메뉴 건너뛰기




Volumn 36, Issue 6, 2015, Pages 1618-1644

Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use classification

Author keywords

[No Author keywords available]

Indexed keywords

DATA FUSION; LAND USE; MAXIMUM LIKELIHOOD; OPTICAL RADAR; PIXELS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84926163182     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1015657     Document Type: Article
Times cited : (73)

References (87)
  • 1
    • 80155214454 scopus 로고    scopus 로고
    • Optimizing Land Cover Classification Accuracy for Change Detection, a Combined Pixel-Based and Object-Based Approach in a Mountainous Area in Mexico
    • Aguirre-Gutiérrez, J., A. C. Seijmonsbergen, and J. F. Duivenvoorden. 2012. “Optimizing Land Cover Classification Accuracy for Change Detection, a Combined Pixel-Based and Object-Based Approach in a Mountainous Area in Mexico.” Applied Geography 34: 29–37. doi:10.1016/j.apgeog.2011.10.010.
    • (2012) Applied Geography , vol.34 , pp. 29-37
    • Aguirre-Gutiérrez, J.1    Seijmonsbergen, A.C.2    Duivenvoorden, J.F.3
  • 3
    • 43949138237 scopus 로고    scopus 로고
    • Object-Based Land Cover Classification Using Airborne Lidar
    • Antonarakis, A. S., K. S. Richards, and J. Brasington. 2008. “Object-Based Land Cover Classification Using Airborne Lidar.” Remote Sensing of Environment 112: 2988–2998. doi:10.1016/j.rse.2008.02.004.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2988-2998
    • Antonarakis, A.S.1    Richards, K.S.2    Brasington, J.3
  • 4
    • 77956614479 scopus 로고    scopus 로고
    • Automatic Detection of Residential Buildings Using LIDAR Data and Multispectral Imagery
    • Awrangjeb, M., M. Ravanbakhsh, and C. S. Fraser. 2010. “Automatic Detection of Residential Buildings Using LIDAR Data and Multispectral Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 65: 457–467. doi:10.1016/j.isprsjprs.2010.06.001.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , pp. 457-467
    • Awrangjeb, M.1    Ravanbakhsh, M.2    Fraser, C.S.3
  • 5
    • 0042332174 scopus 로고    scopus 로고
    • A Spectral Based Recognition of the Urban Environment Using the Visible and Near-Infrared Spectral Region (0.4-1.1 M). A Case Study over Tel-Aviv
    • Ben-Dor, E., N. Levin, and H. Saaroni. 2001. “A Spectral Based Recognition of the Urban Environment Using the Visible and Near-Infrared Spectral Region (0.4-1.1 M). A Case Study over Tel-Aviv.” International Journal of Remote Sensing 22: 2193–2218. doi:10.1080/014311601300190677.
    • (2001) International Journal of Remote Sensing , vol.22 , pp. 2193-2218
    • Ben-Dor, E.1    Levin, N.2    Saaroni, H.3
  • 6
    • 77956637110 scopus 로고    scopus 로고
    • Per-Pixel and Object-Oriented Classification Methods for Mapping Urban Features Using IKONOS Satellite Data
    • Bhaskaran, S., S. Paramananda, and M. Ramnarayan. 2010. “Per-Pixel and Object-Oriented Classification Methods for Mapping Urban Features Using IKONOS Satellite Data.” Applied Geography 30: 650–665. doi:10.1016/j.apgeog.2010.01.009.
    • (2010) Applied Geography , vol.30 , pp. 650-665
    • Bhaskaran, S.1    Paramananda, S.2    Ramnarayan, M.3
  • 7
    • 70349218764 scopus 로고    scopus 로고
    • Classification of Tropical Trees Growing in a Sanctuary Using Hyperion (EO-1) and SAM Algorithm
    • Binal, C., and N. S. R. Krishnayya. 2009. “Classification of Tropical Trees Growing in a Sanctuary Using Hyperion (EO-1) and SAM Algorithm.” Current Science 96: 1601–1607.
    • (2009) Current Science , vol.96 , pp. 1601-1607
    • Binal, C.1    Krishnayya, N.S.R.2
  • 8
    • 33746166986 scopus 로고    scopus 로고
    • Object-Oriented Land Cover Classification of Lidar-Derived Surfaces
    • Brennan, R., and T. L. Webster. 2006. “Object-Oriented Land Cover Classification of Lidar-Derived Surfaces.” Canadian Journal of Remote Sensing 32: 162–172. doi:10.5589/m06-015.
