopus 로고    scopus 로고
    • Spatiotemporal satellite image fusion through one-pair image learning
    • Song, H., Huang, B., Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 51 (2013), 1883–1896.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 1883-1896
    • Song, H.1    Huang, B.2
  • 40
    • 84982293141 scopus 로고    scopus 로고
    • A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery
    • Storey, J., Roy, D.P., Masek, J., Gascon, F., Dwyer, J., Choate, M., A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 186 (2016), 121–122.
    • (2016) Remote Sens. Environ. , vol.186 , pp. 121-122
    • Storey, J.1    Roy, D.P.2    Masek, J.3    Gascon, F.4    Dwyer, J.5    Choate, M.6
  • 41
    • 84995537912 scopus 로고    scopus 로고
    • Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing
    • Van der Werff, H., Van der Meer, F., Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sens., 8, 2016, 883.
    • (2016) Remote Sens. , vol.8 , pp. 883
    • Van der Werff, H.1    Van der Meer, F.2
  • 42
    • 84859426416 scopus 로고    scopus 로고
    • Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains
    • Verhoef, W., Bach, H., Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains. Remote Sens. Environ. 120 (2012), 197–207.
    • (2012) Remote Sens. Environ. , vol.120 , pp. 197-207
    • Verhoef, W.1    Bach, H.2
  • 45
    • 84935001783 scopus 로고    scopus 로고
    • Downscaling MODIS images with area-to-point regression kriging
    • Wang, Q., Shi, W., Atkinson, P.M., Zhao, Y., Downscaling MODIS images with area-to-point regression kriging. Remote Sens. Environ. 166 (2015), 191–204.
    • (2015) Remote Sens. Environ. , vol.166 , pp. 191-204
    • Wang, Q.1    Shi, W.2    Atkinson, P.M.3    Zhao, Y.4
  • 48
    • 84894380258 scopus 로고    scopus 로고
    • Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
    • Weng, Q., Fu, P., Gao, F., Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 145 (2014), 55–67.
    • (2014) Remote Sens. Environ. , vol.145 , pp. 55-67
    • Weng, Q.1    Fu, P.2    Gao, F.3
  • 49
    • 84885433268 scopus 로고    scopus 로고
    • Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model
    • Wu, M., Niu, Z., Wang, C., Wu, C., Wang, L., Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote. Sens. 6 (2012), 063507-1–063507-13.
    • (2012) J. Appl. Remote. Sens. , vol.6 , pp. 063507-1-063507-13
    • Wu, M.1    Niu, Z.2    Wang, C.3    Wu, C.4    Wang, L.5
  • 50
    • 84953884516 scopus 로고    scopus 로고
    • An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery
    • Wu, M., Wu, C., Huang, W., Niu, Z., Wang, C., Li, W., Hao, P., An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inf. Fusion 31 (2016), 14–25.
    • (2016) Inf. Fusion , vol.31 , pp. 14-25
    • Wu, M.1    Wu, C.2    Huang, W.3    Niu, Z.4    Wang, C.5    Li, W.6    Hao, P.7
  • 51
    • 84957541432 scopus 로고    scopus 로고
    • An improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions
    • Xie, D., Zhang, J., Zhu, X., Pan, Y., Liu, H., Yuan, Z., Yun, Y., An improved STARFM with help of an unmixing-based method to generate high spatial and temporal resolution remote sensing data in complex heterogeneous regions. Sensors, 16, 2016.
    • (2016) Sensors , vol.16
    • Xie, D.1    Zhang, J.2    Zhu, X.3    Pan, Y.4    Liu, H.5    Yuan, Z.6    Yun, Y.7
  • 52
    • 85027936834 scopus 로고    scopus 로고
    • Spatial and temporal image fusion via regularized spatial unmixing
    • Xu, Y., Huang, B., Xu, Y., Cao, K., Guo, C., Meng, D., Spatial and temporal image fusion via regularized spatial unmixing. IEEE Geosci. Remote Sens. Lett. 12:6 (2015), 1362–1366.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.6 , pp. 1362-1366
    • Xu, Y.1    Huang, B.2    Xu, Y.3    Cao, K.4    Guo, C.5    Meng, D.6
  • 53
    • 84941112049 scopus 로고    scopus 로고
    • A generalization of spatial and temporal fusion methods for remotely sensed surface parameters
    • Zhang, H.K., Huang, B., Zhang, M., Cao, K., Yu, L., A generalization of spatial and temporal fusion methods for remotely sensed surface parameters. Int. J. Remote Sens. 36:17 (2015), 4411–4445.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.17 , pp. 4411-4445
    • Zhang, H.K.1    Huang, B.2    Zhang, M.3    Cao, K.4    Yu, L.5
  • 54
    • 77956177720 scopus 로고    scopus 로고
    • An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
    • Zhu, X., Chen, J., Gao, F., Chen, X., Masek, J.G., An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 114 (2010), 2610–2623.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2610-2623
    • Zhu, X.1    Chen, J.2    Gao, F.3    Chen, X.4    Masek, J.G.5
  • 55
    • 84947594795 scopus 로고    scopus 로고
    • A flexible spatiotemporal method for fusing satellite images with different resolutions
    • Zhu, X., Helmer, E.H., Gao, F., Liu, D., Chen, J., Lefsky, M.A., A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 172 (2016), 165–177.
    • (2016) Remote Sens. Environ. , vol.172 , pp. 165-177
    • Zhu, X.1    Helmer, E.H.2    Gao, F.3    Liu, D.4    Chen, J.5    Lefsky, M.A.6
  • 58


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.