    • (2006) Canadian Journal of Remote Sensing , vol.32 , pp. 162-172
    • Brennan, R.1    Webster, T.L.2
  • 10
    • 39749111391 scopus 로고    scopus 로고
    • Contribution of Multispectral and Multitemporal Information from MODIS Images to Land Cover Classification
    • Carrão, H., P. Gonçalves, and M. Caetano. 2008. “Contribution of Multispectral and Multitemporal Information from MODIS Images to Land Cover Classification.” Remote Sensing of Environment 112: 986–997. doi:10.1016/j.rse.2007.07.002.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 986-997
    • Carrão, H.1    Gonçalves, P.2    Caetano, M.3
  • 11
    • 44649105162 scopus 로고    scopus 로고
    • Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)
    • Cavalli, R. M., L. Fusilli, S. Pascucci, S. Pignatti, and F. Santini. 2008. “Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy).” Sensors 8: 3299–3320. doi:10.3390/s8053299.
    • (2008) Sensors , vol.8 , pp. 3299-3320
    • Cavalli, R.M.1    Fusilli, L.2    Pascucci, S.3    Pignatti, S.4    Santini, F.5
  • 13
    • 33846821752 scopus 로고    scopus 로고
    • Airborne Lidar Data Processing and Information Extraction
    • Chen, Q. 2007. “Airborne Lidar Data Processing and Information Extraction.” Photogrammetric Engineering and Remote Sensing 73: 109–112.
    • (2007) Photogrammetric Engineering and Remote Sensing , vol.73 , pp. 109-112
    • Chen, Q.1
  • 14
    • 61549110198 scopus 로고    scopus 로고
    • Hierarchical Object Oriented Classification Using Very High Resolution Imagery and Lidar Data over Urban Areas
    • Chen, Y., W. Su, J. Li, and Z. Sun. 2009. “Hierarchical Object Oriented Classification Using Very High Resolution Imagery and Lidar Data over Urban Areas.” Advances in Space Research 43: 1101–1110. doi:10.1016/j.asr.2008.11.008.
    • (2009) Advances in Space Research , vol.43 , pp. 1101-1110
    • Chen, Y.1    Su, W.2    Li, J.3    Sun, Z.4
  • 15
    • 36248949001 scopus 로고    scopus 로고
    • Estimation of Green Grass/Herb Biomass from Airborne Hyperspectral Imagery Using Spectral Indices and Partial Least Squares Regression
    • Cho, M. A., A. Skidmore, F. Corsi, S. E. Van Wieren, and I. Sobhan. 2007. “Estimation of Green Grass/Herb Biomass from Airborne Hyperspectral Imagery Using Spectral Indices and Partial Least Squares Regression.” International Journal of Applied Earth Observation and Geoinformation 9: 414–424. doi:10.1016/j.jag.2007.02.001.
    • (2007) International Journal of Applied Earth Observation and Geoinformation , vol.9 , pp. 414-424
    • Cho, M.A.1    Skidmore, A.2    Corsi, F.3    Van Wieren, S.E.4    Sobhan, I.5
  • 16
    • 0141569022 scopus 로고    scopus 로고
    • Continuum-Based Classification of Remotely Sensed Imagery to Describe Urban Sprawl on a Watershed Scale
    • Clapham Jr., W. B. 2003. “Continuum-Based Classification of Remotely Sensed Imagery to Describe Urban Sprawl on a Watershed Scale.” Remote Sensing of Environment 86: 322–340. doi:10.1016/S0034-4257(03)00076-2.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 322-340
    • Clapham, W.B.1
  • 17
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37: 35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 18
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., and V. Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas
    • Dalponte, M., L. Bruzzone, and D. Gianelle. 2008. “Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas.” IEEE Transactions on Geoscience and Remote Sensing 46: 1416–1427. doi:10.1109/TGRS.2008.916480.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 21
    • 75149145494 scopus 로고    scopus 로고
    • Fusion of Lidar and Imagery for Estimating Forest Canopy Fuels
    • Erdody, T. L., and L. M. Moskal. 2010. “Fusion of Lidar and Imagery for Estimating Forest Canopy Fuels.” Remote Sensing of Environment 114: 725–737. doi:10.1016/j.rse.2009.11.002.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 725-737
    • Erdody, T.L.1    Moskal, L.M.2
  • 24
    • 0036213079 scopus 로고    scopus 로고
    • Status of Land Cover Classification Accuracy Assessment
    • Foody, G. M. 2002. “Status of Land Cover Classification Accuracy Assessment.” Remote Sensing of Environment 80: 185–201. doi:10.1016/S0034-4257(01)00295-4.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 25
    • 67349090017 scopus 로고    scopus 로고
    • Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments
    • Franke, J., D. A. Roberts, K. Halligan, and G. Menz. 2009. “Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of Hyperspectral Imagery for Urban Environments.” Remote Sensing of Environment 113: 1712–1723. doi:10.1016/j.rse.2009.03.018.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 1712-1723
    • Franke, J.1    Roberts, D.A.2    Halligan, K.3    Menz, G.4
  • 26
    • 84886045513 scopus 로고    scopus 로고
    • Accuracy Objectivity and Efficiency of Remote Sensing for Agricultural Statistics
    • Gallego, F. J., E. Carfagna, and B. Baruth. 2010. “Accuracy Objectivity and Efficiency of Remote Sensing for Agricultural Statistics.” Agricultural Survey Methods 193–211. doi:10.1002/9780470665480.ch12.
    • (2010) Agricultural Survey Methods , pp. 193-211
    • Gallego, F.J.1    Carfagna, E.2    Baruth, B.3
  • 28
    • 12944276914 scopus 로고    scopus 로고
    • Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data
    • Galvão, L. S., A. R. Formaggio, and D. A. Tisot. 2005. “Discrimination of Sugarcane Varieties in Southeastern Brazil with EO-1 Hyperion Data.” Remote Sensing of Environment 94: 523–534. doi:10.1016/j.rse.2004.11.012.
    • (2005) Remote Sensing of Environment , vol.94 , pp. 523-534
    • Galvão, L.S.1    Formaggio, A.R.2    Tisot, D.A.3
  • 29
    • 0037057573 scopus 로고    scopus 로고
    • Joint Analysis of SAR, LIDAR and Aerial Imagery for Simultaneous Extraction of Land Cover, DTM and 3D Shape of Buildings
    • Gamba, P., and B. Houshmand. 2002. “Joint Analysis of SAR, LIDAR and Aerial Imagery for Simultaneous Extraction of Land Cover, DTM and 3D Shape of Buildings.” International Journal of Remote Sensing 23: 4439–4450. doi:10.1080/01431160110114952.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 4439-4450
    • Gamba, P.1    Houshmand, B.2
  • 31
    • 84888787649 scopus 로고    scopus 로고
    • Fusion of Airborne Laser Scanning Point Clouds and Images for Supervised and Unsupervised Scene Classification
    • Gerke, M., and J. Xiao. 2014. “Fusion of Airborne Laser Scanning Point Clouds and Images for Supervised and Unsupervised Scene Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 87: 78–92. doi:10.1016/j.isprsjprs.2013.10.011.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.87 , pp. 78-92
    • Gerke, M.1    Xiao, J.2
  • 32
    • 84926215455 scopus 로고    scopus 로고
    • Texture Analysis for Urban Areas Classification in High Resolution Satellite Imagery
    • Giannini, M. B., P. Merola, and A. Allegrini. 2012. “Texture Analysis for Urban Areas Classification in High Resolution Satellite Imagery.” Applied Remote Sensing Journal 2: 2.
    • (2012) Applied Remote Sensing Journal , vol.2 , pp. 2
    • Giannini, M.B.1    Merola, P.2    Allegrini, A.3
  • 33
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of Airborne Lidar and Multispectral Image Data for Urban Scene Classification Using Random Forests
    • Guo, L., N. Chehata, C. Mallet, and S. Boukir. 2011. “Relevance of Airborne Lidar and Multispectral Image Data for Urban Scene Classification Using Random Forests.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 56–66. doi:10.1016/j.isprsjprs.2010.08.007.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 34
    • 22944457534 scopus 로고    scopus 로고
    • Spectral Characteristics of Asphalt Road Aging and Deterioration: Implications for Remote-Sensing Applications
    • Herold, M., and D. A. Roberts. 2005. “Spectral Characteristics of Asphalt Road Aging and Deterioration: Implications for Remote-Sensing Applications.” Applied Optics 44: 4327–4334. doi:10.1364/AO.44.004327.
    • (2005) Applied Optics , vol.44 , pp. 4327-4334
    • Herold, M.1    Roberts, D.A.2
  • 35
    • 2942739371 scopus 로고    scopus 로고
    • Spectrometry for Urban Area Remote Sensing-Development and Analysis of a Spectral Library from 350 to 2400 Nm
    • Herold, M., D. A. Roberts, M. E. Gardner, and P. E. Dennison. 2004. “Spectrometry for Urban Area Remote Sensing-Development and Analysis of a Spectral Library from 350 to 2400 Nm.” Remote Sensing of Environment 91: 304–319. doi:10.1016/j.rse.2004.02.013.
    • (2004) Remote Sensing of Environment , vol.91 , pp. 304-319
    • Herold, M.1    Roberts, D.A.2    Gardner, M.E.3    Dennison, P.E.4
  • 36
    • 26844454816 scopus 로고    scopus 로고
    • Mapping Woodland Species Composition and Structure Using Airborne Spectral and Lidar Data
    • Hill, R. A., and A. G. Thomson. 2005. “Mapping Woodland Species Composition and Structure Using Airborne Spectral and Lidar Data.” International Journal of Remote Sensing 26: 3763–3779. doi:10.1080/01431160500114706.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 3763-3779
    • Hill, R.A.1    Thomson, A.G.2
  • 37
    • 40049088615 scopus 로고    scopus 로고
    • Species Identification of Individual Trees by Combining High Resolution Lidar Data with Multi-Spectral Images
    • Holmgren, J., Å. Persson, and U. Söderman. 2008. “Species Identification of Individual Trees by Combining High Resolution Lidar Data with Multi-Spectral Images.” International Journal of Remote Sensing 29: 1537–1552. doi:10.1080/01431160701736471.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1537-1552
    • Holmgren, J.1    Persson, Å.2    Söderman, U.3
  • 38
    • 0032986310 scopus 로고    scopus 로고
    • Remote Sensing of Urban Suburban Infrastructure and Socio-Economic Attributes
    • Jensen, J. R., and D. C. Cowen. 1999. “Remote Sensing of Urban Suburban Infrastructure and Socio-Economic Attributes.” Photogrammetric Engineering and Remote Sensing 65: 611–622.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , pp. 611-622
    • Jensen, J.R.1    Cowen, D.C.2
  • 39
    • 77954407984 scopus 로고    scopus 로고
    • Remote Sensing Change Detection in Urban Environments
    • Jensen, J. R., and J. Im. 2007. “Remote Sensing Change Detection in Urban Environments.” Geo-Spatial Technologies in Urban Environments 7–31. doi:10.1007/978-3-540-69417-5_2.
    • (2007) Geo-Spatial Technologies in Urban Environments , pp. 7-31
    • Jensen, J.R.1    Im, J.2
  • 40
    • 33747119650 scopus 로고    scopus 로고
    • Effectiveness of Sub-Pixel Analysis in Detecting and Quantifying Urban Imperviousness from Landsat Thematic Mapper Imagery
    • Ji, M., and J. R. Jensen. 1999. “Effectiveness of Sub-Pixel Analysis in Detecting and Quantifying Urban Imperviousness from Landsat Thematic Mapper Imagery.” Geocarto International 14: 33–41. doi:10.1080/10106049908542126.
    • (1999) Geocarto International , vol.14
    • Ji, M.1    Jensen, J.R.2
  • 41
    • 32644445913 scopus 로고    scopus 로고
    • Application of Support Vector Machine Technology for Weed and Nitrogen Stress Detection in Corn
    • Karimi, Y., S. O. Prasher, R. M. Patel, and S. H. Kim. 2006. “Application of Support Vector Machine Technology for Weed and Nitrogen Stress Detection in Corn.” Computers and Electronics in Agriculture 51: 99–109. doi:10.1016/j.compag.2005.12.001.
    • (2006) Computers and Electronics in Agriculture , vol.51 , pp. 99-109
    • Karimi, Y.1    Prasher, S.O.2    Patel, R.M.3    Kim, S.H.4
  • 42
    • 77949657728 scopus 로고    scopus 로고
    • Synergistic Use of Quickbird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification
    • Ke, Y., L. J. Quackenbush, and J. Im. 2010. “Synergistic Use of Quickbird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification.” Remote Sensing of Environment 114: 1141–1154. doi:10.1016/j.rse.2010.01.002.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1141-1154
    • Ke, Y.1    Quackenbush, L.J.2    Im, J.3
  • 44
    • 84881009307 scopus 로고    scopus 로고
    • Improved Classification Accuracy Based on the Output-Level Fusion of High-Resolution Satellite Images and Airborne LiDAR Data in Urban Area
    • Kim, Y., and Y. Kim. 2014. “Improved Classification Accuracy Based on the Output-Level Fusion of High-Resolution Satellite Images and Airborne LiDAR Data in Urban Area.” IEEE Geoscience and Remote Sensing Letters 11: 636–640. doi:10.1109/LGRS.2013.2273397.
    • (2014) IEEE Geoscience and Remote Sensing Letters , vol.11 , pp. 636-640
    • Kim, Y.1    Kim, Y.2
  • 45
    • 45849107278 scopus 로고    scopus 로고
    • Multi-Source Land Cover Classification for Forest Fire Management Based on Imaging Spectrometry and Lidar Data
    • Koetz, B., F. Morsdorf, S. Van Der Linden, T. Curt, and B. Allgöwer. 2008. “Multi-Source Land Cover Classification for Forest Fire Management Based on Imaging Spectrometry and Lidar Data.” Forest Ecology and Management 256: 263–271. doi:10.1016/j.foreco.2008.04.025.
    • (2008) Forest Ecology and Management , vol.256 , pp. 263-271
    • Koetz, B.1    Morsdorf, F.2    Van Der Linden, S.3    Curt, T.4    Allgöwer, B.5
  • 46
    • 0346144476 scopus 로고    scopus 로고
    • Combining Lidar Elevation Data and IKONOS Multispectral Imagery for Coastal Classification Mapping
    • Lee, D. S., and J. Shan. 2003. “Combining Lidar Elevation Data and IKONOS Multispectral Imagery for Coastal Classification Mapping.” Marine Geodesy 26: 117–127. doi:10.1080/01490410306707.
    • (2003) Marine Geodesy , vol.26 , pp. 117-127
    • Lee, D.S.1    Shan, J.2
  • 47
    • 0025430387 scopus 로고
    • Enhancement of High Spectral Resolution Remote Sensing Data by a Noise-Adjusted Principal Components Transform
    • Lee, J. B., S. Woodyatt, and M. Berman. 1990. “Enhancement of High Spectral Resolution Remote Sensing Data by a Noise-Adjusted Principal Components Transform.” IEEE Transactions on Geoscience and Remote Sensing 28: 295–304. doi:10.1109/36.54356.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , pp. 295-304
    • Lee, J.B.1    Woodyatt, S.2    Berman, M.3
  • 48
    • 77957990796 scopus 로고    scopus 로고
    • An Effective Feature Selection Method for Hyperspectral Image Classification Based on Genetic Algorithm and Support Vector Machine
    • Li, S., H. Wu, D. Wan, and J. Zhu. 2011. “An Effective Feature Selection Method for Hyperspectral Image Classification Based on Genetic Algorithm and Support Vector Machine.” Knowledge-Based Systems 24: 40–48. doi:10.1016/j.knosys.2010.07.003.
    • (2011) Knowledge-Based Systems , vol.24 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 50
    • 78650742760 scopus 로고    scopus 로고
    • A Fuzzy Topology-Based Maximum Likelihood Classification
    • Liu, K., W. Shi, and H. Zhang. 2011. “A Fuzzy Topology-Based Maximum Likelihood Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 66: 103–114. doi:10.1016/j.isprsjprs.2010.09.007.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 103-114
    • Liu, K.1    Shi, W.2    Zhang, H.3
  • 51
    • 84874669655 scopus 로고    scopus 로고
    • High-Resolution Tree Canopy Mapping for New York City Using LIDAR and Object-Based Image Analysis
    • Macfaden, S. W., J. P. M. O’neil-Dunne, A. R. Royar, J. W. T. Lu, and A. G. Rundle. 2012. “High-Resolution Tree Canopy Mapping for New York City Using LIDAR and Object-Based Image Analysis.” Journal of Applied Remote Sensing 6: 1–23. doi:10.1117/1.JRS.6.063567.
    • (2012) Journal of Applied Remote Sensing , vol.6 , pp. 1-23
    • Macfaden, S.W.1    O’neil-Dunne, J.P.M.2    Royar, A.R.3    Lu, J.W.T.4    Rundle, A.G.5
  • 53
    • 0003781281 scopus 로고
    • Apport de la fusion d’images satellitaires multicapteurs au niveau pixel en télédétection et photo-interprétation
    • Mangolini, M. 1994. “Apport de la fusion d’images satellitaires multicapteurs au niveau pixel en télédétection et photo-interprétation.” Dissertation published at the University of Nice-Sophia Antipolis, France.
    • (1994) Dissertation published at the University of Nice-Sophia Antipolis, France
    • Mangolini, M.1
  • 55
    • 34250613472 scopus 로고    scopus 로고
    • Segmentation and Object-Based Classification for the Extraction of the Building Class from LIDAR Dems
    • Miliaresis, G., and N. Kokkas. 2007. “Segmentation and Object-Based Classification for the Extraction of the Building Class from LIDAR Dems.” Computers & Geosciences 33: 1076–1087. doi:10.1016/j.cageo.2006.11.012.
    • (2007) Computers & Geosciences , vol.33 , pp. 1076-1087
    • Miliaresis, G.1    Kokkas, N.2
  • 56
    • 2642574101 scopus 로고    scopus 로고
    • Edge- and Region-Based Segmentation Technique for the Extraction of Large, Man-Made Objects in High-Resolution Satellite Imagery
    • Mueller, M., K. Segl, and H. Kaufmann. 2004. “Edge- and Region-Based Segmentation Technique for the Extraction of Large, Man-Made Objects in High-Resolution Satellite Imagery.” Pattern Recognition 37 (8): 1619–1628. doi:10.1016/j.patcog.2004.03.001.
    • (2004) Pattern Recognition , vol.37 , Issue.8 , pp. 1619-1628
    • Mueller, M.1    Segl, K.2    Kaufmann, H.3
  • 57
    • 79952070569 scopus 로고    scopus 로고
    • Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery
    • Myint, S. W., P. Gober, A. Brazel, S. Grossman-Clarke, and Q. Weng. 2011. “Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery.” Remote Sensing of Environment 115: 1145–1161. doi:10.1016/j.rse.2010.12.017.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 1145-1161
    • Myint, S.W.1    Gober, P.2    Brazel, A.3    Grossman-Clarke, S.4    Weng, Q.5
  • 58
    • 34147220903 scopus 로고    scopus 로고
    • Mapping an Invasive Plant, Phragmites Australis, in Coastal Wetlands Using the EO-1 Hyperion Hyperspectral Sensor
    • Pengra, B. W., C. A. Johnston, and T. R. Loveland. 2007. “Mapping an Invasive Plant, Phragmites Australis, in Coastal Wetlands Using the EO-1 Hyperion Hyperspectral Sensor.” Remote Sensing of Environment 108: 74–81. doi:10.1016/j.rse.2006.11.002.
    • (2007) Remote Sensing of Environment , vol.108 , pp. 74-81
    • Pengra, B.W.1    Johnston, C.A.2    Loveland, T.R.3
  • 59
    • 80255131087 scopus 로고    scopus 로고
    • Hyperion Hyperspectral Imagery Analysis Combined with Machine Learning Classifiers for Land Use/Cover Mapping
    • Petropoulos, G. P., K. Arvanitis, and N. Sigrimis. 2012. “Hyperion Hyperspectral Imagery Analysis Combined with Machine Learning Classifiers for Land Use/Cover Mapping.” Expert Systems with Applications 39: 3800–3809. doi:10.1016/j.eswa.2011.09.083.
    • (2012) Expert Systems with Applications , vol.39 , pp. 3800-3809
    • Petropoulos, G.P.1    Arvanitis, K.2    Sigrimis, N.3
  • 60
    • 84857916067 scopus 로고    scopus 로고
    • Support Vector Machines and Object-Based Classification for Obtaining Land-Use/Cover Cartography from Hyperion Hyperspectral Imagery
    • Petropoulos, G. P., C. Kalaitzidis, and K. Prasad Vadrevu. 2012. “Support Vector Machines and Object-Based Classification for Obtaining Land-Use/Cover Cartography from Hyperion Hyperspectral Imagery.” Computers & Geosciences 41: 99–107. doi:10.1016/j.cageo.2011.08.019.
    • (2012) Computers & Geosciences , vol.41 , pp. 99-107
    • Petropoulos, G.P.1    Kalaitzidis, C.2    Prasad Vadrevu, K.3
  • 61
    • 58349122295 scopus 로고    scopus 로고
    • Evaluating Hyperion Capability for Land Cover Mapping in a Fragmented Ecosystem: Pollino National Park, Italy
    • Pignatti, S. R. M., R. M. Cavalli, V. Cuomo, L. Fusilli, S. Pascucci, M. Poscolieri, and F. Santini. 2009. “Evaluating Hyperion Capability for Land Cover Mapping in a Fragmented Ecosystem: Pollino National Park, Italy.” Remote Sensing of Environment 113: 622–634. doi:10.1016/j.rse.2008.11.006.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 622-634
    • Pignatti, S.R.M.1    Cavalli, R.M.2    Cuomo, V.3    Fusilli, L.4    Pascucci, S.5    Poscolieri, M.6    Santini, F.7
  • 63
    • 0032030026 scopus 로고    scopus 로고
    • Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications
    • Pohl, C., and J. L. Van Genderen. 1998. “Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications.” International Journal of Remote Sensing 19: 823–854. doi:10.1080/014311698215748.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.L.2
  • 64
    • 0036788890 scopus 로고    scopus 로고
    • Automated Tree Crown Detection and Delineation in High-Resolution Digital Camera Imagery of Coniferous Forest Regeneration
    • Pouliot, D. A., D. J. King, F. W. Bell, and D. G. Pitt. 2002. “Automated Tree Crown Detection and Delineation in High-Resolution Digital Camera Imagery of Coniferous Forest Regeneration.” Remote Sensing of Environment 82: 322–334. doi:10.1016/S0034-4257(02)00050-0.
    • (2002) Remote Sensing of Environment , vol.82 , pp. 322-334
    • Pouliot, D.A.1    King, D.J.2    Bell, F.W.3    Pitt, D.G.4
  • 65
    • 33845914584 scopus 로고    scopus 로고
    • Sub-Pixel Mapping of Urban Land Cover Using Multiple Endmember Spectral Mixture Analysis: Manaus, Brazil
    • Powell, R. L., D. A. Roberts, P. E. Dennison, and L. L. Hess. 2007. “Sub-Pixel Mapping of Urban Land Cover Using Multiple Endmember Spectral Mixture Analysis: Manaus, Brazil.” Remote Sensing of Environment 106: 253–267. doi:10.1016/j.rse.2006.09.005.
    • (2007) Remote Sensing of Environment , vol.106 , pp. 253-267
    • Powell, R.L.1    Roberts, D.A.2    Dennison, P.E.3    Hess, L.L.4
  • 66
    • 0344688139 scopus 로고    scopus 로고
    • Oakwood Crown Closure Estimation by Unmixing Landsat TM Data
    • Pu, R., B. Xu, and P. Gong. 2003. “Oakwood Crown Closure Estimation by Unmixing Landsat TM Data.” International Journal of Remote Sensing 24: 4422–4445. doi:10.1080/0143116031000095989.
    • (2003) International Journal of Remote Sensing , vol.24 , pp. 4422-4445
    • Pu, R.1    Xu, B.2    Gong, P.3
  • 67
    • 17444390061 scopus 로고    scopus 로고
    • Using the Dempster–Shafer Method for the Fusion of LIDAR Data and Multi-Spectral Images for Building Detection
    • Rottensteiner, F., J. Trinder, S. Clode, and K. Kubik. 2005. “Using the Dempster–Shafer Method for the Fusion of LIDAR Data and Multi-Spectral Images for Building Detection.” Information Fusion 6: 283–300. doi:10.1016/j.inffus.2004.06.004.
    • (2005) Information Fusion , vol.6 , pp. 283-300
    • Rottensteiner, F.1    Trinder, J.2    Clode, S.3    Kubik, K.4
  • 68
    • 84864139501 scopus 로고    scopus 로고
    • Object-Based Classification of Land Cover and Tree Species by Integrating Airborne Lidar and High Spatial Resolution Imagery Data
    • Sasaki, T., J. Imanishi, K. Ioki, Y. Morimoto, and K. Kitada. 2012. “Object-Based Classification of Land Cover and Tree Species by Integrating Airborne Lidar and High Spatial Resolution Imagery Data.” Landscape and Ecological Engineering 8: 157–171. doi:10.1007/s11355-011-0158-z.
    • (2012) Landscape and Ecological Engineering , vol.8 , pp. 157-171
    • Sasaki, T.1    Imanishi, J.2    Ioki, K.3    Morimoto, Y.4    Kitada, K.5
  • 69
    • 0001340183 scopus 로고
    • Clustering Methods Based on Likelihood Ratio Criteria
    • Scott, A. J., and M. J. Symons. 1971. “Clustering Methods Based on Likelihood Ratio Criteria.” Biometrics 27: 387–397. doi:10.2307/2529003.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 70
    • 0242292075 scopus 로고    scopus 로고
    • A Combined Fuzzy Pixel-Based and Object-Based Approach for Classification of High-Resolution Multispectral Data over Urban Areas
    • Shackelford, A. K., and C. H. Davis. 2003. “A Combined Fuzzy Pixel-Based and Object-Based Approach for Classification of High-Resolution Multispectral Data over Urban Areas.” IEEE Transactions on Geoscience and Remote Sensing 41: 2354–2364. doi:10.1109/TGRS.2003.815972.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41
    • Shackelford, A.K.1    Davis, C.H.2
  • 71
    • 84867587028 scopus 로고    scopus 로고
    • Lidar-Landsat Data Fusion for Large-Area Assessment of Urban Land Cover: Balancing Spatial Resolution, Data Volume and Mapping Accuracy
    • Singh, K. K., J. B. Vogler, D. A. Shoemaker, and R. K. Meentemeyer. 2012. “Lidar-Landsat Data Fusion for Large-Area Assessment of Urban Land Cover: Balancing Spatial Resolution, Data Volume and Mapping Accuracy.” ISPRS Journal of Photogrammetry and Remote Sensing 74: 110–121. doi:10.1016/j.isprsjprs.2012.09.009.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.74 , pp. 110-121
    • Singh, K.K.1    Vogler, J.B.2    Shoemaker, D.A.3    Meentemeyer, R.K.4
  • 72
    • 0035837463 scopus 로고    scopus 로고
    • Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis
    • Small, C. 2001. “Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis.” International Journal of Remote Sensing 22: 1305–1334. doi:10.1080/01431160151144369.
    • (2001) International Journal of Remote Sensing , vol.22 , pp. 1305-1334
    • Small, C.1
  • 73
    • 0442314452 scopus 로고    scopus 로고
    • High Spatial Resolution Spectral Mixture Analysis of Urban Reflectance
    • Small, C. 2003. “High Spatial Resolution Spectral Mixture Analysis of Urban Reflectance.” Remote Sensing of Environment 88: 170–186. doi:10.1016/j.rse.2003.04.008.
    • (2003) Remote Sensing of Environment , vol.88 , pp. 170-186
    • Small, C.1
  • 74
    • 13444288180 scopus 로고    scopus 로고
    • A Global Analysis of Urban Reflectance
    • Small, C. 2005. “A Global Analysis of Urban Reflectance.” International Journal of Remote Sensing 26: 661–681. doi:10.1080/01431160310001654950.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 661-681
    • Small, C.1
  • 76
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and Interpreting Measures of Thematic Classification Accuracy
    • Stehman, S. V. 1997. “Selecting and Interpreting Measures of Thematic Classification Accuracy.” Remote Sensing of Environment 62: 77–89. doi:10.1016/S0034-4257(97)00083-7.
    • (1997) Remote Sensing of Environment , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 77
    • 41449100822 scopus 로고    scopus 로고
    • Object‐Based Classification of Residential Land Use within Accra, Ghana Based on Quickbird Satellite Data
    • Stow, D., A. Lopez, C. Lippitt, S. Hinton, and J. Weeks. 2007. “Object‐Based Classification of Residential Land Use within Accra, Ghana Based on Quickbird Satellite Data.” International Journal of Remote Sensing 28: 5167–5173. doi:10.1080/01431160701604703.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 5167-5173
    • Stow, D.1    Lopez, A.2    Lippitt, C.3    Hinton, S.4    Weeks, J.5
  • 78
    • 84886688148 scopus 로고    scopus 로고
    • Automatic Remotely Sensed Image Classification in a Grid Environment Based on the Maximum Likelihood Method
    • Sun, J., J. Yang, C. Zhang, W. Yun, and J. Qu. 2013. “Automatic Remotely Sensed Image Classification in a Grid Environment Based on the Maximum Likelihood Method.” Mathematical and Computer Modelling 58: 573–581. doi:10.1016/j.mcm.2011.10.063.
    • (2013) Mathematical and Computer Modelling , vol.58 , pp. 573-581
    • Sun, J.1    Yang, J.2    Zhang, C.3    Yun, W.4    Qu, J.5
  • 79
    • 70349561256 scopus 로고    scopus 로고
    • Use of Laser Range and Height Texture Cues for Building Identification
    • Tiwari, P. S., and H. Pande. 2008. “Use of Laser Range and Height Texture Cues for Building Identification.” Journal of the Indian Society of Remote Sensing 36: 227–234. doi:10.1007/s12524-008-0023-1.
    • (2008) Journal of the Indian Society of Remote Sensing , vol.36 , pp. 227-234
    • Tiwari, P.S.1    Pande, H.2
  • 81
    • 34548435161 scopus 로고    scopus 로고
    • Feature Selection by Genetic Algorithms in Object-Based Classification of IKONOS Imagery for Forest Mapping in Flanders, Belgium
    • Van Coillie, F., L. P. C. Verbeke, and R. R. De Wulf. 2007. “Feature Selection by Genetic Algorithms in Object-Based Classification of IKONOS Imagery for Forest Mapping in Flanders, Belgium.” Remote Sensing of Environment 110: 476–487. doi:10.1016/j.rse.2007.03.020.
    • (2007) Remote Sensing of Environment , vol.110 , pp. 476-487
    • Van Coillie, F.1    Verbeke, L.P.C.2    De Wulf, R.R.3
  • 83
    • 0029503157 scopus 로고
    • Towards Automatic Building Extraction from High Resolution Digital Elevation Models
    • Weidner, U., and W. Förstner. 1995. “Towards Automatic Building Extraction from High Resolution Digital Elevation Models.” ISPRS Journal of Photogrammetry and Remote Sensing 50: 38–49. doi:10.1016/0924-2716(95)98236-S.
    • (1995) ISPRS Journal of Photogrammetry and Remote Sensing , vol.50 , pp. 38-49
    • Weidner, U.1    Förstner, W.2
  • 84
    • 71749093956 scopus 로고    scopus 로고
    • Classification of Quickbird Image with Maximal Mutual Information Feature Selection and Support Vector Machine
    • Wu, B., Z. Xiong, Y. Chen, and Y. Zhao. 2009. “Classification of Quickbird Image with Maximal Mutual Information Feature Selection and Support Vector Machine.” Procedia Earth and Planetary Science 1: 1165–1172. doi:10.1016/j.proeps.2009.09.179.
    • (2009) Procedia Earth and Planetary Science , vol.1 , pp. 1165-1172
    • Wu, B.1    Xiong, Z.2    Chen, Y.3    Zhao, Y.4
  • 85
    • 43049103488 scopus 로고    scopus 로고
    • Exploring for Natural Gas Using Reflectance Spectra of Surface Soils
    • Xu, D., G. Ni, L. Jiang, Y. Shen, T. Li, S. Ge, and X. Shu. 2008. “Exploring for Natural Gas Using Reflectance Spectra of Surface Soils.” Advances in Space Research 41: 1800–1817. doi:10.1016/j.asr.2007.05.073.
    • (2008) Advances in Space Research , vol.41 , pp. 1800-1817
    • Xu, D.1    Ni, G.2    Jiang, L.3    Shen, Y.4    Li, T.5    Ge, S.6    Shu, X.7
  • 86
    • 70449384598 scopus 로고    scopus 로고
    • Feature Selection for Hyperspectral Data Based on Recursive Support Vector Machines
    • Zhang, R., and J. Ma. 2009. “Feature Selection for Hyperspectral Data Based on Recursive Support Vector Machines.” International Journal of Remote Sensing 30: 3669–3677. doi:10.1080/01431160802609718.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 3669-3677
    • Zhang, R.1    Ma, J.2
  • 87
    • 84878631650 scopus 로고    scopus 로고
    • An Object-Based Approach for Urban Land Cover Classification: Integrating LiDAR Height and Intensity Data
    • Zhou, W. 2013. “An Object-Based Approach for Urban Land Cover Classification: Integrating LiDAR Height and Intensity Data.” IEEE Geoscience and Remote Sensing Letters 10: 928–931. doi:10.1109/LGRS.2013.2251453.
    • (2013) IEEE Geoscience and Remote Sensing Letters , vol.10 , pp. 928-931
    • Zhou, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.